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Abstract. Let θ ∈ (0, 1), λ ∈ [0, 1) and p, p0, p1 ∈ (1,∞] be such that (1− θ)/p0 +

θ/p1 = 1/p, and let ϕ,ϕ0, ϕ1 be some admissible functions such that ϕ, ϕ
p/p0

0 and ϕ
p/p1

1
are equivalent. We first prove that, via the ± interpolation method, the interpolation

〈L
p0),λ
ϕ0 (X ), L

p1),λ
ϕ1 (X ), θ〉 of two generalized grand Morrey spaces on a quasi-metric measure

space X is the generalized grand Morrey space L
p),λ
ϕ (X ). Then, by using block functions,

we also find a predual space of the generalized grand Morrey space. These results are new
even for generalized grand Lebesgue spaces.

Keywords: grand Lebesgue space; grand Morrey space; Gagliardo-Peetre method; quasi-
metric measure space; Calderón product; predual space; ± interpolation method

MSC 2010 : 46B70, 46B10

1. Introduction

It is known that the grand Lebesgue spaces were introduced by Iwaniec and Sbor-

done in [18] in 1992 to study the integrability of the Jacobian determinant of an

order preserving mapping from a bounded domain Ω ⊂ R
n to R

n. From then on,

the grand Lebesgue spaces and their generalized versions have attracted a lot of at-

tention and found several applications in various areas of analysis, such as partial

differential equations and harmonic analysis; see, for example, [36], [15], [19], [13],

[7], [10], [11], [12], [9], [8], [6], [3] and references therein.

To recall the definition of grand Lebesgue spaces, let (X , d, µ) be a quasi-metric

measure space, which means that X is a nonempty set, d a quasi-metric (that is, for

This project is supported by the National Natural Science Foundation of China (Grant
No. 11471042) and the Specialized Research Fund for the Doctoral Program of Higher
Education of China (Grant No. 20120003110003).

DOI: 10.21136/CMJ.2017.0081-16 715

http://dx.doi.org/10.21136/CMJ.2017.0081-16


all x, y, z ∈ X , we have d(x, y) ∈ [0,∞), d(x, y) = d(y, x) and d(x, y) 6 K[d(x, z) +

d(z, y)], where K ∈ [1,∞) is a constant independent of x, y, z) and µ a nonnegative

measure. Assume further µ(X ) < ∞. Recall that, for all p ∈ (1,∞), the generalized

grand Lebesgue space L
p)
ϕ (X ) with an increasing weight function ϕ : (0,∞) → (0, 1]

is defined as the space of all measurable functions f on X such that

‖f‖
L

p)
ϕ (X )

:= inf
ε∈(0,p−1)

ϕ(ε)

[∫

X

|f(x)|p−ε dµ(x)

]1/(p−ε)

< ∞.

When ϕ(ε) := εp−ε, X is a bounded subset of Rn and µ is the restriction of the

Lebesgue measure on X , the space L
p)
ϕ (X ) goes back to the grand Lebesgue space

introduced in [18]. The name “grand Lebesgue space” comes from the continuous

embedding

Lp(X ) ⊂ Lp)
ϕ (X ) ⊂ Lp−ε(X ) for all ε ∈ (0, p).

The grand Lebesgue spaces are known to be rearrangement-invariant Banach func-

tion spaces. Some properties of these spaces, including real interpolation and duality,

were studied in [7], [9].

On the other hand, the study of Morrey spaces can be traced to Morrey’s work on

the regularity problems of solutions to partial differential equations in 1938 (see [28]).

As a natural extension of Lebesgue spaces, Morrey spaces have found lots of appli-

cations in partial differential equations, harmonic analysis and potential analysis; we

refer, for example, to [1], [2], [34], [35] for some recent works. In 2009, Meskhi [25],

[26] introduced the grand version of Morrey spaces and studied the boundedness of

the maximal operator, Calderón-Zygmund operators and Riesz potentials on these

spaces. Later Ye in [38] obtained the boundedness of commutators of singular and

potential operators on grand Morrey spaces on spaces of homogeneous type in the

sense of Coifman and Weiss. In 2013, Kokilashvili, Meskhi and Rafeiro in [21], [20],

[22] further introduced and studied the generalized grand Morrey spaces in a general

setting of quasi-metric measure spaces; see also [27], [30], [14] for more results on

grand Morrey spaces.

The main purpose of this paper is to study the interpolation and dual properties

of generalized grand Morrey spaces. To recall their definitions, we first need the

following weight class.

Definition 1.1. LetW be the class of all functions ϕ : (0,∞) → (0, 1] which are

nondecreasing and there exist constants 1 < C1 6 C2 < ∞ such that C1ϕ(2
−k) 6

ϕ(2−k+1) 6 C2ϕ(2
−k) for all k ∈ N.

Definition 1.2. Let p ∈ (1,∞], λ ∈ [0, 1) and ϕ ∈ W . The generalized grand

Morrey space L
p),λ
ϕ (X ) is defined as the space of all measurable functions f on X
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such that

‖f‖
L

p),λ
ϕ (X )

= sup
ε∈(0,p−1)

ϕ(ε) sup
B

(
1

[µ(B)]λ

∫

B

|f(x)|p−ε dµ(x)

)1/(p−ε)

< ∞,

where the second supermum is take over all balls B in X .

Obviously, when λ = 0, the generalized grand Morrey space L
p),0
ϕ (X ) coincides

with the generalized grand Lebesgue space considered in [6]. On the other hand,

when p = ∞, it is easy to see that L
p),0
ϕ (X ) goes back to L∞(X ).

