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Abstract. The aim of the paper is to present some mean value theorems obtained as
consequences of the intermediate value property. First, we will prove that any nonextremum
value of a Darboux function can be represented as an arithmetic, geometric or harmonic
mean of some different values of this function. Then, we will present some extensions of
the Cauchy or Lagrange Theorem in classical or integral form. Also, we include similar
results involving divided differences. The paper was motivated by some problems published
in mathematical journals.
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1. Introduction

The mean value theorems represent some of the most useful mathematical analysis

tools. The first result is due to Lagrange (1736–1813). The mean value theorem in

its modern form was stated by Cauchy (1789–1857). In the years that followed, more

mathematicians investigated this subject. As consequences of this fact, now we can

find similar results, more generalizations or extensions. Sahoo and Riedle’s book [14]

presents a large collection of old and new mean value theorems.

The authors of this paper decided to investigate another direction. Our idea is

coming from the next two problems, posed recently by Pangsriiam [10], and Plaza

and Rodrigues [11], respectively.
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P r o b l e m 1.1. Let f : [0, 1] → R be a function continuous on [0, 1] and differen-

tiable on (0, 1), with f(0) = 0 and f(1) = 1. Show that for each positive integer n,

there exist distinct numbers c1, c2, . . . , cn ∈ (0, 1) such that

f ′(c1)f
′(c2) . . . f

′(cn) = 1.

P r o b l e m 1.2. Let f : [0, 1] → R be a function continuous on [0, 1] such that
∫ 1

0
f(x) dx = 1 and let n be a positive integer. Show:

(a) There are distinct c1, c2, . . . , cn ∈ (0, 1) such that

f(c1) + f(c2) + . . .+ f(cn) = n.

(b) There are distinct c1, c2, . . . , cn ∈ (0, 1) such that

1

f(c1)
+

1

f(c2)
+ . . .+

1

f(cn)
= n.

The solution of the first problem has not been published yet. Garcia and Sua-

rez [2] proposed a solution to Problem 1.2. Our searches in other mathematical

journals or books led us to other problems of the same type. We will enumerate

a few:

P r o b l e m 1.3 (Precupanu, [12], page 146). Let f : [a, b] → R be an integrable

function on [a, b], continuous on (a, b), such that
∫ b

a
f(t) dt 6= 0. Then, for any positive

integer n, there exist distinct numbers c1, c2, . . . , cn ∈ (a, b) satisfying the equality

∫ b

a

f(t) dt =
n(b − a)

1/f(c1) + 1/f(c2) + . . .+ 1/f(cn)
.

P r o b l e m 1.4 (Orno, [9]). Let f : [0, 1] → R be a continuous function on [0, 1],

differentiable on (0, 1). If f(0) = 0 and f(1) = 1, then, for any positive integer n,

there exist distinct numbers c1, c2, . . . , cn ∈ (0, 1) such that

1

f(c1)
+

1

f(c2)
+ . . .+

1

f(cn)
= n.

P r o b l e m 1.5 (Marinescu, [7]). Let f : [0, 1] → R be a continuous nonconstant

function on [0, 1]. We choose α ∈ (min f,max f). Prove: for any positive integer n,

there exist distinct numbers c1, c2, . . . , cn ∈ (0, 1) such that

α =
f(c1) + f(c2) + . . .+ f(cn)

n
.
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P r o b l e m 1.6 (Thong, [15]). Let f : [0, 1] → R be a strictly monotonic and con-

tinuous function on [0, 1] such that
∫ 1

0 f(x) dx = 1. Prove there exist α, β, γ ∈ (0, 1)

with α < β < γ such that

f(α)f(β)f(γ) = 1.

The solutions can be found in the journal or book where the problems have been

published. Problem 1.6 enjoyed the attention of many mathematicians. A solution

is due to Herman, Lampakis and Witkowski [3]. Moreover, Rocca Jr. presented a

short note about this problem to a seminar [13].

The aim of this paper is to include these problems in some general results. In

fact, the conclusions of the Problems 1.1–1.6 are particular cases of some mean value

theorems. In this paper, we present and prove these theorems. We obtain some

extensions of Lagrange or Cauchy Theorem, in classical form (see Theorems 2.2

and 2.3) or integral form (see Theorems 2.4 and 2.5). Also, we prove new results

involving divided differences (see Theorems 2.6 and 2.7). The main tool, which we

will use, is Theorem 2.1 from the next section. It is shown that any nonextremum

value of a Darboux function can be obtained as an arithmetic, geometric or harmonic

mean of some distinct values of the same function.

