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Abstract. The spaces of entire functions represented by Dirichlet series have been studied
by Hussein and Kamthan and others. In the present paper we consider the space X of all
entire functions defined by vector-valued Dirichlet series and study the properties of a
sequence space which is defined using the type of an entire function represented by vector-
valued Dirichlet series. The main result concerns with obtaining the nature of the dual
space of this sequence space and coefficient multipliers for some classes of vector-valued
Dirichlet series.
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1. Introduction

Let

(1.1) f(s) =

∞
∑

n=1

ane
sλn ,

where s = σ + it, σ and t are real variables, an’s belong to a complex Banach

algebra E with the unit element ω and {λn} is an increasing sequence such that

0 < λ1 < λ2 < λ3 < . . . < λn . . .; lim
n→∞

λn = ∞ and

(1.2) lim sup
n→∞

logn

λn
= D < ∞.

Let σc(f) and σa(f) be the abscissa of convergence and abscissa of absolute conver-

gence, respectively, of the series in (1.1). Then under the condition (1.2), we have
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(see [3], page 59)

0 6 σc(f)− σa(f) 6 D.

Further, if D = 0, then (see [3], page 62),

(1.3) σc = σa = − lim sup
n→∞

ln ‖an‖

λn
.

Much earlier, Mandelbrojt (see [2], page 166) had obtained a result similar to (1.3)

for the classical Dirichlet series
∞
∑

n=1

ane
−sλn under the condition

(1.4) lim sup
n→∞

n

λn
< ∞.

It is evident that if (1.4) holds, then D = 0.

Suppose that the sequence {λn} in the vector-valued Dirichlet series (1.1) given

above satisfies the condition (1.4) so that (1.3) holds. If σc(f) = σa(f) = ∞, then

f(s) is a vector-valued entire function represented by the Dirichlet series in (1.1).

We define its maximum modulus as

M(σ) = sup
−∞<t<∞

‖f(σ + it)‖.

The concepts of order and type of an entire function represented by vector-valued

Dirichlet series of one complex variable were first introduced in [3] by Srivastava.

Thus the order ̺ of the entire function f(s) is defined as

(1.5) ̺ = lim sup
σ→∞

log logM(σ)

σ
, 0 6 ̺ 6 ∞.

When 0 < ̺ < ∞, the type T of f(s) is defined as

(1.6) T = lim sup
σ→∞

logM(σ)

exp(̺σ)
, 0 6 T 6 ∞.

Srivastava in [3] also obtained the coefficient characterizations of order and type.

Thus f(s) is an entire function of order ̺ if and only if

(1.7) ̺ = lim sup
n→∞

λn logλn

log ‖an‖−1
.

Further, if f(s) is an entire of order ̺, then it is of type T if and only if

(1.8) T = lim sup
n→∞

λn‖an‖
̺/λ

n

̺e
.
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Let X denote the linear space of all entire functions f(s) defined by vector-valued

Dirichlet series (1.1) over the complex field and satisfying

(1.9) lim sup
n→∞

λn‖an‖
̺/λ

n

̺e
6 T.

Lê Hai Khôi in [1] introduced various concepts of duality for sequence spaces which

we state below.

Let A and B be two sequence spaces. We denote the sequence space of “multipli-

ers” from A to B by (A,B) such that

(A,B) = {u = (un) : (unan) ∈ B, ∀ (an) ∈ A}.

A sequence space A is said to be normal, if whenever A contains (an) it also contains

the sequence (bn) satisfying ‖bn‖ 6 ‖an‖ for n = 1, 2, . . . Equivalently, A is normal if

l∞ ⊂ (A,A). If D is a fixed sequence space, then the D-dual of a sequence space A is

defined to be (A,D), the space of multipliers from A to D, and denoted by AD. Some

duals are defined with some conditions such as Köthe dual or Abel dual. The Köthe

dual is obtained when D = l1, and will be denoted by Aα (it is also denoted by AK).

The Abel dual is obtained when D is the space of Abel-summable sequences, that is,

the space of sequences (dn) for which lim
r→1

∞
∑

n=1

dnr
n exists. Note that when dn > 0,

the existence of this limit is equivalent to the condition
∑

dn < ∞. We denote the

Abel dual of A by Aa. It is clear that Aα ⊆ Aa. The reverse inclusion is true if

space A is normal.

The aim of this paper is to introduce a new sequence space using the type of

entire functions represented by vector-valued Dirichlet series (VVDS) and obtain

some auxiliary conditions of convergence of VVDS given in (1.1). In what follows we

shall always consider E to be a complex Banach algebra and assume that the sequence

{λn} satisfies the condition (1.4). Consequently, (1.2) also holds and D = 0.

2. Main results

We denote by ET the sequence space

ET = {(an) : an ∈ E and (an) satisfies (1.9)}.

In this section, we study some dual spaces of the space ET . We note that if the

sequence {λn} satisfies condition (1.2), then

(2.1)

∞
∑

n=1

rλn < ∞ ∀ r ∈ (0, 1).
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The Köthe dual of the space ET is defined as

Eα
T =

{

(un) :

∞
∑

n=1

‖unan‖ converges ∀ (an) ∈ ET

}

.