The study of interpolation on classical Morrey spaces started with Stampacchia

in [37], Campanato and Murthy in [5] and Peetre in [31]. In 1990’s, Ruiz and Vega in

[33] and Blasco, Ruiz and Vega in [4] showed that in general Morrey spaces have no

interpolation properties. Lemarié-Rieusset in [23] further pointed out explicitly that

Morrey spaces have no interpolation properties if the parameters λ of two Morrey

spaces are different. Very recently, it was proved in [24] (see also [39]) that, via the

± interpolation method, the interpolation space of two Morrey spaces with the same

λ on quasi-metric measure space is also a Morrey space. In view of this, it is natural

to ask whether we can interpolate generalized grand Morrey spaces as well. Indeed,

the first main result of this paper reads as follows.

Theorem 1.3. Let θ ∈ (0, 1), λ ∈ [0, 1) and p, p0, p1 ∈ (1,∞] be such that

(1− θ)/p0 + θ/p1 = 1/p. Assume further that ϕ, ϕ0, ϕ1 ∈ W so that ϕ, ϕ
p/p0

0 and

ϕ
p/p1

1 are equivalent. Then

〈Lp0),λ
ϕ0

(X ), Lp1),λ
ϕ1

(X )〉θ = Lp),λ
ϕ (X )◦

and

〈Lp0),λ
ϕ0

(X ), Lp1),λ
ϕ1

(X ), θ〉 = Lp),λ
ϕ (X ),

where L
p),λ
ϕ (X )◦ denotes the closure of L

p0),λ
ϕ0 (X ) ∩ L

p1),λ
ϕ1 (X ) in L

p),λ
ϕ (X ).

Here, for any quasi-Banach spaces X0 and X1, 〈X0, X1〉θ and 〈X0, X1, θ〉 denote

the Gagliardo-Peetre interpolation method introduced in [29], [32] and the ± in-

terpolation method in [17], [16], respectively. The definitions of these interpolation

notions are given in Section 2 in details. We also remark that these interpolation

properties of Theorem 1.3 are new even when λ = 0, i.e., for the generalized grand

Lebesgue spaces.

As a corollary of Theorem 1.3, we have the following interpolation property of

linear operators on generalized grand Morrey spaces.
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Corollary 1.4. Let all notation be as in Theorem 1.3, and let (X0, X1) be a couple

of quasi-Banach spaces.

(i) If a linear operator T is bounded from L
pj),λ
ϕj (X ) to Aj with operator norms

Mj , j ∈ {0, 1}, then T is also bounded from L
p),λ
ϕ (X ) to 〈A0, A1, θ〉 with the operator

norm not greater than a positive constant multiple of M1−θ
0 Mθ

1 .

(ii) If a linear operator T is bounded from Aj to L
pj),λ
ϕj (X ) with operator norms

Mj , j ∈ {0, 1}, then T is also bounded from 〈X0, X1, θ〉 with the operator norm not

greater than a positive constant multiple of M1−θ
0 Mθ

1 .

The second aim of this paper is to determine the predual space of generalized

grand Morrey spaces in spirit of classical Morrey spaces. The desired predual spaces

are described via the following blocks.

Definition 1.5. Let p ∈ (1,∞), λ ∈ [0, 1) and ϕ ∈ W . A measurable function b

on X is called a (p′, λ, ϕ)-block if b is supported on a ball B and satisfies

inf
ε∈(0,p−1)

[ϕ(ε)]−1

(∫

B

|b(x)|
(p−ε)′

dµ(x)

)1/(p−ε)′

[µ(B)]λ/(p−ε) 6 1.

Next we define the following block spaces.

Definition 1.6. Let p ∈ (1,∞), λ ∈ [0, 1) and ϕ ∈ W . The block space Bp′,λ
ϕ (X )

is defined to be the collection of all measurable functions f which can be represented

as f =
∑
i

tibi almost everywhere, where {ti}i ∈ l1 and {bi}i is a sequence of (p
′, λ, ϕ)-

blocks. Moreover, let

‖f‖
Bp′,λ

ϕ (X )
:= inf

{
‖{ti}i‖l1 : f =

∑

i

tibi

}
,

where the infimum is taken over all possible decompositions of f .

The second main result of this paper reads as follows.

Theorem 1.7. Let p ∈ (1,∞), λ ∈ [0, 1) and ϕ ∈ W . Then the dual space of

Bp′,λ
ϕ (X ) is L

p),λ
ϕ (X ) in the following sense: for any g ∈ L

p),λ
ϕ (X ), the functional∫

X
f(x)g(x) dµ(x) induces a bounded linear functional on Bp′,λ

ϕ (X ); conversely, for

any L ∈ (Bp′,λ
ϕ (X ))∗, there exists a g ∈ L

p),λ
ϕ (X ) such that L(f) =

∫
X f(x)g(x) dµ(x)

for all f ∈ Bp′,λ
ϕ (X ).

We point out that Theorem 1.7 is also new when λ = 0, i.e., for generalized

grand Lebesgue spaces. Recall that in [7], Fiorenza introduced the small Lebesgue

spaces on subsets of Euclidean spaces with finite measure, and proved that the small
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Lebesgue space and the grand Lebesgue space are associated spaces to each other.

In comparison with [7], Theorem 1.7 provides a different description of the predual

of grand Lebesgue spaces.