For the sake of clearness, the proofs will be presented in a separate section of this

paper.

2. The results

Let I ⊂ R be an interval. We use the following notation throughout this section.

Recall that a function f : I → R has the Darboux property on I if for any x, y ∈ I,

x < y and for any value η between f(x) and f(y), there exists c ∈ (x, y) such that

f(c) = η. Any function satisfying this property is called a Darboux function.

Theorem 2.1. Let f : I → R be a Darboux function. Let c ∈ I be an interior

point, which is not an extremum point of f .

(a) For any positive integer n, there exist distinct c1, c2, . . . , cn ∈ I such that

f(c) =
f(c1) + f(c2) + . . .+ f(cn)

n
.

(b) For any positive integer n, there exist distinct c1, c2, . . . , cn ∈ I such that

(f(c))n = f(c1)f(c2) . . . f(cn).

(c) If f(c) 6= 0, then for any positive integer n, there exist distinct c1, c2, . . . , cn ∈ I

such that

f(c) =
n

1/f(c1) + 1/f(c2) + . . .+ 1/f(cn)
.
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We know that any continuous function on a real interval has the Darboux property.

Hence, the condition α ∈ (min f,max f) from Problem 1.5 shows us that α is not

an extremum value of the function f. Now, Problem 1.5 is a consequence of the

assertion (a) of the previous theorem.

Darboux property is difficult to explore since it is not compatible with the alge-

braic operations. For example, the sum of two Darboux functions is not necessarily

a function of the same type. In this context, Jarník’s Theorem is very important.

This result can be found in [4] or [8] and it says that the function f ′/g′ has the

Darboux property, for any functions f, g : [a, b] → R, differentiable on [a, b], such

that g′(x) 6= 0 (x ∈ [a, b]).

We use this result to prove an extension of the Cauchy Mean Value Theorem.

Theorem 2.2. Let f : [a, b] → R and g : [a, b] → R be functions continuous on

[a, b] and differentiable on (a, b). Suppose that g′(x) 6= 0 for any x ∈ (a, b).

(a) For any positive integer n, there exist distinct c1, c2, . . . , cn ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=

1

n

[f ′(c1)

g′(c1)
+

f ′(c2)

g′(c2)
+ . . .+

f ′(cn)

g′(cn)

]

.

(b) For any positive integer n, there exist distinct c1, c2, . . . , cn ∈ (a, b) such that

(f(b)− f(a)

g(b)− g(a)

)n

=
f ′(c1)

g′(c1)

f ′(c2)

g′(c2)
. . .

f ′(cn)

g′(cn)
.

(c) If f(b) 6= f(a), then for any positive integer n, there exist distinct c1, c2, . . . ,

cn ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=

n

g′(c1)/f ′(c1) + g′(c2)/f ′(c2) + . . .+ g′(cn)/f ′(cn)
.

By choosing g(x) = x for any x ∈ [a, b], we obtain the following particular case.

Theorem 2.3. Let f : [a, b] → R be a function continuous on [a, b] and differen-

tiable on (a, b).

(a) For any positive integer n, there exist distinct c1, c2, . . . , cn ∈ (a, b) such that

f(b)− f(a)

b− a
=

f ′(c1) + f ′(c2) + . . .+ f ′(cn)

n
.

(b) For any positive integer n, there exist distinct c1, c2, . . . , cn ∈ (a, b) such that

(f(b)− f(a)

b− a

)n

= f ′(c1)f
′(c2) . . . f

′(cn).
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(c) If f(b) 6= f(a), then for any positive integer n, there exist distinct c1, c2, . . . ,

cn ∈ (a, b) such that

f(b)− f(a)

b− a
=

n

1/f ′(c1) + 1/f ′(c2) + . . .+ 1/f ′(cn)
.

We remark that Problem 1.1 is a particular case of the assertion (b) of Theorem 2.3

and Problem 1.4 is a particular case of the assertion (c) of the same theorem.

