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K Y B E R N E T I K A — V O L U M E 5 3 ( 2 0 1 7 ) , N U M B E R 1 , P A G E S 1 – 2 5

INSTRUMENTAL WEIGHTED VARIABLES
UNDER HETEROSCEDASTICITY
PART I – CONSISTENCY

Jan Ámos V́ı̌sek

The proof of consistency instrumental weighted variables, the robust version of the classical
instrumental variables is given. It is proved that all solutions of the corresponding normal
equations are contained, with high probability, in a ball, the radius of which can be selected –
asymptotically – arbitrarily small. Then also

√
n-consistency is proved. An extended numerical

study (the Part II of the paper) offers a picture of behavior of the estimator for finite samples
under various types and levels of contamination as well as various extent of heteroscedasticity.
The estimator in question is compared with two other estimators of the type of “robust instru-
mental variables” and the results indicate that our estimator gives comparatively good results
and for some situations it is better.

The discussion on a way of selecting the weights is also offered. The conclusions show the
resemblance of our estimator with the M -estimator with Hampel’s ψ-function. The difference
is that our estimator does not need the studentization of residuals (which is not a simple task)
to be scale- and regression-equivariant while the M -estimator does. So the paper demonstrates
that we can directly compute – moreover by a quick algorithm (reliable and reasonably quick
even for tens of thousands of observations) - the scale- and the regression-equivariant estimate
of regression coefficients.

Keywords: weighting order statistics of the squared residuals, consistency of the instru-
mental weighted variables, heteroscedasticity of disturbances, numerical study

Classification: 62J02, 62F35

1. INTRODUCTION OF BASIC FRAMEWORK

We are going to start with usual framework. Let N denote the set of all positive integers,
R the real line and Rp the p-dimensional Euclidean space. We assume that all random
variables (r.v.’s) are defined on a basic probability space (Ω,A, P ). The linear regression
model

Yi = X
′

iβ
0 + ei =

p∑
j=1

Xijβ
0
j + ei, i = 1, 2, . . . , n (1)
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will be considered (all vectors throughout the paper will be assumed to be the column
ones)1. We will need also the matrix form of the model

Y = Xβ0 + e (2)

where Y = (Y1, Y2, . . . , Yn)′, X = (X1, X2, . . . , Xn)′ and e = (e1, e2, . . . , en)′. We shall
further assume that:

Conditions C1. The sequence
{

(X ′i, ei)
′}∞
i=1

is sequence of independent (p + 1)-
dimensional random variables (r.v.’s) distributed according to distribution functions
(d. f.) FX,ei(x, r) = FX,e(x, rσ−1

i ) where FX,e(x, r) is a parent d. f. and σ2
i = var (ei).

Further, IEei = 0 and

0 < lim inf
i→∞

σi ≤ lim sup
i→∞

σi <∞.

Denote Fe|X(r|X1 = x) the conditional d.f. corresponding to the parent d.f. FX,e(x, r).
Then, for all x ∈ Rp Fe|X(r|X1 = x) is absolutely continuous with density fe|X(r|X1 =
x) bounded by Ue (which does not depend on x).

Remark 1.1. The assumption that the d.f. Fe|X(r|X1 = x) is continuous is not
only technical assumption. Without the (bounded) density, we should assume that
Fe|X(r|X1 = x) is Lipschitz and it would bring a more complicated form of all what
follows. The absolute continuity is then a technical assumption.

In what follows FX(x) and Fe(r) will denote the corresponding marginal d. f.’s of the
parent d. f. FX,e(x, r). Then, assuming that e is a “parent” r. v. distributed according
to parent d. f. Fe(r), we have, e. g., Fei(r) = P (ei < r) = P (σi · e < r) = P (e <
σ−1
i · r) = Fe(σ−1

i · r), etc. . Conditions C1 imply that the marginal d. f. FX(x) does not
depend on i, the sequence {Xi}∞i=1 is sequence of independent and identically distributed
(i.i.d.) r.v.’s. Finally, let us recall that the ordinary least squares (OLS) are – when
processing economic (and other social sciences) data – more and more substituted by
instrumental variables just due to the fact that we meet more and more with situations
when disturbances are correlated with explanatory variables. Then, however, it is nearly
straightforward to assume that (at least) the variances of the individual disturbances
depend on explanatory variables, i. e. we can expect the heteroscedasticity2.

Remark 1.2. Let us realize that under Conditions C1 there are s ∈ R and S ∈ R
so that for any i ∈ N we have 0 < s ≤ σi ≤ S < ∞. Further, Fei|X(r|Xi = x) =
Fe|X(σ−1

i r|X1 = x) and fei|X(r|Xi = x) = σ−1 · fe|X(σ−1
i r|X1 = x) ≤ s−1 · Ue.

1When we assume the regression model with intercept, we have Xi1 = 1 for all i. In some papers
the intercept is given in the notation explicitly, to stress that it plays – mostly from the application
point of view but sometimes also from the theoretical one – a special role. We will not need to stress it
except in one discussion on assumptions given below.

2The last sentence is not to be understood as a “justification” for studying the behavior of robustified
versions of instrumental variables under heteroscedasticity because the results of such a study have only
a limited direct importance for practical applications (as already Fisher’s results [19] indicated and
Mizon’s example [42] recalled and stressed with even higher power) but it does be a justification from
the point of view of famous Halmos’ paper [24], i. e. it has an indirect consequence for applications, see
also a discussion below.
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Remark 1.3. The problems, resulting from ignoring the heteroscedasticity, were recog-
nized very early, see e. g. [14, 15] or [27]. It is known that the efficient estimator (under
the normality of disturbances) is β̂(GLS,n) =

(∑n
i=1 σ

−2
i XiX

′
i

)−1∑n
i=1 σ

−2
i XiYi but the

unknown σi’s do not allow to employ it. The asymptotic efficiency can be reached uti-
lizing estimators of individual variances (see e. g. [47, 49] or [75]). An estimator of
covariance matrix resistant to heteroscedasticity was established in [74]. It opens way
for proper studentization of the coordinates of β̂(OLS,n) but we can compute the cor-
responding p-values only approximately because the studentized estimators have only
approximately t-distribution, see e. g. [20, pp. 96–97] or [48]3.