The structure of this paper is organized as follows. In Section 2, we present

some basic notation and properties of interpolation and duality. A dual theorem for

Morrey spaces on quasi-metric measure spaces and some embedding properties of

generalized grand Morrey spaces are also proved. Sections 3 and 4 are then devoted

to the proofs of Theorems 1.3 and 1.7, respectively.

Finally, we make some conventions on notation. We denote by C a positive con-

stant which is independent of the main parameters, but may vary from line to line.

The symbol A . B means A 6 CB. If A . B and B . A, then we write A ≈ B.

If E is a subset of X , we denote by χE its characteristic function and by E
∁ the set

X \ E. For all r ∈ (0,∞) and x ∈ X , denote by B(x, r) the ball centered at x with

side length r, namely, B(x, r) := {y ∈ X : d(x, y) < r}.

2. Preliminaries

In this section, we recall some basic notions on the interpolation methods and

duality. Some basic properties of generalized grand Morrey spaces are also presented.

First we recall that, for all p ∈ (0,∞] and λ ∈ [0, 1), the classical Morrey space

Lp,λ(X ) is defined as the set of all measurable functions f on X such that

‖f‖Lp,λ(X ) := sup
B

(
1

[µ(B)]λ

∫

B

|f(x)|p dµ(x)

)1/p
< ∞,

where the supremum is taken over all balls B in X . Obviously, Lp,0(X ) coincides

with the Lebesgue space Lp(X ), and L∞,λ(X ) = L∞(X ).

Next we recall some basic knowledge on the interpolation methods used in this

paper.

Definition 2.1. Let X0, X1 be a couple of quasi-Banach spaces, which are

continuously embedding into a large Hausdorff topological vector space Y . The

space X0 +X1 is defined by

X0 +X1 := {y ∈ Y : there exists yi ∈ Xi, i ∈ {0, 1} such that y = y0 + y1}

and its norm is given by

‖y‖X0+X1 := inf{‖y0‖X0 + ‖y1‖X1 : y = y0 + y1, yi ∈ Xi, i ∈ {0, 1}}.
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A quasi-Banach space X is called an intermediate space with respect to X0 +X1

if X0 ∩ X1 ⊂ X ⊂ X0 + X1 with continuous embeddings. If X is an intermediate

space with respect to X0 + X1, let X
◦ be the closure of X0 ∩ X1 in X , and let

the Gagliardo closure of X with respect to X0 +X1, denoted by X
∼, be defined as

follows: a ∈ X∼ if and only if there exists a sequence {ai}i∈N such that ai → a in

X0 +X1 and ‖ai‖X 6 λ < ∞. Moreover, ‖a‖X∼ := inf{λ}.

Definition 2.2. Let (X0, X1) be a pair of quasi-Banach spaces and θ ∈ (0, 1).

(i) (The Gagliardo-Peetremethod.) We say a ∈ 〈X0, X1〉θ if there exists a sequence

{ai}i∈Z ⊂ X0 ∩X1 such that a =
∑
i∈Z

ai in X0 +X1 and, for any bounded sequence

{εi}i∈Z ⊂ C,
∑
i∈Z

εi2
i(j−θ)ai converges in Xj , j ∈ {0, 1}. Moreover, for j ∈ {0, 1},

∥∥∥∥
∑

i∈Z

εi2
i(j−θ)ai

∥∥∥∥
Xj

6 C sup
i∈Z

|εi|

for some nonnegative constant C, independent of {εi}i∈Z and {ai}i∈Z. Let

‖a‖〈X0,X1〉θ := inf{C}.

(ii) (The ± method.) We say a ∈ 〈X0, X1, θ〉 if there exists a sequence {ai}i∈Z ⊂

X0∩X1 such that a =
∑
i∈Z

ai in X0+X1 and, for any finite subset F ∈ Z and bounded

sequence {εi}i∈Z ⊂ C, and j ∈ {0, 1},

∥∥∥∥
∑

i∈F

εi2
i(j−θ)ai

∥∥∥∥
Xj

6 C sup
i∈Z

|εi|

for some constant C, independent of F , {εi}i∈Z and {ai}i∈Z. Let ‖a‖〈X0,X1,θ〉 :=

inf{C}.

An important tool we need is the following Calderón product.

Definition 2.3. A quasi-Banach space X of complex-valued measurable func-

tions is called a quasi-Banach lattice if, for any f ∈ X and a function g satisfying

|g| 6 |f |, we have g ∈ X and ‖g‖X 6 ‖f‖X .

Given two quasi-Banach lattices X0 and X1 and θ ∈ (0, 1), their Calderón product

X1−θ
0 Xθ

1 is defined by

X1−θ
0 Xθ

1 := {f is a complex-valued measurable function: there exist

f0 ∈ X0, f1 ∈ X1 such that |f | 6 |f0|1−θ|f1|θ}

and its norm is given by ‖f‖X1−θ
0 Xθ

1
:= inf{‖f0‖1−θ

X0
‖f1‖θX1

}, where the infimum is

taken over all f0 ∈ X0 and f1 ∈ X1 such that |f | 6 |f0|1−θ|f1|θ.
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The following interpolation results on classical Morrey spaces can be found in [24],

Theorem 1.2 (see also [39]).

Theorem 2.4. Let θ ∈ (0, 1), λ ∈ [0, 1), p, p0, p1 ∈ (0,∞] be such that

(1− θ)/p0 + θ/p1 = 1/p. Then

〈Lp0,λ(X ), Lp1,λ(X )〉θ = ([Lp0,λ(X )]1−θ[Lp1,λ(X )]θ)◦ = Lp,λ(X )◦

and

〈Lp0,λ(X ), Lp1,λ(X ), θ〉 = [Lp0,λ(X )]1−θ[Lp1,λ(X )]θ = Lp,λ(X ).

