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Combinatorics of ideals — selectivity versus density

A. Kwela, P. Zakrzewski

Abstract. This note is devoted to combinatorial properties of ideals on the set
of natural numbers. By a result of Mathias, two such properties, selectivity
and density, in the case of definable ideals, exclude each other. The purpose of
this note is to measure the “distance” between them with the help of ultrafilter
topologies of Louveau.
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1. Introduction

We are concerned with the following two combinatorial properties of ideals.
An ideal I on ω is:

• dense (or tall) if every infinite subset of ω contains an infinite subset in I;
• selective if for every partition {An : n ∈ ω} of ω such that no finite union

of elements of the partition is in the dual filter of I there is a selector
in I+, i.e., a set S not in I such that |S ∩ An| ≤ 1 for every n ∈ ω.

While density is a rather common property of ideals, the list of presently known
examples of selective ideals is apparently short. It consists of countably generated
ideals, ideals generated by AD families of subsets of ω (cf. [6]), ideals of the form

IK(x, (xn)) = {M ⊆ ω : x 6∈ {xn : n ∈ M}}

(where K is a topological space with suitable properties, x ∈ K and (xn) is a se-
quence of elements of K \ {x} accumulating to x, cf. [8, Section 12] and [10]) and
the maximal ideals whose duals are Ramsey ultrafilters (cf. [1, Theorem 4.5.2]).

The starting point of this note is the following theorem of Mathias.

Theorem 1.1 (Mathias [6]). No analytic (or coanalytic) dense ideal is selective.

Our aim is to show that selectivity of an analytic (or coanalytic) ideal I is
equivalent to I being nowhere dense in every so-called ultrafilter topology on [ω]ω

(associated with any ultrafilter extending the dual filter of I) studied earlier by
Louveau [5], Todorčević [10] and others, while the property of I being not dense
is equivalent to I being nowhere dense in at least one of such topologies.
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1.1 Basic definitions and notation. An ideal on ω, the set of natural num-
bers, is a collection I of subsets of ω which is closed under taking subsets and
finite unions. We always assume that I 6= P(ω) and I contains all finite subsets
of ω.

If I is an ideal on ω, then I∗ = {B ⊆ ω : Bc ∈ I} is the dual filter and
I+ = Ic = P(ω) \ I is the associated coideal of I consisting of I-positive sets.

We use standard set-theoretic notation. In particular, by [ω]<ω ([ω]ω, respec-
tively) we denote the collection of all finite (infinite, respectively) subsets of ω.
By identifying subsets of ω with their characteristic functions we treat the power
set P(ω) as the product space 2ω. Descriptive set theoretic notions concerning
ideals on ω always refer to the Cantor set topology on P(ω).

1.2 Trees and Grigorieff’s characterization of selectivity. Our notation
and terminology concerning trees agrees with [7] and is also close to [10].

By ⊑ we denote the initial segment relation on P(ω), i.e., for s ∈ [ω]<ω and
A ⊆ ω we have

s ⊑ A ⇔
(

s = ∅ ∨ ∀i ≤ max(s) (i ∈ s ⇔ i ∈ A)
)

.

By a tree we mean a non-empty set T ⊆ [ω]<ω such that s ∈ T and t ⊑ s imply
t ∈ T .

If T is a tree and s ∈ T then we denote by succT (s) the set {n > max(s) :
s∪ {n} ∈ T }. For A ⊆ P(ω) we say that T is an A-tree if succT (s) ∈ A for every
s ∈ T .

We say that a tree T is a centered I+-tree (or a strong I+-tree, cf. [2]) if for
any finite set {si : i < n} ⊆ T we have

⋂

{succT (si) : i < n} ∈ I+.

A set A ∈ [ω]ω is a branch of a tree T if s ⊑ A implies s ∈ T for every s ∈ [ω]<ω.
By [T ] we denote the set of all branches of T .

The following important characterization of selectivity is due to Grigorieff.

Theorem 1.2 (Grigorieff [2]). An ideal I on ω is selective if and only if every

centered I+-tree has a branch in I+.

1.3 The U -topology on [ω]ω. Let U be a nonprincipal ultrafilter on ω. The
following basic facts concerning the so-called U -topology are taken from [10]
(cf. [7]).

For s ∈ [ω]<ω and a U -tree T such that max(s) < min(
⋃

T ) we let

[s, T ] = {A ∈ [ω]ω : s ⊑ A ∧ A \ s ∈ [T ]}.

