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ISOMETRY INVARIANT FINSLER METRICS

ON HILBERT SPACES

Eugene Bilokopytov

Abstract. In this paper we study isometry-invariant Finsler metrics on inner
product spaces over R or C, i.e. the Finsler metrics which do not change
under the action of all isometries of the inner product space. We give a new
proof of the analytic description of all such metrics. In this article the most
general concept of the Finsler metric is considered without any additional
assumptions that are usually built into its definition. However, we present
refined versions of the described results for more specific classes of metrics,
including the class of Riemannian metrics. Our main result states that for an
isometry-invariant Finsler metric the only possible linear maps under which
the metric is invariant are scalar multiples of isometries. Furthermore, we
characterize the metrics invariant with respect to all linear maps of this type.

1. Introduction

Geometric objects are largely characterized by their symmetries. An important
class of geometric objects is formed by manifolds equipped with Finsler metrics.
The subject of this article is the class of such manifolds, which are located inside of
a certain inner product space and share symmetries with the later. Namely, we are
interested in the Finsler metrics that are invariant with respect to all isometries of
the ambient space.

This paper is dedicated to two questions: finding an analytic description of the
isometry-invariant Finsler metrics and determining which further symmetries such
metrics can have. The definition and the concept of a Finsler metric substantially
vary through the literature. In fact, our first question is already answered in the
sense of one of these definitions, in [8] for the real case, and in [6] for the complex
case1. However, here we present a simpler proof and a slightly different formulation,
and also deal with other definitions of the Finsler metric. Moreover, we are not
confined to finite dimensions, as is the case in the cited papers.

Let F be the field of either real or complex numbers. Unless stated otherwise, we
will treat these two cases simultaneously, and so, for example, the word “sesquilinear”
for the real case means simply “bilinear”. By an isometry we mean an F-linear
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operator of an inner product space that preserves the inner product. This is
equivalent to the assumption that the operator preserves the norm induced by
the inner product. Note that the alternative name for the isometries of Rn is
“orthogonal operators”, while the surjective isometries of a complex Hilbert space
of any dimensions are called unitary operators, or unitaries. In the light of this
fact, we will also call surjective isometries unitaries. Clearly, these terms coincide
in finite dimensions.

Since all the manifolds under consideration are domains in an inner product
space, for simplicity we will not invoke the language of tangent spaces.

Let H be an inner product space over F and let G be an open set in H.
A non-symmetric Finsler metric on G is a function ρ : G × H → R such that
ρg (rh) = rρg (h), for every g ∈ G, h ∈ H, r ≥ 0. The term Finsler metric will
be reserved for functions ρ : G ×H → R such that ρg (rh) = |r| ρg (h), for every
g ∈ G, h ∈ H, r ∈ F. Note, that we do not require ρ to be non-negative and we
do not make any assumptions related to the smoothness or shape of ρ, including
subadditivity.

A non-negative Finsler metric can be used to define a distance in two stages:

first, for a C1 curve γ : [a, b]→ G define the length by
b∫
a

ργ(t) (γ′ (t)) dt; then the

distance between two points is the infinum of the lengths of the curves that contain
these points. For a detailed account on the Finsler metrics see for example [1].

The terms “Riemannian metric” and “Hermitean metric” are much more settled
and the standard definitions involve smoothness and positive definiteness. Hence,
we will not assign any specific name for a scalar function σ on G×H ×H such
that σg is a conjugate-symmetric sesquilinear form on H, for every g ∈ G. For
every such function we can define an associated Finsler metric ρσg (h) = σg(h,h)√

σg(h,h)
,

and so all concepts related to Finsler metrics can be applied to σ. In particular, if
σg is positive definite for every g ∈ G, then ρσg (h) =

√
σg (h, h) is a non-negative

Finsler metric.
We will say that a function ρ on G ×H is invariant with respect to a linear

map T : H → H if TG ⊂ G and ρTg (Th) = ρg (h) for any g ∈ G, h ∈ H. Then T
is called a symmetry of ρ. Clearly, the symmetries of any function form a monoid,
while the invertible symmetries form a group. We will call ρ isometry-invariant
(or isometrically symmetric) if it is invariant with respect to all isometries. The
invariance of functions on G×H ×H is defined similarly.

Let us depict the contents of the article. In Section 2 we establish some descrip-
tions of isometry-invariant Finsler metrics and study some of their properties. We
also deal with isometry-invariant Riemannian/Hermitean metrics.