We also formulate here some results on the predual of Morrey spaces on X .

Definition 2.5. Let p ∈ (1,∞) and λ ∈ [0, 1). A measurable function b on X is

called a (p′, λ)-block if b is supported on a ball B and satisfies

(∫

B

|b(x)|
p′

dµ(x)

)1/p′

[µ(B)]λ/p 6 1.

Definition 2.6. Let p ∈ (1,∞) and λ ∈ [0, 1). The space Bp′,λ(X ) is defined

to be the collection of all measurable functions f which can be represented as f =∑
i∈Z

tibi almost everywhere, where {ti}i ∈ l1 and {bi}i is a sequence of (p
′, λ)-blocks.

Moreover, let

‖f‖Bp′,λ(X ) := inf

{
‖{ti}i‖l1 : f =

∑

i∈Z

tibi

}
,

where the infimum is taken over all possible decompositions of f .

Then we have the following dual theorem on Morrey spaces, whose proof is some-

how standard (see [40] for Morrey spaces on R
n and some of its subsets, or [35] for

Morrey spaces on Rn with nondoubling measures). For the sake of completeness, we

present its proof here.

Theorem 2.7. Let p ∈ (1,∞) and λ ∈ [0, 1). Then the dual space of Bp′,λ(X ) is

the Morrey space Lp,λ(X ). Precisely, for any g ∈ Lp,λ(X ),
∫
X
f(x)g(x) dµ(x) induces

a bounded linear functional on Bp′,λ(X ); conversely, for any L ∈ (Bp′,λ(X ))∗, there

exists a g ∈ Lp,λ(X ) such that L(f) =
∫
X
f(x)g(x) dµ(x) for all f ∈ Bp′,λ(X ).

P r o o f. We only give the proof for the case λ > 0, since the proof for the case

λ = 0 is similar and easier. Let g ∈ Lp,λ(X ) and f ∈ Bp′,λ(X ). Then for any

ε ∈ (0,∞), there exist {ti}i ∈ l1 and a sequence of (p′, λ)-blocks {ai}i, supported on
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balls {Bi}i, such that f =
∑
i

tiai almost everywhere and ‖{ti}i‖l1 6 ‖f‖Bp′,λ(X )+ ε.

Then by the Hölder inequality we see that
∫

X

|f(x)g(x)| dµ(x) 6
∑

i

|ti|

∫

Bi

|ai(x)||g(x)| dµ(x)

6
∑

i

|ti|

(∫

Bi

|ai(x)|
p′

dµ(x)

)1/p′(∫

Bi

|g(x)|p dµ(x)

)1/p

6
∑

i

|ti|[µ(Bi)]
−λ/p

(∫

Bi

|g(x)|p dµ(x)

)1/p

6 ‖{ti}i‖l1‖g‖Lp,λ(X ) 6 (‖f‖Bp′,λ(X ) + ε)‖g‖Lp,λ(X ).

Letting ε → 0, we then conclude that
∫
X f(x)g(x) dµ(x) defines a bounded linear

functional on Bp′,λ(X ) with operator norm not greater than ‖g‖Lp,λ(X ).

Conversely, let L be a bounded linear functional on Bp′,λ(X ). For any fixed ball

B0, let Bj := 2jB0 for all j ∈ N and let Lp′

(Bj) be the set of all L
p′

(X )-functions

supported on Bj . Notice that each function in Lp′

(Bj) can be regarded as a (p
′, λ)-

block supported on Bj modulo a positive constant. Thus, the linear functional

g 7→ L(g) is bounded on Lp′

(Bj). Then, by the duality between L
p′

(Bj) and L
p(Bj),

there exists fj ∈ Lp(Bj) such that L(g) =
∫
Bj

f(x)g(x) dµ(x) for all g ∈ Lp′

(Bj).

Letting j → ∞ and using the uniqueness of each fj, we can find a function f

in Lp
loc(X ) such that f equals fj almost everywhere on Bj . It remains to show

f ∈ Lp,λ(X ). Indeed, for any ball B in X , define

gB(x) := χB(x)sgn(f(x))|f(x)|
p−1, x ∈ X .

Then

[µ(B)]−λ/pgB

/(∫

B

|gB(x)|
p′

dµ(x)

)1/p′

is a (p′, λ)-block supported on B. Moreover, noticing that

1

[µ(B)]λ

∫

B

|f(x)|p dµ(x) =
1

[µ(B)]λ

∫

B

f(x)gB(x) dµ(x) =
1

[µ(B)]λ
L(gB),

we know that

1

[µ(B)]λ

∫

B

|f(x)|p dµ(x) 6
1

[µ(B)]λ
‖L‖‖gB‖Bp′,λ(X )

6 ‖L‖
1

[µ(B)]λ
[µ(B)]λ/p

(∫

B

|gB(x)|
p′

dµ(x)

)1/p′

= ‖L‖

(
1

[µ(B)]λ

∫

B

|f(x)|p dµ(x)

)1/p′

.
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This implies that f ∈ Lp,λ(X ) and ‖f‖Lp,λ(X ) is not greater than the operator

norm ‖L‖. Thus, we complete the proof of Theorem 2.7. �

Finally, we have the following embedding property of generalized grand Morrey

spaces, which is a direct consequence of the Hölder inequality and the fact that

µ(X ) < ∞.

