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Abstract. Let ∆ be a pure simplicial complex on the vertex set [n] = {1, . . . , n} and
I∆ its Stanley-Reisner ideal in the polynomial ring S = K[x1, . . . , xn]. We show that ∆

is a matroid (complete intersection) if and only if S/I(m)∆ (S/Im∆ ) is clean for all m ∈ N

and this is equivalent to saying that S/I(m)∆ (S/Im∆ , respectively) is Cohen-Macaulay for all
m ∈ N. By this result, we show that there exists a monomial ideal I with (pretty) cleanness
property while S/Im or S/I(m) is not (pretty) clean for all integer m > 3. If dim(∆) = 1,

we also prove that S/I
(2)
∆ (S/I2∆) is clean if and only if S/I

(2)
∆ (S/I2∆, respectively) is

Cohen-Macaulay.

Keywords: clean; Cohen-Macaulay simplicial complex; complete intersection; matroid;
symbolic power

MSC 2010 : 13F20, 05E40, 13F55

Introduction

Let ∆ be a simplicial complex on the vertex set [n] = {1, . . . , n} and S =

k[x1, . . . , xn] be the polynomial ring in n indeterminates over a field k. The Stanley-

Reisner ideal of ∆, I∆, is defined by I∆ :=
(

∏

i∈F

xi : F 6∈ ∆
)

.

There is a bijection between squarefree monomial ideals I and simplicial com-

plexes. Cohen-Macaulayness (Buchsbaumness, cleanness, generalized Cohen-Macau-

layness) of these ideals have been studied by several authors (see [4], [10], [8], [13],

[15], [16], [18]). Minh and Trung in [13] and Varbaro in [17] independently proved

that∆ is a matroid if and only if S/I
(m)
∆ is Cohen-Macaulay for allm ∈ N, where I

(m)
∆
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denotes the mth-symbolic power of I∆. Later on, Terai and Trung in [16] showed

that ∆ is a matroid if and only if S/I
(m)
∆ is Cohen-Macaulay for some integer m > 3.

The similar characterizations of being Buchsbaum and generalized Cohen-Macaulay

were also studied by them. Minh and Trung in [12] proved that for a simplicial

complex ∆ with dim(∆) = 1, I
(2)
∆ is Cohen-Macaulay if and only if diam(∆) 6 2,

where diam(∆) denotes the diameter of ∆. We pursue this line of research further.

This paper is organized as follows: in Section 1, we collect some preliminaries

which will be needed later. In Section 2, we show that if ∆ is a matroid, then S/I
(m)
∆

is clean for all m ∈ N; see Theorem 2.1. Since I∆ is unmixed, in particular, this

shows that S/I
(m)
∆ is Cohen-Macaulay for all m ∈ N. Therefore this result covers

one direction of the result of Minh and Trung in [13] and Varbaro in [17]. Our proof

is combinatorial and more elementary than that given in [13]. As our first corollary,

by using [16], Theorem 3.6, we show that if ∆ is pure and I = I∆ ⊂ S, then the

following conditions are equivalent:

(a) ∆ is a matroid.

(b) S/I(m) is clean for all integers m > 0.

(c) S/I(m) is clean for some integer m > 3.

(d) S/I(m) is Cohen-Macaulay for some integer m > 3.

(e) S/I(m) is Cohen-Macaulay for all integers m > 0.

Our second corollary asserts that a pure simplicial complex ∆ is a complete inter-

section if and only if S/Im∆ is clean for all m ∈ N and if and only if S/Im∆ is clean for

some integer m > 3.

Let I ⊂ S be a monomial ideal such that S/I is (pretty) clean. It is natural to ask

whether S/Im or S/I(m) is again (pretty) clean for all m ∈ N? Example 2.5 shows

that the answer is negative in general.

In Section 3, we show that if I ⊂ S is the Stanley-Reisner ideal of a pure simplicial

complex ∆ with dim∆ = 1, then for an integer m > 1, S/I(m) (S/Im) is clean if

and only if S/I(m) (S/Im, respectively) is Cohen-Macaulay.