Section 3 is dedicated to studying metrics which are even more symmetric, in
the sense that apart of the isometry invariance, they are also invariant with respect
to some other operators on H. We will see that the range of such possibilities is
very limited. Namely, our main result, Theorem 3.7 states that with one exception
the only invariance compatible with the isometry-invariance is the invariance with
respect to the congruencies (non-zero constants times isometries). Consequently, it
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is important to study the congruence invariance, which for isometrically symmetric
Finsler metrics is reduced to studying the invariance with respect to homotheties
(multiplications by constants), and we do it in the beginning of the section.

In Section 4 we state the complementary results for the non-symmetric Finsler
metric. The majority of the proofs are omitted since they are analogous to the
proofs for the symmetric case.

2. Isometry-invariant Finsler metrics

Let G be an isometry-invariant open set in H, i.e. G =
⋃
r∈R

rS, where S is the

unit sphere of H and R is an open set in [0,+∞). Since a sphere of a zero radius
is just a single point, the zero-vector is a “singularity” in our considerations. The
following proposition allows us to remove it from the most of the further discussion.

Proposition 2.1. Let 0 ∈ G and let ρ be a scalar function on G × H. Then ρ
is isometry-invariant if and only if ρ

∣∣
G\{0}×H is isometry-invariant and there is

(a unique) b ∈ R, such that ρ0 (h) = b‖h‖, for every h ∈ H.

Proof. The sufficiency is obvious; let us prove the necessity. Fix a unit vector
e ∈ H. For any h ∈ H there is an isometry T such that Th = ‖h‖e. Then
ρ0 (h) = ρT0 (Th) = ρ0 (‖h‖e) = ‖h‖ρ0 (e). Thus, for b = ρ0 (e) we obtain that
ρ0 (h) = b‖h‖, for every h ∈ H. �

Our further discussion is based on the following lemma.

Lemma 2.2. Let α ∈ R, let 0 6∈ G and let ρ : G×H → R be such that ρg (rh) =
|r|α ρg (h), for every g ∈ G, h ∈ H, r ∈ F. Then ρ is isometry-invariant if and
only if there is a (unique) function λ : R× R2 → R, such that:
• λr (tp, tq) = tαλr (p, q) and λr (−p, q) = λr (p,−q) = λr (p, q), for any
r ∈ R, p, q ∈ R, t ≥ 0;
• ρg(h) = λ‖g‖

(
|〈h, g〉| ,

√
‖h‖2‖g‖2 − |〈h, g〉|2

)
, for every g ∈ G, h ∈ H.

Proof. Sufficiency is obvious; let us show necessity. It is easy to see that there
is nothing to prove in case when dimH ≤ 1, so assume that dimH > 1. Fix two
orthogonal unit vectors e, f ∈ H. Then, for any g ∈ G and h ∈ H there is an
isometry T such that Tg = ‖g‖e and

Tprojg⊥h = 〈h, g〉
|〈h, g〉|

‖projg⊥h‖f = 〈h, g〉
|〈h, g〉|

√
‖h‖2 − |〈h, g〉|

2

‖g‖2 f

(if g⊥h, we take 〈h,g〉
|〈h,g〉| = 1). Then Tprojgh = T 〈h,g〉‖g‖2 g = 〈h,g〉

‖g‖2 Tg = 〈h,g〉
‖g‖ e, and so

Th= 〈h, g〉
‖g‖

e+ 〈h, g〉
|〈h, g〉|

√
‖h‖2− |〈h, g〉|

2

‖g‖2 f= 〈h, g〉
|〈h, g〉|

|〈h, g〉| e+
√
‖h‖2‖g‖2−|〈h, g〉|2f
‖g‖

.

ρg (h) = ρTg (Th) = ρ‖g‖e

( 〈h, g〉
|〈h, g〉|

1
‖g‖

(
|〈h, g〉| e+

√
‖h‖2‖g‖2 − |〈h, g〉|2f

))
= 1
‖g‖α

ρ‖g‖e

(
|〈h, g〉| e+

√
‖h‖2‖g‖2 − |〈h, g〉|2f

)
.
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Thus for λr (p, q) = 1
rα ρre (pe+ qf) we obtain that

ρg(h) = λ‖g‖
(
|〈h, g〉| ,

√
‖h‖2‖g‖2 − |〈h, g〉|2

)
,

for every g ∈ G\ {0}, h ∈ H. Additionally for every r ∈ R, p, q, t ∈ R we have that

λr (tp, tq) = 1
rα
ρre (t (pe+ qf)) = 1

rα
|t|α ρre (pe+ qf) = |t|α λr (p, q) .