We say that a subset G of [ω]ω is U -open if for every B ∈ G there are s and T

as above such that B ∈ [s, T ] and [s, T ] ⊆ G.
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Proposition 1.3 (Louveau [5]; see [10, Lemma 7.36]). The family of all U -open

sets is a topology (called the U -topology and denoted by τU ) on [ω]ω (with the

basis EU consisting of sets of the form [s, T ]). The U -topology extends the Polish

topology on [ω]ω inherited from P(ω) identified with the Cantor set 2ω.

Let X ⊆ [ω]ω. We say that X is

• completely U -Ramsey if for every basic set [s, T ] ∈ EU there is a U -tree
T ′ ⊆ T such that [s, T ′] ⊆ X or [s, T ′] ⊆ X c;

• completely U -Ramsey null if for every basic set [s, T ] ∈ EU there is a
U -tree T ′ ⊆ T such that [s, T ′] ⊆ X c.

Theorem 1.4 (Louveau [5]; “Ultra-Ellentuck Theorem”, cf. [10]). A set X ⊆ [ω]ω

is completely U -Ramsey if and only if it has the Baire property in the U -topology.

Moreover, X is completely U -Ramsey null if and only if it is meager in τU .

Corollary 1.5. If X ⊆ [ω]ω has the Baire property in the U -topology (in par-

ticular, if I is analytic or coanalytic), then X is τU -dense in [ω]ω if and only if

X c is τU -nowhere dense.

2. Results

The following results characterize selectivity and density of ideals in terms of
ultrafilter topologies.

Theorem 2.1. Let I be an ideal on ω. Then:

(i) I is selective if and only if I+ is dense in τU for every ultrafilter U ⊆ I+

(equivalently: I∗ ⊆ U );
(ii) I is dense if and only if I is dense in τU for every nonprincipal ultrafil-

ter U ;

(iii) I is dense if and only if I is dense in τU for every ultrafilter U ⊆ I+.

Proof: (i) Assume that I is selective. Let [s, T ] ∈ EU be a basic open set in the
U -topology related to an ultrafilter U ⊆ I+.

Then T being a U -tree is also a centered I+-tree. Hence, by Theorem 1.2 (the
Grigorieff’s characterization), there is A ∈ [T ] ∩ I+. Then s ∪ A ∈ [s, T ] ∩ I+

which shows that I+ is dense in τU .

Now assume that I+ is dense in τU for every ultrafilter U ⊆ I+. Let T be
a centered I+-tree; by Theorem 1.2, to prove that I is selective it is enough to
show that [T ] ∩ I+ 6= ∅.

Extend the filter I∗ to an ultrafilter U such that succT (s) ∈ U for each s ∈ T .
Then, T being a U -tree, [T ] ∈ τU . Since I+ is τU -dense, [T ] ∩ I+ 6= ∅.

(ii) and (iii) Assume that I is dense. Let [s, T ] ∈ EU be a basic open set in
the U -topology related to a nonprincipal ultrafilter U .

By shrinking T , if necessary, we assume with no loss of generality that [B]ω ⊆
[T ] for every B ∈ [T ]. More precisely, let

T d = {s ∈ T : ∀t ⊆ s t ∈ T }.
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Then T d is a U -tree, T d ⊆ T and [A]ω ⊆ [T d] for any A ∈ [T d] (for details see [7,
Lemma 1 of 2.2]).

Let B ∈ [T ]; since I is dense, there is A ∈ [B]ω ∩ I. Then A ∈ [T ] ∩ I so
s ∪ A ∈ [s, T ] ∩ I which shows that I is dense in τU .

Now assume that I is dense in τU for every ultrafilter U ⊆ I+. Let B ∈ I+;
our aim is to show that [B]ω ∩ I 6= ∅.

Extend the filter I∗ to an ultrafilter U such that B ∈ U . Let T = [B]<ω .
Then, T being a U -tree, [T ] ∈ τU . Since I is τU -dense, there is A ∈ [T ]∩I ⊆

[B]ω ∩ I showing that [B]ω ∩ I 6= ∅. �

By the theorem of Mathias recalled in Introduction (cf. Theorem 1.1), selecti-
vity and density in the case of analytic (or coanalytic) ideals exclude each other.
The following corollary describes the distance between these properties in the
language of U -topologies. We precede it with a general lemma, the second part
of which is a zero-one law for the U -topology.