Proposition 2.8. Let p ∈ (1,∞), λ ∈ [0, 1), ε ∈ (0, p− 1) and ϕ ∈ W . Then

Lp,λ(X ) ⊂ Lp),λ
ϕ (X ) ⊂ Lp−ε,λ(X ).

These embeddings are where the name “generalized grand Morrey space” comes

from.

3. Proof of Theorem 1.3

In this section, we prove Theorem 1.3. To this end, we first need to calculate the

Calderón product of two generalized grand Morrey spaces.

Lemma 3.1. Let θ ∈ (0, 1), λ ∈ [0, 1), p, p0, p1 ∈ (1,∞] be such that (1− θ)/p0+

θ/p1 = 1/p, and ϕ, ϕ0, ϕ1 ∈ W such that ϕ is equivalent to ϕ1−θ
0 ϕθ

1. Then

[Lp0),λ
ϕ0

(X )]1−θ [Lp1),λ
ϕ1

(X )]θ ⊂ Lp),λ
ϕ (X ).

To prove Lemma 3.1 we need some auxiliary functions.

Definition 3.2. Let θ, p, p0, p1 be as in Lemma 3.1. For all ε ∈ [0, p− 1] and

s, t ∈ [0,∞], define

p̃i(ε) := pi −
ε

p− 1
(pi − 1), i ∈ {0, 1},

H(s, t) :=
1

(1− θ)/s+ θ/t
,

h(ε) := H(p̃0(ε), p̃1(ε)),

pi(ε) := p̃i(h
−1(p− ε)), i ∈ {0, 1}.

From Definition 3.2, we can deduce the following properties of p0(ε) and p1(ε).
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Proposition 3.3. Let all notation be as in Definition 3.2. Then pi(ε) is continu-

ous, strictly decreasing and satisfies the following conditions:

pi(0) = pi, pi(p− 1) = 1,(3.1)

1− θ

p0(ε)
+

θ

p1(ε)
=

1

p− ε
,(3.2)

lim
ε→0+

pi − pi(ε)

ε
=

p0p1(pi − 1)

p(p+ p0p1 − p0 − p1)
.(3.3)

P r o o f. Obviously, both p̃0(ε) and p̃1(ε) are continuous and strictly decreasing.

Therefore, the function h is also continuous and strictly decreasing, so does h−1.

This implies that p0(ε) and p1(ε) are continuous and strictly decreasing, due to their

definitions. On the other hand, (3.1) and (3.2) are easy to check, and hence we only

need to prove (3.3).

Notice that h(ε) is continuous, strictly decreasing and h(0) = p, h(p−1) = 1. Then

for any ε ∈ (0, p − 1) there exists a unique ε′ ∈ (0, p − 1) such that p − ε = h(ε′).

Thus, by Definition 3.2, we see that

lim
ε→0+

pi − pi(ε)

ε
=

pi − 1

p− 1
lim

ε′→0+

ε′

p− h(ε′)

=
pi − 1

p− 1
lim

ε′→0+

ε′(p− 1)[p0p1(p− 1− ε′) + pε′]

pε′[(p− 1)(p+ p0p1 − p0 − p1)− (p0 − 1)(p1 − 1)ε′]

=
p0p1(pi − 1)

p(p+ p0p1 − p0 − p1)
,

as desired. �

Proposition 3.3 leads to the following useful corollary.

Corollary 3.4. There exist positive constants K1, K2 such that for all ε ∈

[0, p− 1], K1ε 6 pi − pi(ε) 6 K2ε and, if ϕ ∈ W , then ϕ(pi − pi(·)) ∈ W and

is equivalent to ϕ.

We are now ready to prove Lemma 3.1.

P r o o f of Lemma 3.1. Let f ∈ [L
p0),λ
ϕ0 (X )]1−θ[L

p1),λ
ϕ1 (X )]θ. Then, by Defini-

tion 2.3, we know that there exist f0 ∈ L
p0),λ
ϕ0 (X ) and f1 ∈ L

p1),λ
ϕ1 (X ) such that

|f(x)| 6 |f0(x)|
1−θ

|f1(x)|
θ
for almost every x ∈ X , and

‖f0‖
1−θ

L
p0),λ
ϕ0

(X )
‖f1‖

θ

L
p1),λ
ϕ1

(X )
. ‖f‖

[L
p0),λ
ϕ0

(X )]1−θ[L
p1),λ
ϕ1

(X )]θ
.
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By virtue of ϕ ≈ ϕ1−θ
0 ϕθ

1 and Corollary 3.4, we see that

‖f‖
L

p),λ
ϕ (X )

= sup
ε∈(0,p−1)

ϕ(ε)‖f‖Lp−ε,λ(X )

≈ sup
ε∈(0,p−1)

ϕ1−θ
0 (ε)ϕθ

1(ε)‖f‖Lp−ε,λ(X )

≈ sup
ε∈(0,p−1)

ϕ1−θ
0 (p0 − p0(ε))ϕ

θ
1(p1 − p1(ε))‖f‖Lp−ε,λ(X ).

Applying Proposition 3.3 and the Hölder inequality, we find that

‖f‖Lp−ε,λ(X ) 6 ‖f0‖
1−θ
Lp0(ε),λ(X )

‖f1‖
θ
Lp1(ε),λ(X ).