Since e⊥f , we can find an isometry T such that Te = e and Tf = −f . Then

λr (p,−q) = 1
rα
ρre (pe−qf) = 1

rα
ρrTe (pTe−qTf) = 1

rα
ρre (pe+ qf) = λr (p, q) ;

finally, λr (−p, q) = λr ((−1) (p,−q)) = 1αλr (p,−q) = λr (p, q). �

As a particular case we obtain an analytic description of the isometry-invariant
Finsler metrics.

Proposition 2.3. Let ρ be a Finsler metric on G 63 0. Then ρ is isometry-invariant
if and only if there is a (unique) function λ : R× R2 → R, such that:
• λr (tp, tq) = tλr (p, q) and λr (−p, q) = λr (p,−q) = λr (p, q), for any r ∈ R,
p, q ∈ R, t ≥ 0;
• ρg (h) = λ‖g‖

(
|〈h, g〉| ,

√
‖h‖2‖g‖2 − |〈h, g〉|2

)
, for every g ∈ G, h ∈ H.

From the above proposition it is clear that ρg (h) depends on the “angle” between
g and h. Let us formalize this idea. For non-zero vectors g, h define the acute angle
between them, i.e. the minimal angle between the real rays lying on the F-lines,
containing them by

∠ (g, h) = ∠ (h, g) = cos−1 |〈h, g〉|
‖h‖‖g‖

.

Defining θ (r, τ) = rλr (cos τ, sin τ) on R ×
[
0, π2

]
we obtain another analytic

description of isometrically-symmetric Finsler metric.

Corollary 2.4. A Finsler metric ρ on G 63 0 is isometry-invariant if and only if
there is a (unique) function θ : R×

[
0, π2

]
→ R such that ρg (h) = ‖h‖θ (‖g‖,∠ (g, h)),

for every g ∈ G, h ∈ H\ {0}.

Remark 2.5. It can be seen from the proof above, that it is enough to demand
invariance only with respect to the group of unitaries. Moreover, if ∞ > dimH >
2 it is enough to demand only invariance with respect to the group rotations
(isometries of determinant 1). In the light of this fact, the terms unitary- and
isometry- invariant Finsler metrics are interchangeable.

Remark 2.6. It is easy to see that λr has a certain property if and only if ρg
has this property for every g ∈ rS and if and only if ρre has this property on
some two-dimensional subspace containing some unit vector e. Examples of such
properties include non-negativity, continuity, being a (semi)norm, smoothness etc.
In particular, if we assume that ρg is a seminorm for some g ∈ rS, we get that
ρg is a continuous seminorm for all g ∈ rS. The global properties of ρ and λ are
also connected. For example, ρ is continuous if and only if λ is.
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Remark 2.7. If λr it is a seminorm, then it is either a norm or λr (p, q) = a |p|,
for some a ≥ 0, or λr (p, q) = b |q|, for some b ≥ 0. Indeed, the null-space of a
seminorm is a subspace of R2, which in our case has to be symmetric with respect
to both axis. Thus, it is either one of them, or the whole R2, or {0}. Note that if
λr (p, q) = a |p|, then the length of any curve inside of rS is 0, and so ρ glues all
elements with norm equal to r. See Remark 2.10 for further details.

Let us deal with the isometry-invariant Riemannian/Hermitean metrics.

Proposition 2.8. Let 0 6∈ G and let σ : G × H × H → F be such that σg is
conjugate-symmetric sesquilinear on H, for every g ∈ G. Then σ is isometry-in-
variant if and only if there are (unique) functions ϕ, ψ : R→ R, such that

σg (f, h) = ϕ
(
‖g‖2) 〈f, h〉+ ψ

(
‖g‖2) 〈f, g〉 〈g, h〉 , for g ∈ G, and f , h ∈ H .

Moreover, in this case the following hold:
(i) σg is positive definite for some (every) g ∈

√
rS if and only if ϕ (r) > 0

and ϕ (r) + rψ (r) > 0;
(ii) the degree of smoothness of σ coincides with the minimal degree of smooth-

ness of ϕ and ψ.

Proof. Sufficiency is obvious; let us show necessity. It is easy to see that ρg (h) =
σg (h, h) satisfies the conditions of Lemma 2.2 with α = 2, and so there is
a (unique) function λ : R × R2 → R, such that λr (tp, tq) = t2λr (p, q) and
λr (−p, q) = λr (p,−q) = λr (p, q), for any r ∈ R, p, q ∈ R, t ≥ 0, and also
ρg (h) = λ‖g‖

(
|〈h, g〉| ,

√
‖h‖2‖g‖2 − |〈h, g〉|2

)
, for every g ∈ G, h ∈ H.