1. Preliminary

A simplicial complex ∆ on the vertex set [n] = {1, . . . , n} is a collection of subsets

of [n] with the property that if F ⊂ G and G ∈ ∆, then F ∈ ∆. An element of

∆ is called a face, and the maximal faces of ∆, under inclusion, are called facets.

We denote by F(∆) the set of facets of ∆. When F(∆) = {F1, . . . , Ft}, we write

∆ = 〈F1, . . . , Ft〉. For each F ∈ ∆, we set dimF := |F | − 1, and

dim∆ := max{dimF : F ∈ F(∆)},
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which is called the dimension of ∆. A simplicial complex ∆ is called pure if all facets

of ∆ have the same dimension. According to Björner and Wachs in [3], a simplicial

complex ∆ is said to be (non-pure) shellable if there exists an order F1, . . . , Ft of the

facets of ∆ such that for each 2 6 i 6 t, 〈F1, . . . , Fi−1〉 ∩ 〈Fi〉 is a pure (dimFi − 1)-

dimensional simplicial complex. Such an ordering of facets is called a shelling.

Let S = K[x1, . . . , xn] be a polynomial ring in n indeterminates over a fieldK. The

Stanley-Reisner ideal of ∆ is denoted by I∆ and defined as I∆ :=
(

∏

i∈F

xi : F 6∈ ∆
)

.

The facet ideal of ∆ is defined as I(∆) :=
(

∏

i∈F

xi : F ∈ F(∆)
)

.

The Alexander dual of ∆ is given by ∆∨ := {F c : F 6∈ ∆}. Let I be a squarefree

monomial ideal in S. We denote by I∨ the squarefree monomial ideal which is

minimally generated by all monomials xi1 . . . xik , where (xi1 , . . . , xik) is a minimal

prime ideal of I. It is easy to see that for any simplicial complex ∆, one has I∆∨ =

(I∆)
∨. The complement of a face F is [n] \ F and it is denoted by F c. Also, the

complement of a simplicial complex ∆ = 〈F1, . . . , Fr〉 is ∆c := 〈F c
1 , . . . , F

c
r 〉. It is

known that for a simplicial complex ∆ one has I∆∨ = I(∆c).

Definition 1.1. A matroid ∆ is a simplicial complex with the property that for

all faces F and G in ∆ with |F | < |G|, there exists i ∈ G \F such that F ∪ {i} ∈ ∆.

The above definition implies that each matroid is pure. As a consequence of [7],

Theorem 12.2.4, a matroid can be characterized by the following exchange property:

a pure simplicial complex ∆ is a matroid if and only if for any two facets F and

G of ∆ with F 6= G, and for any i ∈ F \ G, there exists j ∈ G \ F such that

(F \ {i}) ∪ {j} ∈ ∆. A squarefree monomial ideal I in S is called matroidal if

I = I(∆), where ∆ is a matroid. On the other hand, by [14], Theorem 2.1.1, ∆ is

a matroid if and only if ∆c is a matroid. Altogether, as I(∆c) = I∆∨ , we have that

∆ is a matroid if and only if I∆∨ is matroidal.

A simplicial complex ∆ is called a complete intersection if I∆ is a complete inter-

section monomial ideal. It is well known that each complete intersection simplicial

complex is a matroid.

If F ⊆ [n], then we put PF := (xi : i ∈ F ). We have I∆ =
⋂

F∈F(∆c)

PF , hence for

each m ∈ N, the mth-symbolic power of I∆ is the ideal

I
(m)
∆ =

⋂

F∈F(∆c)

Pm
F .

An ideal I ⊂ S is called normally torsionfree if Ass(S/Im) ⊆ Ass(S/I) for all

m ∈ N. If I is a squarefree monomial ideal, then I is normally torsionfree if and only

if I(m) = Im for all m; see [7], Theorem 1.4.6.
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Let I ⊂ S be a monomial ideal. A chain of monomial ideals

F : I = I0 ⊂ I1 ⊂ . . . ⊂ Ir = S

is called a prime filtration of S/I if for each i = 1, . . . , r there exists a monomial

prime ideal pi of S such that Ii/Ii−1
∼= S/pi. The set of prime ideals p1, . . . , pr

which define the cyclic quotients of F will be denoted by SuppF . It is known (and

easy to see) that

AssS/I ⊆ SuppF ⊆ SuppS/I.