Further, we transform the previous results to obtain similar theorems in the case

of integrable functions. First, let f, g : [a, b] → R be functions integrable on [a, b]

and continuous on (a, b). Then the functions F,G : [a, b] → R, defined by F (x) =
∫ x

a
f(t) dt and G(x) =

∫ x

a
g(t) dt for any x ∈ [a, b], are differentiable on (a, b). If

g(x) 6= 0 for any x ∈ (a, b), then G is strictly monotonic and G(b) 6= 0 = G(a).

Under these assumptions, the integral form of the Cauchy Theorem says that there

exists c ∈ (a, b) such that
∫ b

a
f(t) dt

∫ b

a
g(t) dt

=
f(c)

g(c)
.

We obtain the next theorem by applying Theorem 2.2 to the functions F and G,

defined above.

Theorem 2.4. Let f : [a, b] → R and g : [a, b] → R be functions integrable

on [a, b] and continuous on (a, b). Suppose that g(x) 6= 0, for any x ∈ (a, b).

(a) For any positive integer n, there exist distinct c1, c2, . . . , cn ∈ (a, b) such that

∫ b

a
f(t) dt

∫ b

a
g(t) dt

=
1

n

[f(c1)

g(c1)
+

f(c2)

g(c2)
+ . . .+

f(cn)

g(cn)

]

.

(b) For any positive integer n, there exist distinct c1, c2, . . . , cn ∈ (a, b) such that

(

∫ b

a
f(t) dt

∫ b

a
g(t) dt

)n

=
f(c1)

g(c1)

f(c2)

g(c2)
. . .

f(cn)

g(cn)
.

(c) If
∫ b

a
f(t) dt 6= 0, then for any positive integer n, there exist distinct c1, c2, . . . ,

cn ∈ (a, b) such that

∫ b

a
f(t) dt

∫ b

a
g(t) dt

=
n

g(c1)/f(c1) + g(c2)/f(c2) + . . .+ g(cn)/f(cn)
.

If g is a nonzero constant, then Theorem 2.4 becomes
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Theorem 2.5. Let f : [a, b] → R be a function integrable on [a, b] and continuous

on (a, b).

(a) For any positive integer n, there exist distinct c1, c2, . . . , cn ∈ (a, b) such that

1

b− a

∫ b

a

f(t) dt =
f(c1) + f(c2) + . . .+ f(cn)

n
.

(b) For any positive integer n, there exist distinct c1, c2, . . . , cn ∈ (a, b) such that

(

1

b− a

∫ b

a

f(t) dt

)n

= f(c1)f(c2) . . . f(cn).

(c) If
∫ b

a
f(t) dt 6= 0, then for any positive integer n, there exist distinct c1, c2, . . . ,

cn ∈ (a, b) such that

∫ b

a

f(t) dt =
n(b − a)

1/f(c1) + 1/f(c2) + . . .+ 1/f(cn)
.

Now, we can observe that the assertion (c) represents Problem 1.3. Moreover, if we

choose a = 0, b = 1 and a function f such that
∫ 1

0
f(t) dt = 1, we obtain Problem 1.2

by using the assertions (a) and (c) of Theorem 2.5. Problem 1.6 is a particular case

of the assertion (b) of Theorem 2.5.

The assertion (c) of Theorem 2.2 or Theorem 2.4 remains valid if we change the

harmonic mean to the ponderate harmonic mean. This version can be found in [6],

but in that paper the above mentioned results were obtained in other way.

The final part of this section is reserved to similar results, involving the divided

differences. Recall that for an arbitrary function f : I → R, for any positive integer p

and for any x0, x1, . . . , xp ∈ I such that x0 < x1 < . . . < xp, we denote

f [x0,x1, . . . , xp] =

p
∑

k=0

f(xk)
p
∏

s=0,s6=k

(xk − xs)

.

This expression is called the divided difference of the function f associated with the

points x0, x1, . . . , xp ∈ I. One of the most important results is the Lagrange Theorem

for divided differences (Theorem 2.10, [14]) and it says that there exists c ∈ (x0, xp)

such that

f [x0, x1, . . . , xp] =
f (p)(c)

p!
,

where f : I → R is a p-times differentiable function.

We extend this result in the following form:
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Theorem 2.6. Let f : [a, b] → R be a function continuous on [a, b] and p-times

differentiable on (a, b). Let x0, x1, . . . , xp ∈ [a, b] be such that

x0 = a < x1 < . . . < xp = b.