2. INSTRUMENTAL VARIABLES AS ALTERNATIVE TO THE ORDINARY LEAST
SQUARES

When the orthogonality condition IE {ei|Xi = x} = 0 is broken, the ordinary least
squares are not consistent (see (10) below where substitute X instead of Z). The best
known example of such a situation is the model assuming that the explanatory variables
are measured with random error (sometimes the model is called error-in-variables model
– compare [31] and [55]) – for further discussion see [66]. A possibility how to solve
the problem is to employ the orthogonal regression (sometimes also called the total least
squares), see e. g. [43] or [55]. This approach is usually considered in natural sciences.
The econometricians offer another remedy in the form of the method of instrumental
variables. We can meet with various definitions. The first one, probably the most
frequently given, copes with the situation by modifying the orthogonality condition.

Definition 2.1. For any sequence of p-dimensional random vectors {Zi}∞i=1 the solu-
tion(s) of the equation

n∑
i=1

Zi

(
Yi −X

′

iβ
)

= Z ′ (Y −Xβ) = 0 (3)

will be called the estimator obtained by means of the method of instrumental variables
(or instrumental variables, for short) and denoted by β̂(IV,n).

Notice that (3) is an analogy of the classical normal equations
n∑
i=1

Xi

(
Yi −X

′

iβ
)

= X ′ (Y −Xβ) = 0. (4)

Generally the dimensionality of Zi’s can be q 6= p. If q < p, (3) implies immediately the
underidentification of model, see [22] or [76] (for the case q > p see discussion below).

The classical regression adopts the assumption (more or less technical one) that the

3Of course, the previous remark has to be again understood in the sense of already mentioned papers
[19, 42] and [24]. In other words, the theoretical results have for the applications mostly a “vicarious”
importance of keeping sound mathematical traditions in proposing a new method (and there is no
substitute for it) but really reliable information about its behavior can be found (only) by well designed
numerical study.
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matrix Z ′X is regular (for discussion see e. g. [22, 33, 75] or [76], and also Remark 2.6
below). Then it follows from (3) that

β̂(IV,n) = (Z ′X)−1
Z ′Y. (5)

The instrumental variable can be introduced also in an alternative way – over an extremal
problem, see e. g. [10, 31] or [33].

Definition 2.2. Let D be a positive definite, symmetric matrix and put

β̂(IV,n) = arg min
β∈Rp

(Y −Xβ)′ ZDZ ′ (Y −Xβ) . (6)

Remark 2.3. Definition 2.2 allows for q > p. Moreover, assuming that Z has full rank
and considering instead of Z the matrix Z̃ = Z(Z ′Z)−1Z ′X, we can show that solution
of (6) coincides formally with (5), see [31]. Recently the situation when we have a large
number of instruments was considered and a plausible solution can be established by
borrowing an idea from the partial least squares, see e.,g. [28] and [29].

We can meet also with definition utilizing (in fact) two stage least squares, see again
[10] or [31].

Definition 2.4. Let q ≥ p and Z be of full rank and put PZ = Z(Z ′Z)−1Z ′. Then
define

β̂(IV,n) = arg min
β∈Rp

(X ′PZX)−1
X ′PZY. (7)

Remark 2.5. Plugging Z(Z ′Z)−1Z ′ instead of PZ in (7), we again easy demonstrate
that the solution of (7) formally coincides with (5). Definition 2.4 says that β̂(IV,n) uses
the endogenous part of X. Finally, we can consider the transformed data Ỹ = PZ · Y
and X̃ = PZ ·X and employ the fact that PZ is idempotent. Then (7) reads

β̂(IV,n) = arg min
β∈Rp

(
X̃ ′X̃

)−1

X̃ ′Ỹ . (8)

It says that β̂(IV,n) can be considered to be the Ordinary Least Squares estimator for
appropriately transformed data4. By the way, it also says that Z can be selected so that
Z ′X is positive definite with preserving the values of β̂(IV,n). In other words, it shows
that without a loss of generality we can assume that (see also (12) in [10])

Xi = Π · Zi + η · ei + ξi (9)

where Π (matrix of type (p × q)) has full rank, η ∈ Rp, Zi, ei and ξi are mutually
independent. In the ideal case we would be able to find such an instrument Zi that it
represents the whole exogenous information in Xi, i. e. we decompose Xi so that ξi ≡ 0.
In fact, it hints how the various ways of defining the instrumental variables have the
same roots (for details see [10] and references given there). Finally, it shows that without
a significant restriction of generality we can assume that q = p.

4This explain why this approach is called – two stage least squares.
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Remark 2.6. The classical theory (for simplicity) assumes that {Zi}∞i=1 is a sequence of
independent and identically distributed random variables, which are not correlated with
the sequence of disturbances {ei}∞i=1 (to simplify the notation in the next discussion, let
us assume for a while the homoscedasticity of disturbances). Substituting (2) into (5),
we obtain

β̂(IV,n) =
(

1
n
Z ′X

)−1 1
n
Z ′(Xβ0 + e) = β0 +

(
1
n
Z ′X

)−1 1
n
Z ′e. (10)

It implies that if the orthogonality condition IE (Z1e1) = 0 holds, β̂(IV,n) is unbiased and
consistent, provided the matrix IE (Z1X

′
1) is regular.

Remark 2.7. Having assumed again the homoscedasticity and IE (Z1e1) = 0, then
substituting (2) into (3) and finally computing the mean value of respective expres-
sion (remember that the sequences {Zi}∞i=1 and {Xi}∞i=1 are sequences of identically
distributed r. v.’s), we obtain

IE
{
Z1

[
e1 −X ′1

(
β − β0

)]}
= 0 (11)

which implies that
IE {Z1X

′
1}
(
β − β0

)
= 0. (12)

If IEZ1X
′
1 is positive definite (see (8)), (12) holds iff(

β − β0
)′
IE {Z1X

′
1}
(
β − β0

)
= 0 (13)

and it is equivalent to (
β − β0

)′
IE
{
Z1

[
e1 −X ′1

(
β − β0

)]}
= 0 (14)

(remeber that we assume that the orthogonality condition IE (Z1e1) = 0 holds). Notice
that – due to the fact that the orthogonality condition does not contain β, it holds
uniformly with respect to β ∈ Rp. When we robustify the classical methods we need
some uniformity in this conditions, see e. g. [9, 10, 39] or (32) below.