Let Min I denote the set of minimal prime ideals of SuppS/I. Dress in [5] called

a prime filtration F of S/I clean if SuppF = Min I and in [5], Theorem on page 53,

proved that a simplicial complex ∆ is (non-pure) shellable if and only if K[∆] is

a clean ring. Pretty clean filtrations were defined as a generalization of clean filtra-

tions by Herzog and Popescu in [8]. A prime filtration F is called pretty clean if for

all i < j for which pi ⊆ pj , it follows that pi = pj. If F is a pretty clean filtration of

S/I, then SuppF = AssS/I; see [8], Corollary 3.4. S/I is called clean (pretty clean)

if it admits a clean (pretty clean) filtration. Obviously, cleanness implies pretty

cleanness.

Let I ⊂ S be a monomial ideal. Then S/I is sequentially Cohen-Macaulay if there

exist a chain of monomial ideals

I = I0 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ir = S

such that each quotient Ii/Ii−1 is Cohen-Macaulay and

dim(I1/I0) < dim(I2/I1) < . . . < dim(Ir/Ir−1).

Clearly, if S/I is Cohen-Macaulay, then it is sequentially Cohen-Macaulay. Also, if

S/I is pretty clean, then by [8] it is sequentially Cohen-Macaulay.

The monomial ideal I has linear quotients if one can order the set of minimal mono-

mial generators of I, G(I) = {u1, . . . , um}, so that the colon ideal (u1, . . . , ui−1) : ui

is generated by a subset of the variables for all i = 2, . . . ,m. This means for each

j < i there exists a k < i such that uk : ui = xt and xt | uj : ui, where t ∈ [n] and

uk : ui = uk/ gcd(uk, ui). In the case I is squarefree, it is enough to show that for

each j < i there exists a k < i such that uk : ui = xt and xt | uj for some t ∈ [n].

Let u =
n
∏

i=1

xai

i be a monomial in S. Then

up :=
n
∏

i=1

ai
∏

j=1

xi,j ∈ K[x1,1, . . . , x1,a1
, . . . , xn,1, . . . , xn,an

]
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is called the polarization of u. Let I be a monomial ideal of S with the unique

set of minimal monomial generators G(I) = {u1, . . . , um}. Then the ideal Ip :=

(up
1, . . . , u

p
m) of

T := K[xi,j : i = 1, . . . , n, j = 1, . . . , ai]

is called the polarization of I.

2. Matroids and complete intersection simplicial complexes

We will characterize matroids (complete intersection simplicial complexes) ∆ in

terms of the cleanness of the symbolic (ordinary) powers of I∆.

Theorem 2.1. Let I ⊂ S be the Stanley-Reisner ideal of a matroid ∆. Then

S/I(m) is clean for all m ∈ N.

P r o o f. Let I = I∆ =
t
⋂

i=1

PFi
be the irredundant irreducible primary decom-

position of I, where ∆c = 〈F1, . . . , Ft〉 and r = |Fi| for all i = 1, . . . , t. Then

I(m) =
t
⋂

i=1

Pm
Fi
. By [11], Theorem 3.10, it is enough to show that T/(I(m))p is clean.

One can see by [6], Proposition 2.3 (3), that ((I(m))p)∨ =
r
∑

i=1

((Pm
Fi
)p)∨. If Fi =

{s1, . . . , sr}, then by [6], Proposition 2.5 (2), (P
m
Fi
)p has the irredundant irreducible

primary decomposition

(Pm
Fi
)p =

⋂

16tj6m∑
tj6m+r−1

(xs1,t1 , . . . , xsr ,tr).

It follows that the ideal J := ((I(m))p)∨ is generated by the monomials

xi1,a1
xi2,a2

. . . xir ,ar
with {i1, . . . , ir} ∈ F(∆c),

where aj are positive integers satisfying 1 6 aj 6 m and
r
∑

j=1

aj 6 m + r − 1. For

showing that T/(I(m))p is clean, it is enough to show that J has linear quotients;

see for example [2], Lemma 2.1.