(a) For any positive integer n, there exist distinct c1, c2, . . . , cn ∈ (a, b) such that

f [x0, x1, . . . , xp] =
1

n

f (p)(c1) + f (p)(c2) + . . .+ f (p)(cn)

p!
.

(b) For any positive integer n, there exist distinct c1, c2, . . . , cn ∈ (a, b) such that

(f [x0, x1, . . . , xp])
n =

f (p)(c1)f
(p)(c2) . . . f

(p)(cn)

(p!)n
.

(c) If f [x0, x1, . . . , xp] 6= 0, then for any positive integer n, there exist distinct

c1, c2, . . . , cn ∈ (a, b) such that

f [x0, x1, . . . , xp] =
1

p!

n

1/f (p)(c1) + 1/f (p)(c2) + . . .+ 1/f (p)(cn)
.

The Lagrange Theorem for divided differences was generalized due to Kowalew-

ski [5]. He proved that for any functions f, g : [a, b] → R, p-times differentiable

on [a, b], satisfying the condition g(p)(x) 6= 0, x ∈ [a, b], there exists c ∈ (a, b) such

that
f [x0, x1, x2, . . . , xp]

g[x0, x1, x2, . . . , xp]
=

f (p)(c)

g(p)(c)
,

where x0, x1, . . . , xp−1, xp ∈ [a, b] are such that x0 = a < x1 < . . . < xp−1 < xp = b.

Recently, Chen and Ding [1] showed that it is sufficient for the functions f and g to be

continuous on [a, b] and p-times differentiable on (a, b). An extension of Kowalewski’s

result concludes this section.

Theorem 2.7. Let f : [a, b] → R and g : [a, b] → R be functions continuous

on [a, b] and p-times differentiable on (a, b). Suppose that g(p)(x) 6= 0 for every

x ∈ (a, b). Let x0, x1, . . . , xp ∈ [a, b] be such that x0 = a < x1 < . . . < xp = b.

(a) For any positive integer n, there exist distinct c1, c2, . . . , cn ∈ (a, b) such that

f [x0, x1, . . . , xp]

g[x0, x1, . . . , xp]
=

1

n

[f (p)(c1)

g(p)(c1)
+

f (p)(c2)

g(p)(c2)
+ . . .+

f (p)(cn)

g(p)(cn)

]

.

(b) For any positive integer n, there exist distinct c1, c2, . . . , cn ∈ (a, b) such that

(f [x0, x1, . . . , xp]

g[x0, x1, . . . , xp]

)n

=
f (p)(c1)

g(p)(c1)

f (p)(c2)

g(p)(c2)
. . .

f (p)(cn)

g(p)(cn)
.
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(c) If f [x0, x1, . . . , xp] 6= 0 and f (p)(x) 6= 0 for every x ∈ (a, b), then for any positive

integer n, there exist distinct c1, c2, . . . , cn ∈ (a, b) such that

f [x0, x1, . . . , xp]

g[x0, x1, . . . , xp]
=

n

g(p)(c1)/f (p)(c1) + g(p)(c2)/f (p)(c2) + . . .+ g(p)(cn)/f (p)(cn)
.

3. The proofs

First, we present the proofs of Theorem 2.1 and Theorem 2.2.

P r o o f of Theorem 2.1. If c is not an extremum point, we can find a, b ∈ I such

that f(a) < f(c) < f(b). The function f has the Darboux property, so we can find

γ ∈ (a, b) such that f(y) = f(c). We can assume a < γ < b.

First, we prove all three assertions in the case that n is an even number. There

exists k ∈ N, k > 1 with n = 2k.

(a) Let ε > 0 be such that

f(a) < f(γ)− ε < f(γ) < f(γ) + ε < f(b).

We define real numbers x1, x2, . . . , xk such that x1 = f(γ)− ε and xs+1 ∈ (xs, f(γ))

for any s ∈ {1, 2, . . . , k − 1}. We observe that x1 < x2 < . . . < xk and

2f(γ)− xs+1 ∈ (f(γ), 2f(γ)− xs)

for any s ∈ {1, 2, . . . , k− 1}.We denote ys = 2f(γ)−xs for any s ∈ {1, 2, . . . , k}.We

obtain y1 > y2 > . . . > yk. More, we have xs + ys = 2f(γ) for any s ∈ {1, 2, . . . , k}.