We again may assume that dimH > 1 and fix two orthogonal unit vectors
e, f ∈ H. Then λr (p, q) = 1

r2 ρre (pe+ qf) = σre (pe+ qf, pe+ qf), and so λr is a
quadratic form on R2. Since λr is also even in both of its variables, it is easy to show
that there are real numbers υ (r) and ξ (r), such that λr (p, q) = υ (r) |p|2 +ξ (r) |q|2.
Define ϕ (r) = rξ (

√
r) and ψ (r) = υ (

√
r) − ξ (

√
r), for r ∈ R. For g ∈ G and

h ∈ H we have that

ρg(h) = λ‖g‖
(
|〈h, g〉| ,

√
‖h‖2‖g‖2 − |〈h, g〉|

)2

= υ (‖g‖) |〈h, g〉|2 + ξ(‖g‖)
(
‖h‖2‖g‖2 − |〈h, g〉|2

)
= ϕ

(
‖g‖2) ‖h‖2 + ψ

(
‖g‖2) |〈f, g〉|2 .

Since ρg is a quadratic form, it uniquely determines the corresponding conjugate-
-symmetric sesquilinear form. Thus the main statement follows.

(i): If σg is positive definite, then 0 < σg (f, f) = ϕ
(
‖g‖2) ‖f‖2+ψ

(
‖g‖2) |〈f, g〉|2,

for any f , g. Hence, 0 < ϕ
(
‖g‖2)+ ψ

(
‖g‖2) |〈f, g〉|2, for any g ∈ G and any unit

vector f . The quantity |〈f, g〉|2 can have any value from 0 to ‖g‖2, and so our
condition is reduced to 0 < ϕ

(
‖g‖2) and 0 < ϕ

(
‖g‖2)+ψ

(
‖g‖2) ‖g‖2, or ϕ (r) > 0

and ϕ (r) + rψ (r) > 0. Reversing the implications we get that these conditions are
also sufficient for positive definiteness of σg.
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(ii): If ϕ and ψ satisfy a certain smoothness condition, so does σ, since it is
expressed through ϕ and ψ. Conversely, if σ is smooth, by taking f⊥h and letting
g =

√
re for a unit e not orthogonal to f, h we get that rψ (r) 〈f, e〉 〈e, h〉 =

σ√re (f, h), and so ψ is smooth, while for f = h = e and g =
√
re, we get that

ϕ (r) = σ√re (e, e)− rψ (r) is also smooth. �

Remark 2.9. We can partially extend this proposition to the case when 0 ∈ G.
From Proposition 2.1 there is b ∈ R, such that ρ0 (h) = b‖h‖, for every h ∈ H.
Hence, for ϕ (0) = b and any value of ψ (0) the statement follows. Obviously, the
positive definiteness of σ0 is equivalent to b > 0. Note that it is not clear how to
extend the part (ii).

Remark 2.10. The non-strict analogues of the strict inequalities in part (i)
correspond to the positive semi-definiteness of σg. In particular, if ϕ (r) =
−rψ (r), for every r ∈ R, then σ glues elements that are scalar multiples of each
other, i.e. factorizes by the F-lines. The case when ϕ (r) = 0 leads to the situation
described in Remark 2.7.

Remark 2.11. If F = C, then σ is a Kaehler metric if and only if ψ = ϕ′. In
this case ω ◦ ‖ · ‖2 is the potential of this metric, where ω′ = ϕ. See [6] and [7] for
further details.

3. Congruency-invariant Finsler metrics

We start with the case when an isometry-invariant Finsler metric is also invariant
with respect to a homotethy with a coefficient α ∈ (0, 1)

⋃
(1,+∞). Observe that

in this case αR ⊂ R, and if 0 ∈ R, then ρ0 ≡ 0. Using Corollary 2.4 and defining
ϑ (r, τ) = rθ (r, τ) we obtain the following characterization.

Proposition 3.1. An isometry-invariant Finsler metric ρ on H\ {0} is invariant
with respect to a homothety with a coefficient α if and only if there is a (unique)
function ϑ : R×

[
0, π2

]
→ R, such that ϑ (exp (·) , ·) is periodic in the first variable

with the period lnα and ρg (h) = ‖h‖
‖g‖ϑ (‖g‖,∠ (g, h)), for g ∈ G , h ∈ H\ {0}.

Let us deal with the situation when an isometry-invariant Finsler metric is
invariant with respect to all homotheties, not just one. Clearly, then G is either H
or H\ {0} and if G = H, then ρ0 ≡ 0. Furthermore, the following characterization
holds.