Now, we order the variables in T as follows:

xi,a > xj,b ⇔ (i, a) < (j, b), and (i, a) < (j, b) if a < b, or a = b and i < j. Then we

show that J has linear quotients with respect to the reverse lexicographical order of

its generators induced from the above ordering. Indeed, let u = xi1,a1
xi2,a2

. . . xir ,ar

and v = xj1,b1xj2,b2 . . . xjr ,br be two monomials in G(J) with u > v. We have to

show that there exists w ∈ G(J) with w > v such that w : v = xil,al
and xil,al

| u.
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Since u > v, there exists an integer t such that xit,at
> xjt,bt and xik,ak

= xjk,bk

for all k > t. In particular, we have at < bt, or at = bt and it < jt. We first claim

that there exists 1 6 l 6 t such that

xj1 . . . xjt−1
xilxjt+1

. . . xjr ∈ G(I∆∨) = G(I(∆c)).

This is obvious, if xjt | xi1xi2 . . . xit , and if xjt ∤ xi1xi2 . . . xit , then, as I
∨ is matroidal,

it follows that there exists 1 6 l 6 t such that xj1 . . . xjt−1
xilxjt+1

. . . xjr ∈ G(I∨).

Here, we used the fact that ik = jk for k = t+ 1, . . . , r. Then

w := xj1,b1xj2,b2 . . . xjt−1,bt−1
xil,al

xjt+1,bt+1
. . . xjr ,br ∈ G(J),

because al 6 bt. Moreover, we have w : v = xil,al
and xil ,al

| u.

Next, we will show that w > v. If xil,al
> xjt−1,bt−1

, then w > v because

xjt−1,bt−1
> xjt,bt . Otherwise, one has xil,al

< xjt−1,bt−1
. We know that at < bt, or

at = bt and it < jt. Since al 6 at, if at < bt, then w > v. Now, assume that at = bt

and it < jt. Since al < at or al = at, and il < it < jt, one has xil,al
> xjt,bt and

w > v. �

We shall use the following lemma.

Lemma 2.2. Let I ⊂ S be a monomial ideal. Then S/I is Cohen-Macaulay if

and only if S/I is sequentially Cohen-Macaulay and I is unmixed.

P r o o f. If S/I is Cohen-Macaulay, then it is obvious that S/I is sequentially

Cohen-Macaulay and I is unmixed. Conversely, assume that S/I is sequentially

Cohen-Macaulay and I is unmixed. Then there exists a chain of monomial ideals

I = I0 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ir = S

such that each quotient Ii/Ii−1 is Cohen-Macaulay and

dim(I1/I0) < dim(I2/I1) < . . . < dim(Ir/Ir−1).

By [9], Lemma 1.2, depth(S/I) = dim(I1/I0). On the other hand, by [8], Proposi-

tion 2.5, Ass(S/I) =
r
⋃

i=1

Ass(Ii/Ii−1). Since I is unmixed, it follows that dim(S/I) =

dim(Ii/Ii−1) for all i. Hence depth(S/I) = dim(I1/I0) = dim(S/I), and so S/I is

Cohen-Macaulay. �
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If we combine our results with [16], Theorem 3.6, we get the following characteri-

zation of matroids.

Corollary 2.3. Let ∆ be a pure simplicial complex and I = I∆ ⊂ S. Then the

following conditions are equivalent:

(a) ∆ is a matroid.

(b) S/I(m) is clean for all integers m > 0.

(c) S/I(m) is clean for some integer m > 3.

(d) S/I(m) is Cohen-Macaulay for some integer m > 3.

(e) S/I(m) is Cohen-Macaulay for all integers m > 0.

P r o o f. In view of Theorem 2.1, (a) ⇒ (b) holds. The implications (a) ⇔ (d)

⇔ (e) follow from [16], Theorem 3.6. The implication (b)⇒ (c) is trivial.