The function f has the Darboux property. There exist c1, c2, . . . , ck such that

c1 ∈ (a, γ) and cs+1 ∈ (cs, γ) for any s ∈ {1, 2, . . . , k−1} and satisfying the condition

f(cs) = xs for any s ∈ {1, 2, . . . , k− 1}. Similarly, there exist ck+1, ck+2, . . . , c2k such

that ck+1 ∈ (γ, b) and ck+s+1 ∈ (γ, ck+s) for any s ∈ {1, 2, 3, . . . , k − 1}, satisfying

the condition f(ck+s) = ys for any s ∈ {1, 2, . . . , k}. In this context, we have

c1 < c2 < . . . < ck < c2k < c2k−1 < . . . < ck+1

and

f(c) =
f(c1) + f(c2) + . . .+ f(c2k)

2k
.

Hence n = 2k, and we obtain the conclusion.

(b) If f(c) = 0, we choose c1, c2, . . . , cn−1 ∈ I−{c}, distinct, and cn = c, else we can

assume f(c) > 0. If f(c) < 0, we make the same reasoning for the function −f . Then
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there exist a, b ∈ I such that 0 < f(a) < f(c) < f(b). Similarly to the assertion (a),

we find γ ∈ (a, b) with f(a) < f(γ) = f(c) < f(b). Let ε > 1 be such that

f(a) <
f(γ)

ε
< f(γ) < f(γ)ε < f(b).

We define real numbers x1, x2, . . . , xk such that x1 = f(γ)/ε and xs+1 ∈ (xs, f(γ))

for any s ∈ {1, 2, . . . , k − 1}. We have x1 < x2 < . . . < xk. In the same way as in

the previous assertion, we obtain numbers c1, c2, . . . , ck such that c1 ∈ (a, γ) and

cs+1 ∈ (cs, γ) for any s ∈ {2, 3, . . . , k − 1}, and satisfying the conditions f(cs) = xs

for any s ∈ {1, 2, . . . , k}.

Further, f2(γ)/xs+1 ∈ (f(γ), f2(γ)/xs) for any s ∈ {1, 2, . . . , k − 1}. For any

s ∈ {1, 2, . . . , k}, we denote ys = f2(γ)/xs. We can observe that xsys = f2(γ)

for any s ∈ {1, 2, . . . , k}. This implies y1 > y2 > . . . > yk. More, there ex-

ist ck+1, ck+2, . . . , c2k such that ck+1 ∈ (γ, b) and ck+s+1 ∈ (γ, ck+s) for any

s ∈ {1, 2, . . . , k − 1}, satisfying the conditions f(ck+s) = ys for any s ∈ {1, 2, . . . , k}.

In this context, we have

c1 < c2 < . . . < ck < c2k < c2k−1 < . . . < ck+1

and

f2k(c) = f(c1)f(c2) . . . f(c2k).

The last equality is equivalent to the conclusion, hence n = 2k.

(c) We suppose that f(c) > 0. If f(c) < 0, we obtain a similar proof by using the

function −f. Then there exist a, b ∈ I such that 0 < f(a) < f(c) < f(b). We find

γ ∈ (a, b) with f(a) < f(γ) = f(c) < f(b). Let ε > 0 be such that 0 < εf(γ) < 1 and

f(a) <
f(γ)

1 + εf(γ)
< f(γ) <

f(γ)

1− εf(γ)
< f(b).

We define real numbers ε1, ε2, . . . , εk such that

0 < εk < εk−1 < . . . < ε2 < ε1 = ε.

For any s ∈ {1, 2, . . . , k}, we denote

xs =
f(γ)

1 + εsf(γ)
and ys =

f(γ)

1− εsf(γ)
.

Then x1 < x2 < . . . < xk and y1 > y2 > . . . > yk. More, for any s ∈ {1, 2, . . . , k}, we

have
2

f(γ)
=

1

xs

+
1

ys
.
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Similarly to the other assertions, we find numbers c1, c2, . . . , c2k such that

f(cs) = xs, f(ck+s) = ys for any s ∈ {1, 2, . . . , k}.We have c1 ∈ (a, γ), ck+1 ∈ (γ, b),

cs+1 ∈ (cs, γ) and ck+s+1 ∈ (γ, ck+s) for any s ∈ {1, 2, . . . , k − 1}. Then

c1 < c2 < . . . < ck < c2k < c2k−1 < . . . < ck+1

and
2k

f(c)
=

1

f(c1)
+

1

f(c2)
+ . . .+

1

f(c2k)
.