Proposition 3.2. Let ρ be a Finsler metric on H\ {0}. The following are equiva-
lent:

(i) ρ is invariant with respect to all congruencies;
(ii) there is a (unique) function ϑ :

[
0, π2

]
→ R such that ρg (h) = ‖h‖

‖g‖ϑ (∠ (g, h)),
for every g, h ∈ H\ {0};

(iii) there is a (unique) positive-homogenous function λ : R× R→ R, which is
even in both variables such that
ρg (h) = 1

‖g‖2λ
(
|〈h, g〉| ,

√
‖h‖2‖g‖2 − |〈h, g〉|2

)
, for every g, h ∈ H\ {0}.
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Moreover, if we additionally assume that ρ is continuous in the first
variable, then the above conditions are equivalent to

(iv) ρ is invariant with respect to all isometries and two homotheties such that
the logarithms of their coefficients are not commensurable.

Proof. First, note that (ii)⇒(i)⇒(iv) is obvious, while (ii)⇔(iii) follows from
ϑ (τ) = λ (cos τ, sin τ). Now assume that ρ is an isometry-invariant Finsler metric
on H\ {0}. From the discussion before the previous proposition, there is a (unique)
function ϑ : R ×

[
0, π2

]
→ R, such that ρg (h) = ‖h‖

‖g‖ϑ (‖g‖,∠ (g, h)), for g, h ∈
H\ {0}.

(i)⇒(ii): From the previous proposition we get that the function ϑ (exp (·) , ·)
is periodic in the first variable with the period equal to every non-zero real
number. Thus, ϑ does not depend on the first variable, i.e. ϑ = ϑ (·), and ρg (h) =
‖h‖
‖g‖ϑ (∠ (g, h)), for every g, h ∈ H\ {0}.

(iv)⇒(ii): It is easy to see that the continuity of ρ in the first variable implies
the continuity of ϑ in the first variable. Assume that ρ is invariant with respect
to homotethety with coefficients α and β. From the previous proposition we get
that the function ϑ (exp (·) , ·) is periodic in the first variable with the periods lnα
and ln β. Then n lnα+m ln β are also periods, for any m, n ∈ Z. If lnα and ln β
are not commensurable, by Kroneker’s theorem the latter numbers densely fill the
real line, and by continuity we obtain that ϑ is a constant with respect to the first
variable. �

Remark 3.3. It is easy to come up with the refinements of Remarks 2.6 and 2.7
for this case. Also, it follows that ρ blows up to infinity as g approaches 0, unless
ρ ≡ 0.
Corollary 3.4. Let G = H\ {0} and let σ be as in Proposition 2.8. Then σ is
invariant with respect to all congruencies if and only if there are (unique) a, b ∈ R,
such that σg (f, h) = a

‖g‖2 〈f, h〉+ b
‖g‖4 〈f, g〉 〈g, h〉.

Remark 3.5. Combining the previous corollary with Proposition 2.8 and Re-
mark 2.11 we get the following. The positive definiteness of σ· is equivalent to
a+ b > 0. If F = C, the latter contradicts to the necessary condition for σ to be
Kaehler, which is reduced to a = −b. Thus, there is no Kaehler metrics on H\ {0}
invariant with respect to all congruencies.
Example 3.6. Let σg (f, h) = 1

‖g‖2 〈f, h〉− 1
‖g‖4 〈f, g〉 〈g, h〉. By the above remark,

this is the unique (up to scalar multiplication) “degenerate Kaehler metric” which is
invariant with respect to all congruencies. Using Remark 2.10 one can show that it
is also the unique (up to scalar multiplication) “degenerate Kaehler metric” which
factorizes by the F-lines. Since σ is the pull-back of the classical Fubiny-Study
metric on the projective space PH via the natural quotient map, we find it natural
to call σ the Fubini-Study metric on H\ {0}. Note, that 2 log ‖ · ‖ is the potential of
this metric. Inspired by [2] and following [4], we will define two congruency-invariant
pseudodistances on H\ {0} and show that σ is the “intrinsification” of them. For
g, h ∈ H\ {0} define
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δ1 (g, h) = sin∠ (g, h) =

√
1− |〈g, h〉|

2

‖g‖2‖h‖2 , δ2 (g, h) = sin ∠ (g, h)
2 =

√
2−2 |〈g, h〉|

‖g‖‖h‖
.

While the geometric meaning of δ1 is obvious, δ2 is the distance between the
intersections of the F-lines defined by g, h lines and the unit sphere. For the real
case it follows from the low of sines, or from δ2 (g, h) = ‖ g

‖g‖ ±
h
‖h‖‖, where the

sign depends on the acuteness of the angle between g and h. For the complex case
it follows from

inf
t,s∈R

∥∥∥∥eitg‖g‖ − eish

‖h‖

∥∥∥∥ = inf
t,s∈R

√
2− 2Re ei(t−s) 〈g, h〉

‖g‖‖h‖
= δ2 (g, h) .