(c) ⇒ (d) Suppose that for an integer m > 3, S/I(m) is clean. Then by [8],

Corollary 4.3, S/I(m) is sequentially Cohen-Macaulay. On the other hand, I(m) is

an unmixed monomial ideal for all m, because I is unmixed and Ass(S/I(m)) =

Ass(S/I). Hence by Lemma 2.2, S/I(m) is Cohen-Macaulay. �

It is known [1] that a simplicial complex ∆ is a complete intersection if and only if

S/Im∆ is Cohen-Macaulay for all m ∈ N. Since for a complete intersection monomial

ideal I∆ the symbolic powers coincide with its ordinary powers, we have:

Corollary 2.4. Let ∆ be a pure simplicial complex and I = I∆ ⊂ S. Then the

following conditions are equivalent:

(a) ∆ is a complete intersection.

(b) S/Im is clean for all integers m > 0.

(c) S/Im is clean for some integer m > 3.

(d) S/Im is Cohen-Macaulay for some integer m > 3.

(e) S/Im is Cohen-Macaulay for all integers m > 0.

P r o o f. The equivalences (a) ⇔ (d) ⇔ (e) follow from [16], Theorem 4.3. The

implication (b) ⇒ (c) is obvious. The proof of (c) ⇒ (d) is similar to that of the

same case in Corollary 2.3. Note that, as S/Im is clean for some integer m > 3, it

follows that

Ass(S/Im) = Min(Im) = Min(I) = Ass(S/I).

It remains to show (a) ⇒ (b). Since I is complete intersection, for any m > 0, one

has Ass(S/Im) = Min(Im) = Min(I). Hence by the definition of symbolic powers

(see [18], Definition 3.3.22), Im = I(m) for allm > 0. Since any complete intersection

complex is a matroid, therefore by Theorem 2.1, S/Im is clean for all m > 0. �

773



Example 2.5. Let I := (x1x2, x2x3, x3x4). Obviously, I is an unmixed square-

free monomial ideal. Since |G(I)| 6 3, it follows by [2], Corollary 2.6, that S/I is

clean. On the other hand, I∨ = (x1x3, x2x3, x2x4) is not matroidal. Hence, I is

not the Stanley-Reisner ideal of a matroid. So by Corollary 2.3, S/I(m) is not clean

for all integers m > 3. Also, S/I is not complete intersection, so by Corollary 2.4

S/Im is not clean for all integers m > 3. Now, consider the ideal I as the edge ideal

of a graph G. Obviously, G is a bipartite graph, so by [7], Corollary 10.3.17, I is

normally torsionfree. Therefore for any m,

Ass(S/Im) = Ass(S/I) = Min(I) = Min(Im).

It follows by [8], Corollary 3.5, that S/Im is not pretty clean for all integers m > 3.

We note that the above example shows that, if I ⊂ S is a pretty clean monomial

ideal, then necessarily S/I(m) cannot be pretty clean for all integers m > 0.

3. Second symbolic power and cleanness

Let ∆ be a 1-dimensional simplicial complex and I = I∆ ⊂ S. Minh and Trung

in [12] studied under which conditions S/I(2) and S/I2 are Cohen-Macaulay. In this

section we will give a characterization for the Cohen-Macaulayness of S/I(2) and

S/I2 in terms of the cleanness property.

Let G = (V,E) be a simple graph. In graph theory, the distance between two

vertices u and v of G is the minimal length of paths from u to v and is denoted by

d(u, v). This length is infinite if there is no path connecting them. The diameter

of G, diam(G), is defined by diam(G) := max{d(u, v) : u, v ∈ V }.

Theorem 3.1. Let ∆ be a pure simplicial complex on [n] with dim∆ = 1 and

I = I∆ ⊂ S. Then the following conditions are equivalent:

(a) S/I(2) is clean.

(b) S/I(2) is Cohen-Macaulay.

(c) diam∆ 6 2.

P r o o f. (a) ⇒ (b) Since S/I(2) is sequentially Cohen-Macaulay and I(2) is

unmixed, the desired conclusion follows from Lemma 2.2.

(b) ⇒ (c) follows from [12], Theorem 2.3.