Now n = 2k, then we conclude the proof.

If n is an odd number, there exists k ∈ N with n = 2k + 1. For the assertions (a)

and (c), we define numbers c1, c2, . . . , c2k similarly to the other case and c2k+1 = γ.

We make the same choice for the assertion (b) if f(c) 6= 0. If f(c) = 0, we choose

c1, c2, . . . , c2k ∈ I − {c} distinct and c2k+1 = c. Now, we obtain all the conclusions.

�

P r o o f of Theorem 2.2. From the Cauchy Theorem, we find c ∈ (a, b) such

that (f(b)− f(a))/(g(b)− g(a)) = f ′(c)/g′(c). The function f ′/g′ has the Darboux

property and, if c is not an extremum point for this function, we obtain the con-

clusion of the assertions (a) and (b) by applying the similar assertions of Theo-

rem 2.1. If f(b) 6= f(a), the point c from the Cauchy Theorem satisfies the condition

f ′(c)/g′(c) 6= 0. Now, we obtain the conclusion of the assertion (c) as a consequence

of the similar assertion of Theorem 2.1.

If c is an extremum point of the function f ′/g′, then we can assume that it is

a maximum point. In this context, for any x ∈ (a, b) we have

f ′(x)

g′(x)
6

f ′(c)

g′(c)
.

Hence g′(x) 6= 0 for any x ∈ (a, b), and we can suppose g′(x) > 0 for any x ∈ (a, b).

Then

f ′(x) 6
f(b)− f(a)

g(b)− g(a)
g′(x).

We define a function h : [a, b] → R by

h(x) = f(x)− f(a)−
f(b)− f(a)

g(b)− g(a)
(g(x) − g(a))

for any x ∈ [a, b]. It is a continuous function on [a, b], differentiable on (a, b) and

h(a) = h(b) = 0. Moreover, h′(x) 6 0 for any x ∈ (a, b). Hence, the function h is
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constant. We obtain h(x) = 0 for any x ∈ [a, b]. Now, h′(x) = 0 for any x ∈ [a, b]

and we have
f ′(x)

g′(x)
=

f(b)− f(a)

g(b)− g(a)
.

The function f ′/g′ is constant. The conclusion of all three assertions is obtained if

we choose any distinct c1, c2, . . . , cn ∈ (a, b). �

The proofs of the following theorems need some preparation. First, we prove

a useful result.

Lemma 3.1. Let p be a positive integer and let x0, x1, . . . , xp ∈ R be such that

x0 < x1 < . . . < xp. Let u : [x0, xp] → R be a continuous function on [x0, xp], p-times

differentiable on (x0, xp) such that

u(x0) = u(x1) = . . . = u(xp).

If u(p)(x) > 0 for any x ∈ (x0, xp), then the function u is constant on [x0, xp].

P r o o f. We can assume that u(x0) = 0. Let x ∈ [x0, xp] \ {x0, x1, . . . , xp}. It

suffices to prove that u(x) = 0. There exists k ∈ {1, 2, . . . , p} such that x ∈ (xk−1, xk).

We apply the Lagrange Theorem for divided differences associated with the points

x0, . . . , xk−1,x, xk+1, . . . , xp and we find c ∈ (x0, xp) such that

u[x0, . . . , xk−1, x, xk+1, . . . , xp] =
u(p)(c)

p!
.

Then

(3.1)
u(x)

(x− x0) . . . (x− xk−1)(x − xk+1) . . . (x− xp)
> 0.

Similarly, for the points x0, . . . , xk−2, x, xk, . . . , xp, we find d ∈ (x0, xp) such that

u[x0, . . . , xk−2, x, xk, . . . , xp] =
u(p)(d)

p!
.

Then

(3.2)
u(x)

(x− x0) . . . (x− xk−2)(x − xk) . . . (x− xp)
> 0.

The product of (3.1) and (3.2) gives

u2(x)

(x− x0)2 . . . (x− xk−2)2(x− xk−1)(x− xk)(x − xk+1)2 . . . (x− xp)2
> 0.