Now we introduce another sequence space Eβ
T defined as

Eβ
T =

{

(un) :

∞
∑

n=1

unan converges ∀ (an) ∈ ET

}

.

It can be easily verified that Eα
T ⊆ Eβ

T . We now find the criteria for the reverse

inclusion relation to be true

We now prove the following statement.

Theorem 1. If (un) ∈ Eβ
T , then we have

(2.2) lim inf
n→∞

λn‖un‖
−̺/λ

n

̺e
> T.

Conversely, if the sequence (un) satisfies (2.2), then (un) ∈ Eα
T .

P r o o f. Let us assume that (2.2) does not hold, i.e.,

lim inf
n→∞

λn‖un‖
−̺/λ

n

̺e
< T.

Then for a given ε > 0 there exists a sequence (nk) of positive integers such that

λnk
‖unk

‖
−̺/λ

n
k

̺e
< T + ε ∀ k > 1.

Let (an) be a sequence defined as

an =

{ ω

‖un‖
, if n = nk, k = 1, 2, . . . ,

0 otherwise.

Then we have

lim sup
n→∞

λn‖an‖
̺/λn

̺e
= lim

k→∞

λnk
‖ank

‖̺/λn
k

̺e
= lim

k→∞

λnk
‖unk

‖−̺/λn
k

̺e
6 T.

It follows that (an) ∈ ET . But ‖anun‖ = 1 for n = nk, k = 1, 2, . . ., that is,

lim
n→∞

‖anun‖ 6= 0. So the series
∞
∑

n=1

‖unan‖ does not converge. Hence if (un) ∈ Eβ
T ,

then (2.2) will always be satisfied.
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Conversely, suppose that (2.2) holds, that is,

lim inf
n→∞

λn‖un‖
−̺/λn

k

̺e
= M > T.

Then for a given ε > 0, there exists N1 such that for all n > N1 we have

λn‖un‖
−̺/λn

k

̺e
> M − ε.

Also, for every sequence (an) ∈ ET , using (1.9), we can find a positive integer N2

such that for all n > N2

‖an‖
̺/λn <

(T + ε)̺e

λn
∀n > N2.

Therefore for all n > max{N1, N2},

‖anun‖
̺/λn 6

T + ε

M − ε
, i.e., ‖anun‖ 6

( T + ε

M − ε

)λn/̺

.

ForM > T , we choose any ε > 0 such thatM−ε > T+ε. Then from (2.1) we can see

that the series
∞
∑

n=1

‖anun‖ converges. Hence (un) ∈ Eβ
T . This proves Theorem 1. �

Theorem 2. The space ET is perfect, i.e., E
αα
T = ET .

P r o o f. Let the sequence (an) /∈ ET . Then we have

lim sup
n→∞

λn‖an‖
̺/λn

̺e
> T.

We denote by T ′ the left-hand side limit if it is finite and a number > T if the limit

is infinite. Then for a given arbitrarily small ε > 0, there exists a sequence (nk) of

positive integers such that

‖ank
‖̺/λn

k >
(T ′ − ε)̺e

λnk

, k = 1, 2, . . .

Let us define a sequence

un =

{ ω

‖an‖
if n = nk, k = 1, 2, . . . ,

0 otherwise.

Then we have

lim inf
n→∞

λn‖un‖
−̺/λn

̺e
= lim

k→∞

λnk
‖unk

‖−̺/λn
k

̺e
= lim

k→∞

λnk
‖ank

‖̺/λn
k

̺e
> T.

Hence from Theorem 1, (un) ∈ Eα
T . But ‖anun‖ = 1 for n = nk, i.e.,

∑

anun does

not converge. Therefore (an) /∈ Eαα
T . Hence Eαα

T ⊆ ET . The reverse inclusion

always holds. Hence the space ET is perfect. �
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Theorem 3. For the sequence space ET defined as above, we have

(ET , l
p) = Eα

T ∀ 0 < p 6 ∞.

P r o o f. Suppose that a sequence (un) /∈ Eα
T . Then from Theorem 1, we have

lim inf
n→∞

λn‖un‖
−̺/λn

̺e
6 T.

Then for an arbitrarily small ε > 0, there exists a sequence (nk) of positive integers

such that
λn‖un‖

−̺/λn

̺e
6 T + ε, n = nk ∀ k > 1.

Let 0 < p < ∞. We consider the sequence

an =

{ ω

‖unk
‖
if n = nk, k = 1, 2, . . . ,

0 otherwise.

Then we have

lim sup
n→∞

λn‖an‖
̺/λn

̺e
= lim sup

k→∞

λnk
‖ank

‖̺/λn

̺e
= lim sup

k→∞

λnk
‖unk

‖−̺/λn
k

̺e
6 T.

Hence we get (an) ∈ ET . By the definition of (ET , l
p),

∞
∑

n=1

‖anun‖
p should be con-

vergent. But ‖anun‖ = 1, n = 1, 2, . . . This implies (anun) /∈ lp.

For the case when p = ∞, consider a sequence

an =







ωnk

‖unk
‖
if n = nk, k = 1, 2, . . . ,

0 otherwise.