There is a lot of papers discussing the heuristic reasons for defining the instrumental
variables, the possibilities how to select the instruments and the problem of the imple-
mentation – for many references see [66]. But there was only a limited number of papers
trying to robustify the method, see e. g. [1, 9, 10, 11, 34, 35, 36, 38, 39, 40, 50, 73]
or [57] (and the references given there5). Moreover, even these papers, including [66],
consider the situation when the disturbances are homoscedastic, except of [7] where the
idea of the generalized method of moments (GMM) is employed, see [26]. Due to the
fact that GMM does not need to specify the underlying d. f., the method covers also
the heteroscedasticity – in a latent way because GMM is in fact studied in the i. i. d.
framework. So, although [7] does not address directly (in formalism) the heteroscedas-
ticity, it is a way how to cope with it. On the other hand, as the heteroscedasticity
is not implemented in the model, it is not explicitly treated which could (and in fact

5By the way, in [10] one can find a brief list of the previous attempts of robustification of the instru-
mental variables. The spirit of paper then says why the authors gave preference to the robustification
based on S-estimator, i. e. the reason why the smooth depression of the influence of suspicious points
seems to be preferable way.
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does) result in a bad efficiency of GMM, see e. g. Table 2 in [7]. Let’s recall that the
heteroscedasticity does not prevent the unbiasedness and the consistency of β̂(OLS,n).
However it is problem for its efficiency – for a discussion how to treat the problem – e. g.
by estimating a model for heteroscedasticity – see [76].

The problem may be also with the zero-one objective function (employed in [7]), i. e.
with trimming the observations. It implies (nearly) inevitably an instability of estimator
with respect to inliers, even for estimators with moderate level of robustness, see [30]
and also [56]. The problem of (possible) implausible effect of trimming away some points
has its roots in the fact that it classifies – a bit omnipotently – the observations either
as “clean” or as “contaminated” and then a small shift of an “inlier” can change its clas-
sification from “clean” to “contaminated” (or vice versa). Finally, it implies a switch of
the estimate of model, see again [30] and [56]. So, it seems that the smooth depression
of the influential observations may be preferable. We will return to the problem below.

The (technical) problems which the allowance of heteroscedasticity implies, one can learn
by comparing the papers [61] and [69]. Nevertheless, much better insight into the prob-
lem we obtain when we compare the papers [65] and [71]. Both papers generalize the
Kolmogorov–Smirnov result for the regression scheme. The former under homoscedas-
ticity of disturbances, the latter under the heteroscedasticity, see Lemma 6.7 of this
paper. The proof of former result mimics the steps of Kolmogorov’s proof, see [48] or
[13], verifying that they can be done in the regression framework. The proof of the lat-
ter result however requires the application of the Skorohod embedding into the Wiener
process, see [46] or [32]. That is why it is long and technically complicated. The same
unfortunately holds for some proofs from the present paper and [66].

The shape of the normal equations (3) defining β̂(IV,n) (as being of the same shape as
the shape of normal equations for β̂(OLS,n)) indicates that β̂(IV,n) is not robust with
respect to the outliers and/or leverage points. So a robustified version of β̂(IV,n) is to
be employed when the orthogonality condition is broken and simultaneously there is a
suspicion of a contamination of data. An inspiration for one possible way how to do it
may be taken from the normal equations for the least weighted squares β̂(LWS,n,w) (see
[59]) which are robustified version of the β̂(OLS,n). So, let us briefly recall it.

3. ROBUSTIFYING THE INSTRUMENTAL VARIABLES

In what follows, for any β ∈ Rp define the ith residual as ri(β) = Yi − X
′

iβ and by
r2
(h)(β) denote the hth order statistic among the squared residuals, i. e. we have

r2
(1)(β) ≤ r2

(2)(β) ≤ · · · ≤ r2
(n)(β). (15)

Rather general way how to robustify the ordinary least squares is to weight down the
residuals of observations which seem to be suspicious. Nevertheless, it is known that
when the weighting is done according to an external rule (typically based on some
diagnostics of data), it need not be (and usually it doesn’t be) optimal. Hence it is
better to let the method itself to assign the weights “implicitly”, in other words, to
assign the weights to the order statistics of the squared residuals rather than directly to
the squared residuals.
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Definition 3.1. Let w : [0, 1] → [0, 1] be a weight function. Then the solution of the
extremal problem

β̂(LWS,n,w) = arg min
β∈Rp

n∑
j=1

w

(
j − 1
n

)
r2
(j)(β) (16)

will be called the least weighted squares, ([59], see also [60] and [61]).

Notice please that the least median of squares β̂(LMS,n,h) (see [51]), the least trimmed
squares β̂(LTS,n,h) (see [25]6) and the ordinary least squares β̂(OLS,n) are special cases of
the least weighted squares. Moreover, the possibility to accommodate the shape of the
weight function w to the level and to the character of contamination7 guarantee that
β̂(LWS,n,w) can adapt to various situations, i. e. to various level and/or characters of
contamination. The trimming of observations can (more or less) cope with the level of
contamination employing the forward search, see [2]. But it cannot accommodate to
the character of contamination. The problem was in details discussed on the Workshop
on algorithm for outliers/regressors selection, see [72]. After all, we shall demonstrate
it in Part II of paper in the promised numerical study. Moreover, β̂(LWS,n,w) can be
easier used for panel data processing, easier than β̂(LMS,n,h) and β̂(LTS,n,h), see [5]. Last
but not least, β̂(LWS,n,w) is, similarly as β̂(OLS,n), β̂(LMS,n,h) and β̂(LTS,n,h), scale- and
regression-equivariant.

Conditions C2. Weight function w : [0, 1] → [0, 1] is absolutely continuous and
nonincreasing, with the derivative w′(α) bounded from below by −L (L > 0), w(0) = 1.

Remark 3.2. In the simulations, results of which are presented in Part II, the weight
function, borrowing the shape from the famous Tukey ρ-function, was used – see Figure 1
in Part II.

We will study scale- and regression-equivariant estimators and hence without loss of
generality, we may assume in what follows in theoretical considerations that β0 = 0.
Then ri(β) = ei −X

′

iβ.

Due to presence of order statistics in Definition 3.1, (16) is not convenient for proving
consistency. That is why, following [23] for any i ∈ {1, 2, . . . , n} and any β ∈ Rp let us
define the rank of the ith residual as

π(β, i) = j ∈ {1, 2, . . . , n} ⇔ r2
i (β) = r2

(j)(β). (17)

Then we have

β̂(LWS,n,w) = arg min
β∈Rp

n∑
i=1

w

(
π(β, i)− 1

n

)
r2
i (β). (18)

6Although it became common to give this reference on β̂(LTS,n,h), β̂(LTS,n,h) was proposed in fact
nearly simultaneously with β̂(LMS,n,h), prior to the S-etimator β̂(S,n,ρ), see [53].