For the real case the intrinsification of δ2 locally is the arc length of the projection
on the unit sphere. Since δ2 ≤ δ1 and δ1 does not exceed the normalized arc
length, the intrinsification of δ1 locally is also the normalized arc length. Now, if
γ : [a, b]→ H\ {0} is a smooth curve, then∥∥∥( γ

‖γ‖

)′∥∥∥2
=
∥∥∥‖γ‖γ′ − ‖γ‖′γ‖γ‖2

∥∥∥2
=
∥∥∥‖γ‖γ′ −√〈γ, γ〉′γ‖γ‖2

∥∥∥2

= 1
‖γ‖4

∥∥∥‖γ‖γ′ − 〈γ, γ〉′

2
√
〈γ, γ〉

γ
∥∥∥2

=
∥∥‖γ‖2γ′ − 〈γ, γ′〉 γ

∥∥2

‖γ‖6

=
〈
‖γ‖2γ′ − 〈γ, γ′〉 γ, ‖γ‖2γ′ − 〈γ, γ′〉 γ

〉
‖γ‖6

= ‖γ‖
4‖γ′‖2 + |〈γ, γ′〉|2 ‖γ‖2 − 2 |〈γ, γ′〉|2 ‖γ‖2

‖γ‖6

= ‖γ‖
2‖γ′‖2 − |〈γ, γ′〉|2

‖γ‖4 = σγ (γ′, γ′) ,

and so the normalized length of γ is
b∫
a

∥∥( γ(t)
‖γ(t)‖

)′∥∥ dt =
b∫
a

√
σγ(t) (γ′ (t) , γ′ (t)) dt.

For the complex case, using the first-order Tailor expansion for a C1 curve γ, one
can prove that

lim
s→t

δ1 (γ (s) , γ (t))
|t− s|

= lim
s→t

δ2 (γ (s) , γ (t))
|t− s|

=
√
σγ(s) (γ′ (t) , γ′ (t)),

and so by [3, 2.7.3], we again arrive at the conclusion that the length of the curves
with respect to δ1, δ2 and σ coincide. Note that the proofs for the complex case
also apply to the real cases.

The following theorem explains the importance of studying the congruency-in-
variant Finsler metrics.

Theorem 3.7. If dimH > 2, then any symmetry of any non-zero isometry-invar-
iant Finsler metric is a congruence.
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Note, that this theorem is a trivial consequence of Theorem 4.4, which is a
version of the present theorem for the case of a non-symmetric metric. The latter
theorem is again a simple corollary of a general algebraic fact about linear groups.
However, we would like to present a more hands-on proof of the present theorem,
which transparently reveals its geometric meaning.
Proof. Step 0. Let T be a symmetry of a non-zero isometry-invariant ρ. First of
all, let us ascertain that T is an injection. Indeed, if Te = 0 for some unit vector e,
then for any h ∈ H there is an isometry S, such that Sh = ‖h‖e, and so for any
g ∈ G we have that

ρg (h) = ρSg (Sh) = ‖h‖ρSg (e) = ‖h‖ρTSg (Te) = ‖h‖ρTSg (0) = 0 .
Contradiction.

Step 1. Using Corollary 2.4 and defining ϑ (r, τ) = 1
r θ (r, τ) for g ∈ G and

h ∈ H\ {0}, we get that ρg (h) = ‖h‖‖g‖ϑ (‖g‖,∠ (g, h)) . If ‖Tg‖ = ‖Th‖, for
some g, h ∈ G\ {0}, then
‖g‖‖h‖ϑ (‖g‖,∠ (g, h)) = ρg (h) = ρTg (Th) = ‖Tg‖‖Th‖ϑ (‖Tg‖,∠ (Tg, Th))

= ‖Tg‖‖Th‖ϑ (‖Th‖,∠ (Th, Tg)) = ρTh (Tg) = ρh (g)

= ‖g‖‖h‖ϑ (‖h‖,∠ (h, g)) .