(c) ⇒ (a) By [11], Theorem 3.10, it is enough to show that S/(I(2))p is clean. Let

I = I∆ =
t
⋂

i=1

PFi
be a primary decomposition of I. Then ∆c = 〈F1, . . . , Ft〉 with
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|Fi| = n− 2 for all i = 1, . . . , t. We know that

(I(2))p =

t
⋂

i=1

(P 2
Fi
)p.

If F ⊂ [n], then by [6], Proposition 2.5 (2),

(P 2
F )

p =
⋂

16j6n−2

P(F,2j) ∩ P(F,1),

where if F = {r1, . . . , rn−2} with r1 < r2 < . . . < rn−2, then we set (F, 1) := {(ri, 1):

ri ∈ F} and (F, 2j) := {(rj , 2)} ∪ {(ri, 1): 1 6 i 6 n − 2, i 6= j}. Note that (I(2))p

is a monomial ideal in a polynomial ring T = K[x(1,1), . . . , x(n,1), x(1,2), . . . , x(n,2)].

Since (I(2))p is the Stanley-Reisner ideal of the simplicial complex

Γ = 〈(Fi, 1)
c, (Fi, 2j)

c : 1 6 i 6 t, 1 6 j 6 n− 2〉,

by a result of Dress in [5] it is enough to prove that Γ is shellable.

We set A0 := ∅ and Ai :=
{

F c
j ∈ F(∆): i ∈ F c

j and F c
j /∈

i−1
⋃

s=1
As

}

for all

i = 1, . . . , n. Note that F(∆) =
n
⋃

i=1

Ai. We order the facets of Γ by the following

process and show that the given order is a shelling order. For the convenience we

can assume that A1 = {F c
1 , . . . , F

c
s1
} for some 1 6 s1 6 t. Let the initial part of our

order be

(F1, 1)
c, (F1, 21)

c, . . . , (F1, 2n−2)
c, (F2, 1)

c, (F2, 21)
c, . . . , (F2, 2n−2)

c, . . . ,(∗)

(Fs1 , 1)
c, (Fs1 , 21)

c, . . . , (Fs1 , 2n−2)
c.

Then the following inequalities hold:

n = |(F1, 1)
c ∩ (F1, 2j)

c| − 1 = dim(〈(F1, 1)
c〉 ∩ 〈(F1, 2j)

c〉)

6 dim(〈(F1, 1)
c, (F1, 21)

c, . . . , (F1, 2j−1)
c〉 ∩ 〈(F1, 2j)

c〉)

6 dim〈(F1, 2j)
c〉 − 1 = |(F1, 2j)

c| − 2 = n.

Now, let 2 6 d 6 s1. Then

n = dim(〈(F1, 1)
c〉 ∩ 〈(Fd, 1)

c〉)

6 dim(〈(F1, 1)
c, (F1, 21)

c, . . . , (Fd−1, 2n−2)
c〉 ∩ 〈(Fd, 1)

c〉)

6 dim〈(Fd, 1)
c〉 − 1 = n.
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Also, for any 1 6 j 6 n− 2, we have

n = dim(〈(Fd, 1)
c〉 ∩ 〈(Fd, 2j)

c〉)

6 dim(〈(F1, 1)
c, (F1, 21)

c, . . . , (Fd, 1)
c, . . . , (Fd, 2j−1)

c〉 ∩ 〈(Fd, 2j)
c〉)

6 dim〈(Fd, 2j)
c〉 − 1 = n.

Suppose that Γ1 is a simplicial complex whose facets are all of the sets belonging

to (∗). If we rename the facets of Γ1 in the same order as above by G1, . . . , Gs1(n−1),

then it is easy to see that 〈G1, . . . , Gi−1〉 ∩ 〈Gi〉 is a pure simplicial complex for all

i = 1, . . . , s1(n− 1). Therefore, Γ1 is shellable.