7Of course, not to all characters, otherwise it would not be a scientific method, see [45].
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Now, denoting the indicator of a set A by I {A}, for any β ∈ Rp the empirical distribution
function (e. d. f.) of the absolute value of residual will be considered in the form

F
(n)
β (r) =

1
n

n∑
j=1

I {|rj(β)| < r} =
1
n

n∑
j=1

I
{
|ej −X

′

jβ| < r
}
. (19)

Then, it is only a technicality to show that

π(β, i)− 1
n

= F
(n)
β (|ri(β)|) (20)

(the fact that π(β, i)− 1 stays in the numerator of fraction in (20) – not π(β, i) – is due
to the sharp inequality in (19)) and hence β̂(LWS,n,h) can be finally given as

β̂(LWS,n,w) = arg min
β∈Rp

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
r2
i (β). (21)

It may seem, at the first glance, strange to consider e. d. f. when the observations are
not identically distributed. However, as Lemma 6.7 shows the e. d. f. F

(n)
β (r) can be

uniformly in r ∈ R, uniformly in β ∈ Rp and even uniformly in σ2 ∈ R+ approximated
by the “mean” d. f.

F n,β(v) =
1
n

n∑
i=1

Fi,β(v) (22)

where (remember that ei’s have different variances σ2
i )

Fi,β(r) = P (|Yi −X ′iβ| < r) = P (|ei −X ′iβ| < r) . (23)

It is nearly straightforward that the solution of the extremal problem (21) is one of
solutions of the normal equations

INE
(LWS)
Y,X,n (β) =

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
Xi

(
Yi −X

′

iβ
)

= 0. (24)

Remark 3.3. Notice that the robustification of β̂(OLS,n) was achieved by including
w
(
F

(n)
β (|ri(β)|)

)
into the normal equations (4), see (24). It gives immediately an in-

spiration how to robustify the classical instrumental variables (3). It simultaneously
explains why we needed the similar modifications of the orthogonality condition and of
the assumption that IE [X1 ·X ′1] is positive definite, e. g. including into the correspond-
ing condition also w

(
F

(n)
β (|ri(β)|)

)
.

Definition 3.4. For any sequence of p-dimensional random vectors {Zi}∞i=1 the solu-
tion(s) of the equation

INE
(IWV )
Y,X,Z,n(β) =

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
Zi

(
Yi −X

′

iβ
)

= 0 (25)

will be called the estimator obtained by means of the method of instrumental weighted
variables (or instrumental weighted variables, for short) and denoted by β̂(IWV,n,w), see
[63, 64].
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4. CONSISTENCY OF THE INSTRUMENTAL WEIGHTED VARIABLES

In what follows we shall denote the joint d. f. of explanatory variables and of instru-
mental variables by FX,Z(x, z) and of course the marginal d. f.’s by FX(x) and FZ(z).
We will need also the following notation. For any β ∈ Rp the distribution of the product
β
′
ZX

′
β will be denoted Fβ′ZX′β(u), i. e.

Fβ′ZX′β(u) = P (β
′
Z1X

′

1β < u) (26)

and similarly as in (19), the corresponding empirical d. f. will be denoted F
(n)

β′ZX′β
(u),

so that
F

(n)

β′ZX′β
(u) =

1
n

n∑
j=1

I
{
β
′
ZjX

′

jβ < u
}
. (27)

For any λ ∈ R+ and any a ∈ R put

γλ,a = sup
‖β‖=λ

Fβ′ZX′β(a). (28)

Notice please that due to the fact that the surface of ball {β ∈ Rp, ‖β‖ = λ} is compact
and taking into account Conditions C3 (below), there is βλ ∈ {β ∈ Rp, ‖β‖ = λ} so that

γλ,a = Fβ′λZX
′βλ

(a). (29)

For any λ ∈ R+ let us denote

τλ = − inf
‖β‖≤λ

β
′
IE
[
Z1X

′

1 · I{β
′
Z1X

′

1β < 0}
]
β. (30)

Notice also that due to the indicator I{β′Z1X
′

1β < 0} in (30) we have τλ ≥ 0 and that
again due to the fact that the ball {β ∈ Rp, ‖β‖ ≤ λ} is compact, the infimum is finite,
since there is a β̃ ∈ {β ∈ Rp, ‖β‖ ≤ λ} so that

τλ = −β̃
′
IE
[
Z1X

′

1 · I{β̃
′
Z1X

′

1β̃ < 0}
]
β̃. (31)

Conditions C3. The instrumental variables {Zi}∞i=1 are independent and identically
distributed with distribution function FZ(z). Further, the joint distribution function
FX,Z(x, z) is absolutely continuous with a density fX,Z(x, z) bounded by UZX < ∞.
Further for any n ∈ N we have IE

∑n
i=1

{
w(Fβ0(|ei|)) · ei · Zi

}
= 0 and the matrices

IEZ1Z
′

1 as well as IE
∑n
i=1

{
w(Fβ0(|ei|))ZiX

′

i

}
are positive definite. Moreover, there is

q > 1 so that IE {‖Z1‖ · ‖X1‖}q < ∞. Finally, there is a > 0, b ∈ (0, 1) and λ > 0 so
that

a · (b− γλ,a) · w(b) > τλ (32)

for γλ,a and τλ given by (28) and (30).

Remark 4.1. As IE
∑n
i=1

{
w(Fβ0(|ei|)) · ei · Zi

}
=
∑n
i=1 IE

{
w(Fβ0(|ei|)) · ei

}
· IEZi,

we have IE
∑n
i=1

{
w(Fβ0(|ei|)) · ei · Zi

}
= 0 if e (the “parent” r. v., see text below Re-

mark 1.1) is symmetrically distributed and its mean value exists – just due to symmetry
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of w(Fβ0(|v|)) in v. The condition (32) “regulates” the mutual relations between Xi’s
and Zi’s. We have discussed it in Remark 2.6. The condition seems to be easier directly
verifiable from data than (11) or (12). But it contains γλ,a and τλ so that we have to
rely also on some empirically obtained estimates of them. It may be also of interest
to compare Conditions C3 with the conditions in [57] where we considered instrumental
M -estimators and the discussion of assumptions for M -instrumental variables was given.

Lemma 4.2. Let Conditions C1 , C2 and C3 be fulfilled. Then for any ε > 0 there is
ζ > 0 and δ > 0 such that

P

({
ω ∈ Ω : inf

‖β‖≥ζ
− 1
n
β
′
INEY,X,Z,n(β) > δ

})
> 1− ε

(for INEY,X,Z,n(β) see (25)). In other words, any sequence
{
β̂(IWV,n,w)

}∞
n=1

of the

solutions of the sequence of normal equations INEY,X,Z,n(β̂(IWV,n,w)) = 0 is bounded in
probability.