Then we have

lim sup
n→∞

λn‖an‖
̺/λn

̺e
= lim sup

k→∞

λnk
‖ank

‖̺/λn
k

̺e

= lim sup
k→∞

n
̺/λn

k

k λnk
‖unk

‖−̺/λn
k

̺e
6 T,

since lim
k→∞

n
1/nk

k = 1. Hence (an) ∈ ET . Since lim
k↔∞

‖ank
unk

‖ = ∞, this implies that

(anun) /∈ l∞. Hence we conclude that for 0 < p 6 ∞, (un) /∈ Eα
T ⇒ (un) /∈ (ET , l

p)

or equivalently, (ET , l
p) ⊆ Eα

T , 0 < p 6 ∞.

304



Conversely, assume that (un) ∈ Eα
T . Then for a given M > T, there exists N1

such that

‖un‖ 6

(̺eM

λn

)

−λn/̺

∀n > N1.

Suppose that (an) ∈ ET , then for δ ∈ (0,M − T ) there exists N2 such that for all

n > N2

‖an‖ 6

(̺e(T + δ)

λn

)λn/̺

∀n > N2.

Consequently, for all n > N = max{N1, N2}, we have

‖anun‖ 6 ‖an‖‖un‖ <
(T + δ

M

)λn

.

If 0 < p < ∞, then since (T + δ)/M < 1, we have by condition (2.1),

∞
∑

n=N

‖anun‖
p 6

∞
∑

n=N

(T + δ

M

)pλn/̺

< ∞,

which implies that (anun) ∈ lp.

Now let us take p = ∞, then we have ‖anun‖ 6 ((T + δ)/M)λn/̺ < 1 for all

n > N , which shows that (anun) ∈ l∞. Thus in both cases, (un) ∈ (ET , l
p) and

consequently, Eα
T ⊂ (ET , l

p), 0 < p 6 ∞. This completes the proof of Theorem 3.

�

In the next theorem we obtain the sequence space of multipliers from lp to ET .

Theorem 4. A sequence (un) is a multiplier from lp to ET if

(lp, ET ) = ET , 0 < p 6 ∞.

P r o o f. Let (un) ∈ (lp, ET ), 0 < p 6 ∞ and suppose that (un) /∈ ET . Then we

have

lim inf
n→∞

λn‖un‖
−̺/λn

̺e
= M < T.

Then for a given number δ, 0 < 2δ < T −M , there exists a sequence (nk) of positive

integers such that λnk
‖unk

‖−̺/λn
k̺−1e−1 6 M + δ for all k > 1. This implies

‖unk
‖−1 6 ((M + δ)̺eλ−1

nk
)λn

k
/̺ for all k > 1.

Define a new sequence (bn) such that

bn =







ω((M + 2δ)̺eλ−1

nk
)−λn

k
/̺

‖unk
‖

if n = nk,

0 otherwise.
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Then we have by (2.1),

∞
∑

n=1

‖bn‖
p =

∞
∑

k=1

‖bnk
‖p =

∞
∑

k=1

‖unk
‖−p

∥

∥

∥
ω
( (M + 2δ)̺e

λnk

)∥

∥

∥

−λn
k
p/̺

6

∞
∑

k=1

( M + δ

M + 2δ

)λn
k
p/̺

< ∞,

which shows that (bn) ∈ lp. Now consider

lim inf
n→∞

λn‖bnun‖
−̺/λn

̺e
= lim inf

k→∞

λnk
‖bnk

unk
‖−̺/λn

k

̺e
= (M + 2δ) < T.

In the second case, i.e., for p = ∞, we define a sequence (cn) such that

cn =







ω((M + δ)̺eλ−1

nk
)−λn

k
/̺

‖unk
‖

if n = nk,

0 otherwise.

We can see that ‖cn‖ 6 1 for all n > 1, which shows that (cn) ∈ l∞. Then we have

lim inf
n→∞

λn‖cnun‖
−̺λn

̺e
= lim inf

k→∞

λnk
‖cnk

unk
‖−̺λn

k

̺e
= M + δ < T.

Hence we see that in both cases, the sequences (bnun) and (cnun) do not belong to ET

even though (bn) ∈ lp and (cn) ∈ l∞. This is a contradiction. Thus (lp, ET ) ⊂ ET ,

0 < p 6 ∞.

To prove the converse, assume that (un) ∈ ET . Then we have

lim inf
n→∞

λn‖un‖
−̺/λn

̺e
> T.

Let (dn) be an arbitrary sequence such that (dn) ∈ lp, 0 < p 6 ∞. In both cases,

there exists a constant P such that ‖dn‖ 6 P for all n > 1. Hence we have

lim inf
n→∞

λn‖dnun‖
−̺/λn

̺e
= lim inf

k→∞

λnk
‖dnk

unk
‖−̺/λn

k

̺e

= lim inf
k→∞

λnk
P−̺/λn

k ‖unk
‖−̺/λn

k

̺e
6 T.

which shows that (dnun) ∈ ET . Thus ET ⊂ (lp, ET ) for all 0 < p 6 ∞. Hence the

result follows. �
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