Assume that Ai = {F c
si−1+1, . . . , F

c
si
} for 1 6 i 6 h − 1 < n, where s0 = 0 and

si−1 < si. Then we may assume by induction process that the following order is

a shelling order for the simplicial complex with the set of facets

(F1, 1)
c, (F1, 21)

c, . . . , (F1, 2n−2)
c, . . . , (Fj , 1)

c, (Fj , 21)
c, . . . , (Fj , 2n−2)

c,

(Fj+1, 1)
c, (Fj+1, 21)

c, . . . , (Fj+1, 2n−2)
c, . . . ,

(Fsh−1
, 1)c, (Fsh−1

, 21)
c, . . . , (Fsh−1

, 2n−2)
c,

where 1 < j < sh−1.

Now, let 1 < h 6 n. If there exists F c ∈
h−1
⋃

i=1

Ai such that h ∈ F c, then we take

an arbitrary element G of Ah and set F
c
sh−1+1 := G. In this case, we have

n = dim(〈(F, 1)c〉 ∩ 〈(Fsh−1+1, 1)
c〉)

6 dim(〈(F1, 1)
c, (F1, 21)

c, . . . , (Fsh−1
, 2n−2)

c〉 ∩ 〈(Fsh−1+1, 1)
c〉)

6 dim〈(Fsh−1+1, 1)
c)〉 − 1 = n.

Otherwise, for any F c ∈
h−1
⋃

i=1

Ai, h 6∈ F c. Hence {1, h} 6∈ F(∆). Since

diam(∆) 6 2, it follows that there exists m ∈ [n] such that m 6= 1, m 6= h and

{m,h} ∈ Ah, and F c := {1,m} ∈ A1. In this case we set F
c
sh−1+1 := {m,h}.

Now, the following inequalities hold:

n = dim(〈(F, 1)c〉 ∩ 〈(Fsh−1+1, 1)
c〉)

6 dim(〈(F1, 1)
c, (F1, 21)

c, . . . , (Fsh−1
, 2n−2)

c〉 ∩ 〈(Fsh−1+1, 1)
c〉)

6 dim〈(Fsh−1+1, 1)
c〉 − 1 = n.

We order all the other facets of Γ which correspond to Ah as

(Fsh−1+1, 21)
c, . . . , (Fsh−1+1, 2n−2)

c, . . . , (Fsh , 1)
c, (Fsh , 21)

c, . . . , (Fsh , 2n−2)
c,

where sh−1 < sh.
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In the same way as previously, we can easily check that the given order is a shelling

order. �

A 1-dimensional simplicial complex ∆ on the vertex set [n] is called a cycle of

length n if the facets of ∆ are {1, n} and {i, i+ 1} for all i = 1, . . . , n− 1.

Corollary 3.2. Let ∆ be a pure simplicial complex on [n] with dim∆ = 1 and

I = I∆ ⊂ S. Then the following conditions are equivalent:

(a) S/I2 is clean.

(b) S/I2 is Cohen-Macaulay.

(c) ∆ is a path of length 1, 2 or a cycle of length 3, 4, 5.

P r o o f. (a) ⇒ (b) Since S/I2 is sequentially Cohen-Macaulay and I2 is unmixed,

the desired conclusion follows from Lemma 2.2.

(b) ⇒ (c) If n = 2, then ∆ is a path of length 1. If n = 3, then ∆ is either

a path of length 2 or a triangle (a cycle of length 3). Finally, if n > 4, then by [12],

Corollary 3.4, ∆ is a cycle of length 4 or 5.

(c) ⇒ (a) It is easy to see that in each case, we have diam∆ 6 2 and I(2) = I2.

Hence the desired conclusion follows by Theorem 3.1. �

It is known that if I is a monomial ideal and S/I is clean, then S/I is sequentially

Cohen-Macaulay. In particular when I is unmixed, then S/I is Cohen-Macaulay.

But the converse is not true in general. In some special cases, like edge ideals of

unmixed bipartite graphs, it is known that Cohen-Macaulayness and cleanness are

equivalent. As another corollary of our results we get the following:

Corollary 3.3. Let m > 1 be an integer, ∆ a pure simplicial complex with

dim∆ = 1, and I = I∆ ⊂ S. Then S/I(m) (S/Im) is clean if and only if S/I(m)

(S/Im, respectively) is Cohen-Macaulay.
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