Hence, letting εi := pi − pi(ε), we further see that

‖f‖
L

p),λ
ϕ (X )

. sup
ε∈(0,p−1)

ϕ1−θ
0 (p0 − p0(ε))ϕ

θ
1(p1 − p1(ε))‖f0‖

1−θ
Lp0(ε),λ(X )

‖f1‖
θ
Lp1(ε),λ(X )

. sup
ε∈(0,p−1)

ϕ1−θ
0 (p0 − p0(ε))‖f0‖

1−θ
Lp0(ε),λ(X )

× sup
ε∈(0,p−1)

ϕθ
1(p1 − p1(ε))‖f1‖

θ
Lp1(ε),λ(X )

. sup
ε0∈(0,p0−1)

(ϕ0(ε0)‖f‖Mp0−ε0
λ

(X )
)1−θ

× sup
ε1∈(0,p1−1)

(ϕ1(ε1)‖f‖Mp1−ε1
u1

(X )
)θ

≈ ‖f0‖
1−θ

L
p0),λ
ϕ0

(X )
‖f1‖

θ

L
p1),λ
ϕ1

(X )
. ‖f‖

[L
p0),λ
ϕ0

(X )]1−θ[L
p1),λ
ϕ1

(X )]θ
.

This implies that f ∈ L
p),λ
ϕ (X ) which completes the proof of Lemma 3.1. �

We also prove that the converse embedding is true.

Lemma 3.5. Let θ ∈ (0, 1), λ ∈ [0, 1) and let p, p0, p1 ∈ (1,∞] be such that

(1− θ)/p0 + θ/p1 = 1/p. Assume further that ϕ, ϕ0, ϕ1 ∈ W so that ϕ, ϕ
p/p0

0 and

ϕ
p/p1

1 are equivalent. Then

[Lp0),λ
ϕ0

(X )]1−θ [Lp1),λ
ϕ1

(X )]θ ⊃ Lp),λ
ϕ (X ).

To prove Lemma 3.5, we need the following notation.

Definition 3.6. Let f be a measurable function onX , p ∈ (0,∞] and V ∈ (0,∞).

Define

S(f, p, V ) := sup
µ(B)=V

(∫

B

|f(x)|p dµ(x)

)1/p
,

where the supremum is taken over all balls B in X with measure V . As a special

case, S(f, p, V0) = 0 if there is no ball with measure V0 in X .
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Remark 3.7. Obviously, for all k ∈ (0,∞),

(3.4) S(f, p, V ) = S(f1/k, kp, V )k.

It is also easy to see that

‖f‖Lp,λ(X ) = sup
V ∈(0,∞)

S(f, p, V )V −λ/p.

Now we prove Lemma 3.5.

P r o o f of Lemma 3.5. Let f ∈ L
p),λ
ϕ (X ). Define fi := |f |p/pi , i ∈ {0, 1}. Then

by Remark 3.7, we see that

‖fi‖Lpi),λ
ϕi

(X )
= sup

εi∈(0,pi−1)

ϕi(ε)‖fi‖Lpi−εi,λ(X )

= sup
εi∈(0,pi−1)

sup
V ∈(0,∞)

ϕi(εi)S(fi, pi − εi, V )V −λ/(pi−εi)

=
[

sup
εi∈(0,pi−1)

sup
V ∈(0,∞)

ϕ(εi)S(fi, pi − εi, V )pi/pV −λpi/(p(pi−εi))
]p/pi

.

By Proposition 3.3, we know that pi(ε) is strictly decreasing, continuous and satisfies

pi(0) = pi and pi(p − 1) = 1. Then for any εi ∈ (0, pi − 1) there exists a unique

ε ∈ (0, p− 1) such that

pi − pi(ε) = εi.

Thus, we further have

‖fi‖Lpi),λ
ϕi

(X )
.

[
sup

ε∈(0,p−1)

sup
V ∈(0,∞)

ϕ(pi − pi(ε))S(fi, pi(ε), V )pi/pV −λpi/(pi(ε)p)
]p/pi

.

Then, by (3.4) and ϕ ∈ W , we find that

‖fi‖Lpi),λ
ϕi

(X )
.

[
sup

ε∈(0,p−1)

sup
V ∈(0,∞)

ϕ
(
p−

p

pi
pi(ε)

)
S
(
f,

p

pi
pi(ε), V

)
V −λpi/(pi(ε)p)

]p/pi

≈
[

sup
ε∈(0,p−1)

sup
V ∈(0,∞)

ϕ(ε)S(f, p− ε, V )V −λ/(p−ε)
]p/pi

≈ ‖f‖
p/pi

L
p),λ
ϕ (X )

.

In addition, notice that

|f | = |f |p(1−θ)/p0 |f |pθ/p1 = |f0|
1−θ|f1|

θ.
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Therefore,

‖f‖
[L

p0),λ
ϕ0

(X )]1−θ[L
p1),λ
ϕ1

(X )]θ
6 ‖f0‖

1−θ

L
p0),λ
ϕ0

(X )
‖f1‖

θ

L
p1),λ
ϕ1

(X )
. ‖f‖

L
p),λ
ϕ (X )

.

This implies f ∈ [L
p0),λ
ϕ0 (X )]1−θ[L

p1),λ
ϕ1 (X )]θ and completes the proof of Lemma 3.5.

�

Combining Lemmas 3.1 and 3.5, we obtain the following result.