The p r o o f is formally nearly the same as the proof of Lemma 1 in [66]. The allowance
for the heteroscedasticity of disturbances requires some formally straightforward modi-
fications8. �

Lemma 4.3. Let Conditions C1, C2 and C3 be fulfilled. Then for any ε > 0, δ ∈ (0, 1)
and ζ > 0 there is nε,δ,ζ ∈ N so that for any n > nε,δ,ζ we have

P

({
ω ∈ Ω : sup

‖β‖≤ζ

∣∣∣∣∣ 1
n

n∑
i=1

{
w
(
F

(n)
β (|ri(β)|)

)
β
′
Zi

(
ei −X

′

iβ
)

−β
′
IE
[
w
(
F n,β(|ri(β)|)

)
Zi

(
ei −X

′

iβ
)]} ∣∣∣∣∣ < δ

})
> 1−ε

(for F n,β(.) see (22) ).

The p r o o f has formally similar structure as the proof of Lemma 2 in [66]. It is a bit
more complicated because again instead of employing a limiting distribution we need
to estimate differences of empirical d. f. from a sequence of the arithmetic means of
underlying d. f.’s {F n,β(v)}∞n=1, see (22). �

As we already recalled, see the end of Remark 2.6, the classical regression analysis ac-
cepted (under the framework of homoscedasticity of disturbances – hence the assumption
is sufficient to make about one observation) the orthogonality condition IE {e1Z1} = 0

8The fact that the modifications are relatively simple and straightforward is due to the fact that the
complicated steps were made in [71] but the background of proof is different from the proof in [66]. The
approximation of empirical d. f. is not by the underlying d. f. as the limit of the empirical d. f.’s but
we employ the knowledge about convergence of the difference of the empirical d. f.’s and the arithmetic
mean of the d. f. of individual disturbances.
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and the assumption that IE
{
Z1X

′

1

}
is a regular matrix9 (see e. g. [4], [31, 76] or [75])

to be able to prove consistency of β̂(IV,n). We have discussed it in Remark 2.6. So one
way can be to modify (11) and/or (12) as follows:

Conditions C4. For any n ∈ N the equation

β′
n∑
i=1

IE
[
w
(
F n,β(|ri(β)

)
Zi

(
ei −X

′

iβ
)]

= 0 (33)

in the variable β ∈ Rp has unique solution at β = 0, i. e. at β = β0.

An alternative way would be to give conditions on the weight function and on the
distributions of disturbances, of explanatory variables and of instruments which would
imply uniqueness of solution of (33). We could take an inspiration from [10, 37] and
mainly from [39] (because the roots of both [10] and [37] go back to [39]). We can learn
that the conditions are assumed to be valid uniformly in (or independently of) β and
then Remarks 2.6 and 3.3 indicate that they can read IE[w(F n,β(|ri(β)|)) · Zi · ei] = 0

together with the assumption that IE[w(F n,β(|ri(β)|)) · Zi · X ′i] is positive definite for
all β from some compact subset of Rp containing β0.

It is clear that the last two conditions implies (33). We can however give less intuitive
(and less “straightforward”) conditions which leads to (33), see [9].

Conditions C4′ The distributions FZ , Fe and Fξ are elliptically symmetric around
the zero and the corresponding mean values and the covariance matrices IEZ1Z

′
1 and

IEξ1ξ
′
1 exist. Further, IEZ1Z

′
1 is regular. Finally, (9) holds with Π of the full rank (for

simplicity assume that q = p).

Remark 4.4. It is clear that in the framework, we have used throughout the paper,
the Conditions C4′ cannot be fulfilled if the intercept is present. In such a case the
Conditions C1 have to be given in a bit modified way:
The sequence {(V ′i , ei)′}

∞
i=1 is sequence of independent p-dimensional random variables

distributed according to the distribution functions (d. f.) FV,ei(v, r) = FV,e(v, σi ·r), i ∈
N where FV,e(v, r) is a parent d. f., IEV1 = 0, the covariance matrix IE {V1V

′
1} is regular

and σ2
i = var (ei|Vi) with 0 < σ2

i < K < ∞. . . . Finally, consider the sequence
{(X ′i, ei)′}

∞
i=1 where Xi1 = 1 and Xij = Vi,j−1, j = 2, 3, . . . , p for all i ∈ N . This

sequence will be considered as the sequence of explanatory variables and of disturbances,
see e. g. [68]. It is nearly straightforward that the proofs in the previous text can be
carry out in this framework but they would be formally a bit more complicated, see
again [68].

9It means that Z is of full rank and then IE
n
Z1X

′
1

o
= IEX̃′

1X̃1, i. e. IE
n
Z1X

′
1

o
is positive definite,

see Remark 2.5.
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Remark 4.5. The assumption that Fe is symmetric is widely used, especially in the
regression framework10. The assumption on symmetry of explanatory variables and of
the instruments is not so frequent but in fact from the theoretical point of view it is not
substantially limiting the generality. When we are going to study the behavior of an
estimator we can assume that prior to performing the considerations we can transform
the data. Moreover, there are even studies hinting that the “spirit of statistics” implicitly
assumes symmetry (while it is hidden by some latent transformation of “underlying raw
data”), see e. g. [16] or [17]. For some further discussion on the assumption of elliptical
symmetry see [11, 12, 39] and others, in fact it goes back (at least) to [3]. Already [25]
or [52] hinted that the assumption can be relax at the cost of an increase intricacy of
proofs.

Assertion 4.6. Let Conditions C1 and C4′ hold. Then for any β ∈ Rp we have for all
i ∈ N

IE
[
w
(
F n,β(|ri(β)|)

)
· Zi · ei

]
= 0 (34)

and

IE

[
w
(
F n,β(|ri(β)|)

)
· Zi ·X ′i

]
(35)

is positive definite. Consequently, (33) holds.

P r o o f . Writing

ri(β) = ei −Xiβ = ei − (Π · Zi + η · ei + ξi)β

(see (9)) and recalling that the joint distribution FZ,e,ξ is the product of the marginals,
we can calculate the corresponding integrals. We have

IE
[
w
(
F n,β(|ri(β)|)

)
· Zi · ei

]
=
∫ {∫ [

w
(
F n,β(|v − (Π · z + η · v + t)′ β|)

)]
dFξ(t)

}
z · v · dFZ(z) · dFe(v).