Hence, ϑ (‖g‖,∠ (g, h)) = ϑ (‖h‖,∠ (h, g)), as long as ‖Tg‖ = ‖Th‖.
Step 2. Assume that T is not a congruence. Since T is also an injection, there is

a two dimensional subspace E of H, such that T is an injection and not a constant
times an isometry from E onto TE. Due to this fact and singular decomposition
there are orthogonal vectors e, f ∈ E, such that Te⊥Tf , ‖Te‖ = ‖Tf‖ = 1, but
‖e‖ 6= ‖f‖. If F = spanR {e, f}, then TF = spanR {Te, Tf} and the ellipse ∆ with
axis e and f is mapped into the unit circle of TF . Note that the inner product is
real on both F and TF , and so on these subspaces the acute angle between the
vectors according to our definition coincides with the actual acute angle between
them on the real planes that contain them.

g1

h1

h2g2

∆

τ

τ

Fix τ ∈
(
0, π2

]
. Consider all pairs of vec-

tors g and h on ∆ such that ∠ (g, h) = τ .
It is clear (see the picture), that the
ratio ‖g‖‖h‖ fills a certain closed interval
[c, d] with c < 1 < d. Since we can ex-
pand and shrink ∆ arbitrarily, it follows
that ϑ (s, τ) = ϑ (r, τ) for any positive
s, r with s

r ∈ [c, d]. Hence, ϑ (·, τ) is
locally a constant on a connected do-
main (0,+∞). Thus, ϑ (·, τ) does not
depend on the first variable, for any
τ ∈

(
0, π2

]
. Using the same letter ϑ for

the function of one (second) variable,
we get that ρg (h) = ‖g‖‖h‖ϑ (∠ (g, h)),

unless g and h are collinear.
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Step 3. We have that ‖Tg‖‖Th‖ϑ (∠ (Tg, Th)) = ‖g‖‖h‖ϑ (∠ (g, h)), for any
non-collinear g, h. Let S (g, h) = sin (∠ (g, h)) ‖g‖‖h‖. This quantity is the area
of the parallelogram spanned by g, h in the case when 〈g, h〉 ∈ R. The matrix
diag

{
1
‖e‖ ,

1
‖f‖

}
is the matrix of both T |E and T |F with respect to the orthobases

e
‖e‖ ,

f
‖f‖ and Te, Tf . Let D = 1

‖e‖‖f‖ > 0 be the determinant of this matrix. Then
for g, h ∈ ∆ we have that

S (g, h)ϑ (∠ (g, h))
sin (∠ (g, h)) = S (Tg, Th)ϑ (∠ (Tg, Th))

sin (∠ (Tg, Th)) = D
S (g, h)ϑ (∠ (Tg, Th))

sin (∠ (Tg, Th)) ,

and so ϑ(∠(g,h))
sin(∠(g,h)) = D ϑ(∠(Tg,Th))

sin(∠(Tg,Th)) . Again, for any fixed τ ∈
(
0, π2

]
there is an

interval of angles ω, such that there are g, h ∈ ∆ with ∠ (g, h) = ω and ∠ (Tg, Th) =
τ , and consequently ϑ(ω)

sin(ω) = D ϑ(τ)
sin(τ) . Hence, ϑ

sin is locally a constant on the
connected domain

(
0, π2

]
. Thus, ϑ

sin is a constant on
(
0, π2

]
, say b, and D = 1.

Step 4. We have shown that the absolute value of the determinant of each
restriction of T on a two dimensional subspace with respect to corresponding
orthobases is 1: if this restriction is an isometry, it is automatic, otherwise the
argument above applies. Consider a subspace F of H such that dimF = 3, and
such that T does not act on F as an isometry. By the singular decomposition it is
possible to find orthobases of F and TF such that the matrix of T |F with respect
to them is diag {a, b, c}, where a, b, c ≥ 0. Then ab = bc = ca = 1 by our condition
on the two-dimensional restrictions of T , and so a = b = c = 1, which contradicts
the assumption that T does not act on F as an isometry. �

Remark 3.8. If dimH = 2, the statement of the theorem needs an adjustment,
since Step 4 of the proof is not applicable to this case. From steps 2-3 of the proof
either T is a congruence, or detT = 1 and ρg (h) = b‖g‖‖h‖ sin (∠ (g, h)). Hence,
there is a constant, such that for any non-colinear g, h we have that ρg (h) is
this constant times the area of the parallelogram formed by g, h (determinant of
2 × 2 matrix with columns g, h). In particular ρ cannot be induced by σ as in
Proposition 2.8.

4. The non-symmetric case

The proofs of the following three propositions are omitted due to their similarity
with the symmetric case. Remarks 2.5, 2.6 and 3.3 are also adaptable to this case.
For non-zero vectors g, h define the angle between them by ] (g, h) = cos−1 〈h,g〉

‖h‖‖g‖ .
Notice that the difference in the definitions of the angle and the acute angle is the
absolute value of the inner product in the latter.

Let P be [0, π] when F = R, and cos−1 {τ ∈ C, |τ | ≤ 1}, for any branch of cos−1,
when F = C.