Theorem 3.8. Let θ ∈ (0, 1), λ ∈ [0, 1) and p, p0, p1 ∈ (1,∞] be such that

(1− θ)/p0 + θ/p1 = 1/p. Assume further that ϕ, ϕ0, ϕ1 ∈ W so that ϕ, ϕ
p/p0

0 and

ϕ
p/p1

1 are equivalent. Then

[Lp0),λ
ϕ0

(X )]1−θ [Lp1),λ
ϕ1

(X )]θ = Lp),λ
ϕ (X ).

To prove Theorem 1.3, the following general result obtained by Nilsson in [29],

Theorem 2.1, is another important tool.

Theorem 3.9. Let X0 and X1 be two quasi-Banach lattices of type E. Then

〈X0, X1〉θ = (X1−θ
0 Xθ

1 )
◦

and

X1−θ
0 Xθ

1 ⊂ 〈X0, X1, θ〉 ⊂ (X1−θ
0 Xθ

1 )
∼.

Notice that, for all δ ∈ (0,min(1, p)], the 1/δ-convexification (L
p),λ
ϕ (X ))(1/δ) of the

generalized grand Morrey space is a Banach space, namely, the generalized grand

Morrey space L
p),λ
ϕ (X ) is of type E.

Now we prove Theorem 1.3.

P r o o f of Theorem 1.3. By Theorems 3.8 and 3.9, we see that

〈Lp0),λ
ϕ0

(X ), Lp1),λ
ϕ1

(X )〉θ = ([Lp0),λ
ϕ0

(X )]1−θ [Lp1),λ
ϕ1

(X )]θ)◦ = (Lp),λ
ϕ (X ))◦

and

Lp),λ
ϕ (X ) = [Lp0),λ

ϕ0
(X )]1−θ[Lp1),λ

ϕ1
(X )]θ ⊂ 〈Lp0),λ

ϕ0
(X ), Lp1),λ

ϕ1
(X ), θ〉 ⊂ (Lp),λ

ϕ (X ))∼.

Thus, to complete the proof, we only need to prove that L
p),λ
ϕ (X ) ⊃ (L

p),λ
ϕ (X ))∼.
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To this end, let f ∈ (L
p),λ
ϕ (X ))∼. Then there exists a sequence {fi}i∈N ⊂ L

p),λ
ϕ (X )

such that

(3.5) lim
i→∞

‖fi − f‖
L

p0),λ
ϕ0

(X )+L
p1),λ
ϕ1

(X )
= 0

and

‖fi‖Lp),λ
ϕ (X )

. ‖f‖
(L

p),λ
ϕ (X ))∼

, i ∈ N.

Thus, there exist sequences {f0
i }i∈N ⊂ L

p0),λ
ϕ0 (X ) and {f1

i }i∈N ⊂ L
p1),λ
ϕ1 (X ) such that,

for almost every x ∈ X , fi(x)− f(x) = f0
i (x) + f1

i (x) and

‖f0
i ‖Lp0),λ

ϕ0
(X )

+ ‖f1
i ‖Lp1),λ

ϕ1
(X )

. ‖fi − f‖
L

p0),λ
ϕ0

(X )+L
p1),λ
ϕ1

(X )
→ 0

as i → ∞.

Next, we claim that {f0
i }i∈N converges to 0 in measure on X . Indeed, if {f0

i }i∈N

does not converge to 0 in measure on X , then there exist positive constants c0, c1

such that

µ({x ∈ X : |f0
i (x)| > c0}) > c1, i ∈ N,

which leads to

‖f0
i ‖Lp0),λ

ϕ0
(X )

> sup
ε∈(0,p−1)

ϕ(ε)
( 1

[µ(X )]λ

∫

X

|f0
i (x)|

p−ε dµ(x)
)1/(p−ε)

> sup
ε∈(0,p−1)

ϕ(ε)([µ(X )]−λc1c0
p−ε)1/(p−ε)

> sup
ε∈(0,p−1)

ϕ(ε)[µ(X )]−λ/(p−ε)c0c1
1/(p−ε) > C

for some positive constant C independent of i. This contradicts (3.5). Hence, the

above claim is correct. Following a similar argument, we know that {f1
i }i∈N converges

to 0 in measure as well.

Therefore, there exist a subsequence of {f0
i }i∈N, denoted by {f

0
ik
}
k∈N
, and a sub-

sequence of {f1
i }i∈N, denoted by {f1

ik
}
k∈N
, such that both {f0

ik
}
k∈N
and {f1

ik
}
k∈N

converge to 0 almost everywhere. Hence, fik = f + f0
ik
+ f1

ik
converges to f almost

everywhere. From this and the Fatou lemma, we deduce that, for any ball B,

ϕ(ε)

(
1

[µ(B)]λ

∫

B

|f(x)|p−ε dµ(x)

)1/(p−ε)

6 lim
k→∞

ϕ(ε)

(
1

[µ(B)]λ

∫

B

|fik(x)|
p−ε dµ(x)

)1/(p−ε)

6 lim
k→∞

‖fik‖Lp),λ
ϕ (X )

. ‖f‖
(L

p),λ
ϕ (X ))∼

.

This implies that f ∈ L
p),λ
ϕ (X ) and L

p),λ
ϕ (X ) ⊃ (L

p),λ
ϕ (X ))∼, which completes the

proof of Theorem 1.3. �
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4. Proof of Theorem 1.7

First we prove that

(4.1) Lp),λ
ϕ (X ) ⊂ (Bp′,λ

ϕ (X ))∗.