Then due to the fact that the argument of F n,β is an absolute value of the expression
v − (Π · z + η · v + t)′ β and due to the symmetry of Fξ,

Hβ(z, v) =
∫ [

w
(
F n,β(|v − (Π · z + η · v + t)′ β|)

)]
dFξ(t)

is symmetric in z and v and moreover Hβ(z, v) ∈ [0, 1]. From Conditions C4′ we have
IEZ1 = 0 and IEei = 0 and since the function Hβ(z, v) weights down z and v symmet-
rically, we conclude the proof of (34). Nearly the same arguments can be used to verify
(35). �

10One of very first employment was probably in [21] but see also [3, 31] or [33], and all after also [10].
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Theorem 4.7. Let Conditions C1, C2, C3 and C4 or C4′ be fulfilled. Then any sequence{
β̂(IWV,n,w)

}∞
n=1

of the solutions of normal equations (25) INE(IWV )
Y,X,Z,n(β) = 0 is weakly

consistent.

P r o o f . To prove the consistency of {β̂(IWV,n,w)}∞n=1, we have to show that for any
ε > 0 and δ > 0 there is nε,δ ∈ N such that for all n > nε,δ

P
({
ω ∈ Ω :

∥∥∥β̂(IWV,n,w) − β0
∥∥∥ < δ

})
> 1− ε. (36)

So fix ε1 > 0 and δ1 > 0. According to Lemma 4.2 there are δ1 > 0 and θ1 > 0 so that
for ε1 there is nδ1,ε1 ∈ N so that for any n > nδ1,ε1

P

({
ω ∈ Ω : inf

‖β‖≥θ1
− 1
n
β
′
INEY,X,Z,n(β) > δ1

})
> 1− ε1

2

(denote the corresponding set by Bn). It means that for all n > nδ1,ε1 all solutions of
the normal equations INEY,X,Z,n(β) = 0 are inside the ball B(0, θ1) with probability at
least 1 − ε1

2 . If θ1 ≤ δ, we have finished the proof. Generally of course we can have
θ1 > δ.
Then, utilizing Lemma 4.3 we may find for ε1, δ = min{ θ12 , δ1} and θ1 such nε1,δ,θ1 ∈
N , nε1,δ,θ1 ≥ nδ1,ε1 so that for any n > nε1,δ,θ1 there is a set Cn (with P (Cn) > 1 − ε

2 )
such that for any ω ∈ Cn

sup
‖β‖≤θ1

∣∣∣∣∣ 1n
n∑
i=1

{
w
(
F

(n)
β (|ri(β)|)

)
β
′
Zi

(
ei −X

′

iβ
)

−β
′
IE
[
w (Fβ(|ri(β)|))Zi

(
ei −X

′

iβ
)]} ∣∣∣∣∣ < δ.

But it means that

inf
‖β‖=θ1

{
−β

′ 1
n

n∑
i=1

IE
[
w (Fβ(|ri(β)|))Zi

(
ei −X

′

iβ
)]}

>
δ1
2
> 0. (37)

Further consider the compact set C = {β ∈ Rp : δ1 ≤ ‖β‖ ≤ θ1} and find

τC = inf
β∈C

{
−β

′ 1
n

n∑
i=1

IE
[
w (Fβ(|ri(β)|))Zi

(
ei −X

′

iβ
)]}

. (38)

Then there is a {βk}∞k=1 such that

lim
k→∞

β
′

k

1
n

n∑
i=1

IE
[
w (Fβk(|ri(βk)|))Zi

(
ei −X

′

iβk

)]
= −τC .

On the other hand, due to compactness of C there is a β∗ and a subsequence
{
βkj
}∞
j=1

such that
lim
j→∞

βkj = β∗
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and due to the uniform continuity (uniform in i ∈ N and β ∈ C) of β
′
IE [w (Fβ(|ri(β)|))×

×Zi
(
ei −X

′

iβ
)]

(see Lemma 6.16) we have

− [β∗]′
1
n

n∑
i=1

IE
[
w (Fβ∗(|ri(β∗)|))Zi

(
ei −X

′

iβ
∗
)]

= τC . (39)

Employing once again the uniform continuity (uniform in i ∈ N and β ∈ C) of
β
′
IE
[
w (Fβ(|ri(β)|))Zi

(
ei −X

′

1β
)]

together with Condition C4 and (37) we find that
τC > 0, otherwise there has to be a solution of (33) inside the compact C which does
not contain β = 0.

Now, utilizing Lemma 4.3 once again we may find for ε1, δ1, θ1 and τC nε1,δ1,θ1,τC ∈
N , nε1,δ1,θ1,τC ≥ nε1,δ,θ1 so that for any n > nε1,δ1,θ1,τC there is a set Dn (with P (Dn) >
1− ε

2 ) such that for any ω ∈ Dn

sup
‖β‖≤θ1

∣∣∣∣∣ 1n
n∑
i=1

{
w
(
F

(n)
β (|ri(β)|)

)
β
′
Zi

(
ei −X

′

iβ
)

−β
′
IE
[
w (Fβ(|ri(β)|))Zi

(
ei −X

′

iβ
)]} ∣∣∣∣∣ < τC

2
. (40)

But (38) and (40) imply that for any n > nε1,δ1,θ1,τC and any ω ∈ Bn ∩Dn we have

inf
‖β‖>δ1

− 1
n
β
′
INEY,X,Z,n(β) >

τC
2
. (41)

Of course, P (Bn ∩Dn) > 1 − ε1. But it means that all solutions of normal equations
(33) are inside the ball of radius δ1 with probability at least 1− ε1, i. e. in other words,
β̂(IWV,n,w) is weakly consistent. �

We will need to enlarge the previous conditions.

Conditions NC1. The derivative f ′e(r) exists and is bounded in absolute value by Be.
The derivative w′(α) exists and is Lipschitz of the first order (with the corresponding

constant Jw). Moreover, for any i ∈ N IE[w′(F n,β0(|ei|))(fe(|ei|) − fe(−|ei|)) · ei] =
0. Finally, for any `, k, j = 1, 2, . . . , p IE |V1` · V1k · V1j | < ∞ where for V1s can be
substituted either X1s or Z1s and the mean value is bounded for any combination of
X’s and Z’s.

Theorem 4.8. Let the conditions C1, C2, C3, C4 (or C4′) and NC1 hold. Then any

sequence
{
β̂(IWV,n,w)

}∞
n=1

of solutions of normal equations (25) INE(IWV )
Y,X,Z,n(β) = 0 is

√
n-consistent, i. e.