The inequality (x − xk−1)(x − xk) < 0 implies u2(x) 6 0. Then u(x) = 0 which

completes the proof. �
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P r o o f of Theorem 2.6. The Lagrange Theorem for divided differences gives us

c ∈ (a, b) such that f (p)(c) = p!f [x0, x1, . . . , xp]. The function f (p) has the Darboux

property. If c is not an extremum point of f (p), we can apply Theorem 2.1 and obtain

the conclusion.

If c is an extremum point of f (p), we can assume that it is a maximum point.

Then f (p)(x) 6 f (p)(c) for any x ∈ [a, b]. We define a function u : [a, b] → R by

u(x) =

n
∑

k=0

f(xk)

( n
∏

s=0,s6=k

x− xs

xk − xs

)

− f(x)

for any x ∈ [a, b]. It is p-times differentiable on (a, b) and

u(p)(x) = p!f [x0, x1, . . . , xp]− f (p)(x)

Then u(p)(x) > 0 for any x ∈ (a, b). Moreover, u(xk) = 0 for any k ∈ {0, 1, . . . , p}.

By using Lemma 3.1, we obtain u(x) = 0 for any x ∈ [a, b]. Then

f (p)(x) = p!f [x0, x1, . . . , xp]

for any x ∈ [a, b], so f (p) is constant. Now we obtain the conclusion if we choose any

distinct c1, c2, . . . , cn ∈ (a, b). �

We conclude our paper with the proof of Theorem 2.7. First, for any p+1 pairwise

different points x0, x1, . . . , xp ∈ R we denote

V [x0, x1, . . . , xp] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 . . . 1

x0 x1 . . . xp

. . . . . . . . . . . .

xp−1
0 xp−1

1 . . . xp−1
p

xp
0 xp

1 . . . xp
p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

the classical Vandermonde determinant. Now we have the equality:

V [x0, x1, . . . , xp] =
∏

06i<j6p

(xj − xi).

Let I ⊂ R be an interval. For any function f : I → R and for any points

x0, x1, . . . , xp ∈ I, we denote

∆f [x0, x1, x2, . . . , xp] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 . . . 1

x0 x1 . . . xp

. . . . . . . . . . . .

xp−1
0 xp−1

1 . . . xp−1
p

f(x0) f(x1) . . . f(xp)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Clearly, we have

f [x0, x1, x2, . . . , xp] =
∆f [x0, x1, . . . , xp]

V [x0, x1, . . . , xp]
.

P r o o f of Theorem 2.7. By using the Kowalewski Theorem, we find c ∈ (a, b)

such that
f [x0, x1, x2, . . . , xp]

g[x0, x1, x2, . . . , xp]
=

f (p)(c)

g(p)(c)
.

The Jarník Theorem shows that the function f (p)/g(p) has the Darboux property. If c

is not an extremum point of f (p)/g(p), we obtain the conclusion by using Theorem 2.1.

Also, we can assume that g(p)(x) > 0 (x ∈ (a, b)) and c is a maximum point. Then

(3.3)
f (p)(x)

g(p)(x)
6

f (p)(c)

g(p)(c)
, x ∈ (a, b).

We introduce a function u : [a, b] → R defined for every x ∈ [a, b] by

u(x) = ∆f [x0, x1, . . . , xp]∆g[x0, . . . , xp−1, x]−∆g[x0, x1, . . . , xp]∆f [x0, . . . , xp−1, x].

It is a continuous function on [a, b], p-times differentiable on (a, b) and u(xk) = 0 for

any k ∈ {0, 1, 2, . . . , p}. For any x ∈ (a, b) we have

u(p)(x) = ∆f [x0, x1, . . . , xp]g
(p)(x) −∆g[x0, x1, . . . , xp]f

(p)(x)

= V [x0, x1, . . . , xp](f [x0, x1, . . . , xp]g
(p)(x) − g[x0, x1, . . . , xp]f

(p)(x))

= V [x0, x1, . . . , xp](f
(p)(c)g(p)(x) − g(p)(c)f (p)(x)).

Further, x0 < x1 < . . . < xp and V [x0, x1, . . . , xp] > 0. By using (3.3), we obtain

u(p)(x) > 0. Lemma 3.1 yields u(x) = 0 for any x ∈ [a, b]. Then

f (p)(x)

g(p)(x)
=

f (p)(c)

g(p)(c)
, x ∈ (a, b).

and f (p)/g(p) is constant. Now, we obtain the conclusion if we choose any distinct

c1, c2, . . . , cn ∈ (a, b). �
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