Lemma 2.2. Let U be a nonprincipal ultrafilter on ω and assume that a set

X ⊆ [ω]ω is invariant under finite modifications, i.e., A ∈ X implies (A\s2)∪s1 ∈
X for any s1, s2 ∈ [ω]<ω (in particular, X can be equal to I ∩ [ω]ω for an ideal I
on ω).

(i) X is not τU -dense if and only if X is τU -nowhere dense.

(ii) If, additionally, X has the Baire property in the U -topology (in particular,

if X is analytic or coanalytic), then either X or X c is τU -nowhere dense.

Proof: To prove the non-obvious part of point (i), assume that X is not τU -
dense. This means that there is a basic U -open set [s1, T1] ∈ EU disjoint from X .
Let [s2, T2] ∈ EU be an arbitrary basic U -open set. Then T = T1∩T2 is a U -tree
(see [7, Lemma 2 of 3.2]) and [s2, T ] ⊆ [s2, T2]. Moreover, [s2, T ]∩X = ∅. Indeed,
if there was A ∈ [s2, T ] ∩ X , then we would have

(A \ s2) ∪ s1 ∈ [s1, T ] ∩ X ⊆ [s1, T1] ∩ X ,

contradicting the assumption that [s1, T1] ∩ X = ∅.
Point (ii) is an immediate consequence of point (i) and Corollary 1.5. �

Theorem 2.3. If I is an ideal on ω with the Baire property in the U -topology

(in particular, if I is analytic or coanalytic), then:

(i) I is selective if and only if I is τU -nowhere dense for every ultrafilter

U ⊆ I+.

(ii) I is dense if and only if I contains a τU -dense open subset for every

nonprincipal ultrafilter U . Moreover, I is not dense if and only if I is

τU -nowhere dense for a certain nonprincipal ultrafilter U .

(iii) I is dense if and only if I contains a τU -dense open subset for every

ultrafilter U ⊆ I+. Moreover, I is not dense if and only if I is τU -

nowhere dense for a certain ultrafilter U ⊆ I+.
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Proof: Point (i) and the first parts of points (ii) and (iii) follow immediately
from the respective points of Theorem 2.1 and Corollary 1.5 of Theorem 1.4 (the
ultra-Ellentuck theorem of Louveau). The “moreover” parts of (ii) and (iii) are
consequences of Lemma 2.2. �

Remark 2.4. Mathias [6] characterized selective ultrafilters as exactly those ul-
trafilters which have non-empty intersection with every dense analytic ideal. As
a corollary of Theorem 2.3 we may easily generalize this property of selective ul-
trafilters as follows: if U is a nonprincipal selective ultrafilter on ω and I is a
dense ideal on ω with the Baire property in the U -topology, then I ∩ U 6= ∅.

Indeed, by a result of Todorčević (cf. [9, Theorem 12]), U being selective is not
meager in its own U -topology. Therefore it cannot be disjoint from the ideal I,
since by Theorem 2.3(ii), the latter contains a τU -dense open set (this argument,
simplifying our original reasoning, is due to the referee).

Remark 2.5. The distance between selectivity and density in the case of analytic
(or coanalytic) ideals can also be seen with the help of countable diagonalizations
of Laflamme [4]. We say that an ideal I on ω is ω-diagonalizable if there is a
sequence (An) of infinite subsets of ω such that

∀A ∈ I ∃n A ∩ An = ∅.

If, moreover, for a certain A ⊆ [ω]ω all An’s are members of A, then we say that
I is ω-diagonalizable by elements of A.

It is easy to see that an ideal I on ω is not dense if and only if it is ω-
diagonalizable by elements of a filter contained in I+. On the other hand, a result
of Todorčević [10] says that if I is analytic (or coanalytic) and selective, then I
is bisequential , i.e., ω-diagonalizable by elements of every ultrafilter U ⊆ I+ (cf.
[10, Theorem 7.53]). It is also not difficult to prove that for an arbitrary ideal I
the latter condition implies selectivity of I.
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[1] Bartoszyński T., Judah H., Set Theory. On the Structure of the Real Line, A K Peters,
Wellesley, MA, 1995.

[2] Grigorieff S., Combinatorics on ideals and forcing , Ann. Math. Logic 3 (1971), 363–394.
[3] Kechris A.S., Classical Descriptive Set Theory , Graduate Texts in Mathematics, 156,

Springer, New York, 1995.
[4] Laflamme C., Filter games and combinatorial properties of winning strategies, Contemp.

Math. 192 (1996), 51–67.
[5] Louveau A., Une métode topologique pour l’étude de la propriété de Ramsey , Israel J. Math.
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