∀(K > 0) ∃(nK ∈ N ) ∀(n > nK)
√
n
∥∥∥β̂(IWV,n,w) − β0

∥∥∥ < K.
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P r o o f . Recalling that β̂(IWV,n,w) solves the normal equations (25), we obtain (we will
write it in a “traditional” form with β0 although we have assumed that β0 = 0)

1√
n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
Ziei

=
1
n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
ZiX

′
i ·
√
n
(
β̂(IWV,n,w) − β0

)
. (42)

Now, taking into account that the weight function w is Lipschitz and Lemma 6.7, we
find that

1√
n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
Ziei =

1√
n

n∑
i=1

w
(
F n,β(|ri(β)|)

)
Ziei +R(1)

n (β,X,Z, e)

and 1
n

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
ZiX

′
i =

1
n

n∑
i=1

w
(
F n,β(|ri(β)|)

)
ZiX

′
i +R(2)

n (β,X,Z, e)

where
sup
β∈Rp

∥∥∥R(1)
n (β,X,Z, e)

∥∥∥ = Op(1) and sup
β∈Rp

∥∥∥∥∥R(2)
n (β,X,Z, e)

∥∥∥∥∥ = op(1).

By a chain of similar approximations11 we finally show that (42) can be written as

Ln = Qn · (1 + qn) ·
√
n
(
β̂(IWV,n,w) − β0

)
(43)

with Ln = Op(1), Qn → Q in probability, Q being a regular matrix, and qn =
op(β̂(IWV,n,w) − β0). Then assuming that (1 + qn) ·

√
n(β̂(IWV,n,w) − β0) is not Op(1)

and employing the Lemma 6.20 we prove that also Ln cannot be Op(1), which is a
contradiction. �

5. CONCLUSIONS

The paper proves the consistency and
√
n-consistency of the Instrumental Weighted Vari-

ables under heteroscedasticity employing the generalization of Kolmogorov–Smirnov’s
result for the regression framework, see [13] and [71]. The present proofs, if given in
the full length, would triple the length of paper but they are significantly simpler than
proofs in [60] and [61]. The complexity of the proofs for robust estimators is the sacrifice
we have to pay for possibility to employ them for data processing, see [39]. However the
idea that the tax, we pay for the robustness of methods, is a loss of efficiency, is wrong.
The speed of PCs and abilities of modern languages (the codes are written in) allow to
tailor (the parameters of) the method (we have decided to utilize) just to the level and
the character of contamination of the data (if any) – just by repeating the computations
up to the moment of a break of stability of estimated models and so not to loose any
information (see e. g.[2] or [62]).

Employing the results by Phillips and Solo [44] the results of the present paper can be
11It contains 19 steps, for details see [70].
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generalized to the autoregressive framework which in turn would allow to utilize the
lagged values as instruments.

A decade or two ago people tried to make an idea about behaviour of estimators by
the small sample asymptotics (see e. g. [18]) however they had to check the results by
numerical studies anyway. Nowadays the IT tools allow to study behavior of estimators
for finite sample sizes directly. And we would be foolish not to employ this possibility.
Nevertheless, let us stress that numerical studies cannot substitute theoretical verifica-
tion of such basic properties as e. g. consistency – for a nice discussion we recall again
the famous Halmos’ paper [24].

An important question of course is how to select the weight function. Intuitively it seems
acceptable to use some function which is equal to one on an interval [0, h], then it is
decreasing (smootly) to zero and finally, it is equal to zero on [g, 1]. In the simulation
study (in the Part II of this paper) we have used in that decreasing part the function
of Tukey’s type. The optimality of function (i. e. the “free” parameters h, g and the
constant c of Tukey’s function) can be approximately established (even for real data) by
something which is usually called the forward search, for a theory see [2], for an example
with economic data, see e. g. [58]. The experiences (with simulated data) confirmed an
intuitive idea that the interval (g, 1) has to cover the bad leverage points.

On the other hand, the simulations revealed the fact that the decreasing part of the
weight function w should be rather wide (i. e. h << g) in the case of high heteroscedas-
ticity. It says in other words, that when we assign the weights to the order statistics of
squared residuals, we simultaneously cope (partially) with heteroscedasticity, even in the
sense of decreasing MSE of the estimator. There is also a theoretical result answering
(at least partially) this problem, see [41].

Last but not least, the preparation of a simulation study makes us to start really think
repeatedly about the framework of simulations. In the case of a new robust estimator
we try to invent such a framework which can cause to the estimator and its competitors
really considerable problems. Then it may happen that we realize that the cliché which
became a statistical/econometric folklore can be wrong, may be due to the fact that
we removed by the (up to now) proposed estimators the problem which the classical
estimators have with outliers and/or leverage points, but some other type of atypical
observations can appear to be dangerous. And they can cause problems to the estimators
in question. We will meet with something like this in the Part II of paper.

6. APPENDIX

An efficient tool for proving the key lemma allowing a uniform approximation of the
empirical distribution function is the Skorohod embedding (in the sense as it was used
in [32] or [46]) for which we will need the following three assertions.

Assertion 6.1. (Štěpán [54], page 420, VII.2.8) Let a and b be positive numbers. Fur-
ther let ξ be a random variable such that P (ξ = −a) = π and P (ξ = b) = 1 − π (for a
π ∈ (0, 1)) and IEξ = 0. Moreover let τ be the time for the Wiener process W (s) to exit
the interval (−a, b). Then

ξ =D W (τ)
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where “=D” denotes the equality of distributions of the corresponding random variables.
Moreover, IEτ = a · b = var ξ.

Remark 6.2. Since the book by Štěpán [54] is in Czech language we refer also to [6]
where however this assertion is not isolated. Nevertheless, the assertion can be found
directly in the first lines of the proof of Proposition 13.7 (page 277) of Breiman’s book.
(See also Theorem 13.6 on the page 276.) The next assertion can be found, in a bit
modified form also in Breiman’s book, Proposition 12.20 (page 258).

Assertion 6.3. (Štěpán [54], page 409, VII.1.6) Let a and b be positive numbers. Then

P

(
max
0≤t≤b

|W (t)| > a

)
≤ 2 · P (|W (b)| > a) .

Definition 6.4. Let S be a subset of a separable metric space. The stochastic process
V = (V (s), s ∈ S) is called separable if there is a countable dense subset T ⊂ S (i. e. T
is countable and dense in S) such that for any (ω, s) ∈ Ω × S there is a sequence such
that

sn ∈ T, lim
n→∞

sn = s and lim
n→∞

V (ω, sn) = V (ω, s).