Proposition 4.1. Let ρ be a non-symmetric Finsler metric on G 63 0. The following
are equivalent:

(i) ρ is isometry-invariant;
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(ii) there is a (unique) function θ : R× P → R such that
ρg (h) = ‖h‖θ

(
‖g‖,] (g, h)

)
, for every g ∈ G, h ∈ H\ {0} ;

(iii) there is a (unique) function λ : R × F × R → R, such that λr (tp,±tq) =
tλr (p, q), for any r ∈ R, p ∈ F, q ∈ R, t ≥ 0 and
ρg (h) = λ‖g‖

(
〈h, g〉 ,

√
‖h‖2‖g‖2 − |〈h, g〉|2

)
, for every g ∈ G, h ∈ H.

Proposition 4.2. An isometry-invariant non-symmetric Finsler metric ρ on
H\ {0} is invariant with respect to a homothety with a coefficient α if and only if
there is a (unique) function ϑ : R × P → R, such that ϑ (exp (·) , ·) is periodic in
the first variable with period lnα and ρg (h) = ‖h‖

‖g‖ϑ (‖g‖,] (g, h)), for every g ∈ G,
h ∈ H\ {0}.

Proposition 4.3. Let ρ be a non-symmetric Finsler metric on H\ {0}. The follo-
wing are equivalent:

(i) ρ is invariant with respect to all congruencies;

(ii) there is a (unique) function ϑ : P → R such that ρg (h) = ‖h‖
‖g‖ϑ (] (g, h)),

for every g, h ∈ H\ {0};
(iii) there is a (unique) positive-homogenous function λ : F× R→ R, which is

even in the second variable such that
ρg (h) = 1

‖g‖2λ
(
〈h, g〉 ,

√
‖h‖2‖g‖2 − |〈h, g〉|2

)
, for every g, h ∈ H\ {0}.

Moreover, if we additionally assume that ρ is continuous in the first
variable, then the above conditions are equivalent to

(iv) ρ is invariant with respect to all isometries and two homotheties such that
the logarithms of their coefficients are not commensurable.

Theorem 4.4. If dimH > 2, then any symmetry of any non-zero non-symmetric
isometry-invariant Finsler metric is a congruence.

While if F = R the proof of Theorem 3.7 can be adapted to the non-symmetric
case (we would just have to consider all angles, not just acute ones), for the complex
case we face an insurmountable obstacle of non-symmetry of the inner product.
Therefore we give a completely different proof.
Proof. Assume that T is a symmetry of a non-zero non-symmetric isometry-invar-
iant Finsler metric ρ, which is not a congruence. Replicating Step 0 of the proof
of Theorem 3.7, we can show that T has to be injective. Let G be the monoid of
all symmetries of ρ. We know, that it contains all isometries and T . Our goal is
to show that G acts bitransitively on H, in the sense that it can map any pair of
non-collinear vectors into any other pair. It is clear that a function, invariant with
respect to a bitransitive action has to be a constant on the set of all non-collinear
pairs, which is not compatible with the assumption that ρ is a non-zero Finsler
metric.

Let f1, g1 and f2, g2 be two non-collinear pairs. Fix a subspace E of H, such
that:
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• f1, g1, f2, g2 ∈ E;
• ∞ > dimE > 2;
• T does not act like a congruence from E into TE.

Let G |E = G
⋂
GL (E), i.e. the group of the invertible restrictions on E of the

elements of G that fix E. We will use an apparently well-known fact that any linear
group that contains the group of rotations of a finite-dimensional inner product
space is either contained in the group of congruencies, or contains the special
linear group. Since G contains all isometries of H, it follows that G |E contains all
rotations of E. Let S be an isometry that sends TE back to E. Then ST |E ∈ G |E ,
since ST (E) ⊂ E, and both T , S ∈ G are an injections. However ST |E is not a
congruence on E by the construction of E. Hence, G |E is not contained in the
group of congruencies, and so SL (E) ⊂ G |E . It is easy to see that any n-tuple
of linearly independent vectors in E can be mapped into any other n-tuple by a
transformation from SL (E), where n < dimE. Hence, there is an element of G,
whose restriction maps f1, g1 into f2, g2. Since the latter pairs were arbitrary, the
bitransitivity of the action of G follows. �

Remark 4.5. If dimH = 2, SL (H) does not act bitransitively anymore. Instead,
it can map any pair of vectors into any other with the same determinant. Since G
also contains all matrix of the form diag {a, 1}, where |a| = 1, we end up with the
same conclusion as in the Remark 3.8.
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