To see this, let f ∈ L
p),λ
ϕ (X ) and g ∈ Bp′,λ

ϕ (X ). Then, for any δ ∈ (0,∞), there exist

(p′, λ, ϕ)-blocks {bi}i, supported on balls {Bi}i, and {ti}i ⊂ l1 such that g =
∑
i

tibi

almost everywhere and
∑
i

|ti| 6 ‖g‖
Bp′,λ

ϕ (X )
+ δ. By the definition of (p′, λ, ϕ)-blocks,

we can further pick {εi}i such that for all i,

(4.2) [ϕ(εi)]
−1

(∫

Bi

|bi(x)|
(p−εi)

′

dµ(x)

)1/(p−εi)
′

[µ (Bi)]
λ/(p−εi) 6 1 + δ.

By Theorem 2.7, it is easy to see that

∣∣∣∣
∫

X

f(x)g(x) dµ(x)

∣∣∣∣ =
∣∣∣∣
∫

X

f(x)
∑

i

tibi(x) dµ(x)

∣∣∣∣

6
∑

i

∣∣∣∣
∫

Bi

f(x)tibi(x) dµ(x)

∣∣∣∣ =
∑

i

∣∣∣∣
∫

Bi

f(x)tibi(x)
ϕ(εi)(1 + δ)

ϕ(εi)(1 + δ)
dµ(x)

∣∣∣∣

6
∑

i

ϕ(εi)(1 + δ)‖f‖
L

p−εi
λ

(X )

∥∥∥
tibi

ϕ(εi)(1 + δ)

∥∥∥
B(p−εi)

′,λ(X )
.

Notice that by the choice of {εi}i and by (4.2), ϕ(εi)bi/(1 + δ) are ((p−εi)
′, λ)-blocks

as in Definition 2.5. Then tiϕ(εi)bi/(1 + δ) is a block-decomposition of itself in the

sense of Definition 2.6, which implies

∥∥∥
tibi

ϕ(εi)(1 + δ)

∥∥∥
B(p−εi)

′,λ(X )
6 |ti|.

Therefore,

∣∣∣∣
∫

X

f(x)g(x) dµ(x)

∣∣∣∣ 6 (1 + δ)
∑

i

ϕ(εi)‖f‖Lp−εi
λ

(X )
|ti|

6 (1 + δ)
∑

i

‖f‖
L

p),λ
ϕ (X )

|ti|

6 (1 + δ)‖f‖
L

p),λ
ϕ (X )

(‖g‖
Bp′,λ

ϕ (X )
+ δ).

Letting δ → 0, we obtain

∣∣∣∣
∫

X

f(x)g(x) dµ(x)

∣∣∣∣ 6 ‖f‖
L

p),λ
ϕ (X )

‖g‖
Bp′,λ

ϕ (X )
.
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This implies that any f ∈ L
p),λ
ϕ (X ) defines a bounded linear functional on Bp′,λ

ϕ (X )

via
∫
X
f(x)g(x) dµ(x), namely, (4.1) holds.

Next we show the converse embedding (Bp′,λ
ϕ (X ))∗ ⊂ L

p),λ
ϕ (X ). To see this, we

notice that, for any ε ∈ (0, p− 1) and f ∈ B(p−ε)′,λ(X ),

‖f‖
Bp′,λ

ϕ (X )
6

‖f‖B(p−ε)′,λ(X )

ϕ(ε)
.

Hence, Bp′,λ
ϕ (X ) ⊃ B(p−ε)′,λ(X ) and then by Theorem 2.7,

(4.3) (Bp′,λ
ϕ (X ))∗ ⊂ (B(p−ε)′,λ(X ))∗ = Lp−ε

λ (X ).

This means that the elements of (Bp′,λ
ϕ (X ))∗ can be seen as functions in the set⋂

ε∈(0,p−1)

Lp−ε
λ (X ). Thus, to complete the proof, we only need to prove, if f ∈

Lp−ε
λ (X )\L

p),λ
ϕ (X ) for some ε ∈ (0, p− 1), then f /∈ (Bp′,λ

ϕ (X ))∗, which immediately

gives us

(Bp′,λ
ϕ (X ))∗ ⊃ Lp),λ

ϕ (X ).

Indeed, by (4.3), we assume that f ∈ Lp−ε,λ(X ) for all ε ∈ (0, p − 1). Since

f ∈ Lp−ε
λ (X ) \ L

p),λ
ϕ (X ), we know that

lim sup
ε→0+

ϕ(ε)‖f‖Lp−ε,λ(X ) = ∞.

Therefore, there exists a sequence {εk}k∈N ⊂ (0, p − 1) converging to 0 as k → ∞

such that

‖f‖
L

p−εk
λ

(X )
ϕ(εk) > k

for k large enough.

Since f ∈ Lp−εk
λ (X ), by Theorem 2.7 we know that f ∈ (B(p−εk)

′,λ(X ))∗. Hence

there exist elements {gk}k∈N in B(p−εk)
′,λ(X ) such that

‖gk‖B(p−εk)′,λ(X ) = 1

and ∫

X

f(x)gk(x) dµ(x) >
1

2
‖f‖

L
p−εk
λ

(X )
>

k

2
[ϕ(εk)]

−1.

Let g̃k := ϕ(εk)gk for all k ∈ N. Then ‖g̃k‖Bp′,λ
ϕ (X )

6 1 and

∫

X

f(x)g̃k(x) dµ(x) >
k

2
,

which tends to ∞ as k → ∞. Hence, f /∈ (Bp′,λ
ϕ (X ))∗. This implies L

p),λ
ϕ (X ) =

(Bp′,λ
ϕ (X ))∗ and completes the proof of Theorem 1.7. �
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