Assertion 6.5. (Štěpán [54], page 85, I.10.4) Let V = (V (s), s ∈ S) be a separable
stochastic process defined on the probability space (Ω,A, P ). Moreover, let G ⊂ S be
open and denote by k(G) the set of all finite subsets of G. Then for any closed set
K ⊂ IRp we have

{ω ∈ Ω : V (s) ∈ K, s ∈ G} ∈ A
and

P ({ω ∈ Ω : V (s) ∈ K, s ∈ G}) = inf
J∈k(G)

P ({ω ∈ Ω : V (s) ∈ K, s ∈ J}) .

P r o o f . Since the book by Štěpán [54] is in Czech language and the proof is short, we
will give it. Let T be countable dense subset of S. Then we have

{ω ∈ Ω : V (s) ∈ K, s ∈ G} = {ω ∈ Ω : V (s) ∈ K, s ∈ G ∩ T}

and

P ({ω ∈ Ω : V (s) ∈ K, s ∈ G}) ≤ inf
J∈k(G)

P ({ω ∈ Ω : V (s) ∈ K, s ∈ J})

≤ inf
J∈k(G∩S)

P ({ω ∈ Ω : V (s) ∈ K, s ∈ J}) = P ({ω ∈ Ω : V (s) ∈ K, s ∈ G ∩ S})

= P ({ω ∈ Ω : V (s) ∈ K, s ∈ G}) . �

Assertion 6.6. Kolmogorov law of large numbers (Breiman [6], Theorem 3.27). Let
{Vi}∞i=1 be a sequence of independent random variables, IEVi = 0, IEV 2

i < ∞. Let bn
converge to +∞. If

∑∞
i=1 IEV

2
i · b

−2
i <∞, then

1
bn

n∑
i=1

Vi −→
n→∞

0 a. s.
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Now, we are going to give the key lemma for proving consistency of β̂(IWV,n,w).

Lemma 6.7. Let the Conditions C1 hold. For any ε > 0 there is a constant Kε and
nε ∈ N so that for all n > nε

P

({
ω ∈ Ω : sup

v∈R+
sup
β∈IRp

√
n
∣∣∣F (n)
β (v)− F n,β(v)

∣∣∣ < Kε

})
> 1− ε (44)

(for F (n)
β (v) and F n,β(v) see (19) and (22), respectively).

P r o o f . The proof can be found in [71]. �

Remark 6.8. It seems that the result of Lemma 6.7 can be generalized e. g. for the situ-
ation when the sequence {(X ′i, ei)′}

∞
i=−∞ is AR vector process. We just apply Cochrane–

Orcutt transformation (see [8]) and we transform the problem into i. i. d. framework.
Similarly for other structures of dependence of r. v.’s which allow a transformation
“back” to independence we can achieve the same.

Lemma 6.9. Under Conditions C1 the distribution function Fi,β(r) is, uniformly with
respect to r ∈ R and i ∈ N , uniformly continuous in β ∈ Rp, i. e. for any ε > 0 there is
δ ∈ (0, 1) so that for any pair β(1) and β(2) such that

∥∥β(1) − β(2)
∥∥ < δ we have

sup
i∈N

sup
r∈R

∣∣Fi,β(1)(r)− Fi,β(2)(r)
∣∣ ≤ ε

(for Fi,β(r) see (23)).

P r o o f . Proof is a chain of finding some upper bounds of some integrals representing
the empirical d. f.s. �

Corollary 6.10. Under Conditions C1 the distribution function F n,β(v) is, uniformly
with respect to v ∈ R and n ∈ N , uniformly continuous in β ∈ Rp, i. e. for any ε > 0
there is δ ∈ (0, 1) so that for any pair β(1) and β(2) such that

∥∥β(1) − β(2)
∥∥ < δ we have

sup
n∈N

sup
v∈R

∣∣∣F n,β(1)(v)− F n,β(2)(v)
∣∣∣ ≤ ε.

Lemma 6.11. Under Conditions C3 the distribution function Fβ′ZX′β(u) is, uniformly
with respect to u ∈ R, uniformly continuous in β ∈ Rp, i. e. for any ε > 0 there is
δ ∈ (0, 1) so that for any pair β(1) and β(2) such that

∥∥β(1) − β(2)
∥∥ < δ we have

sup
u∈R

∣∣∣F[β(1)]′ZX′β(1)(u)− F[β(2)]′ZX′β(2)(u)
∣∣∣ ≤ ε.

P r o o f . Proof utilizes the Skorohod embedding into the Wiener process in a nearly the
same way as Lemma 6.7. As the paper [71] is easily available we shall skip it. �
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Lemma 6.12. Under Conditions C3 the distribution function Fβ′ZX′β(u) is, uniformly
with respect to β ∈ Rp, uniformly continuous in u ∈ R, i. e. for any ε > 0 there is
δ ∈ (0, 1) so that for any pair u(1) and u(2) such that

∥∥u(1) − u(2)
∥∥ < δ we have

sup
β∈Rp

∣∣∣Fβ′ZX′β(u(1))− Fβ′ZX′β(u(2))
∣∣∣ ≤ ε.

P r o o f . Proof runs again along similar lines as the proof of Lemma 6.7 and taking
account again that paper [71] is available we skip the proof. �

We will have in what follows several such situations – the proofs are really very similar
and the employment of the Skorohod embedding into the Wiener process is straightfor-
ward.
Let us recall that we have denoted for any β ∈ Rp by Fβ′ZX′β(u) the distribution of the
product β

′
ZX

′
β (see (26)), i. e.

Fβ′ZX′β(u) = P (β
′
ZX

′
β < u)

and the corresponding empirical distribution by F (n)

β′ZX′β
(u) (see (27)), i. e.

F
(n)

β′ZX′β
(u) =

1
n

n∑
j=1

I
{
β
′
ZjX

′

jβ < u
}
.

Lemma 6.13. Let Conditions C3 hold and fix arbitrary ε > 0. Then there are K <∞
and nε ∈ N so that for all n > nε

P

({
ω ∈ Ω : sup

β∈Rp
sup
u∈R

√
n
∣∣∣F (n)

β′ZX′β
(u)− Fβ′ZX′β(u)

∣∣∣ ≤ K}) > 1− ε.

P r o o f . Proof runs along the similar (nearly the same) lines as the proof of Lemma 6.7.
�

Lemma 6.14. Let Conditions C3 hold and fix arbitrary ε > 0. Then there is Kε < ∞
and nε ∈ N so that for all n > nε

P

({
ω ∈ Ω : sup

β(1),β(2)∈Rp

√
n

∣∣∣∣∣ 1n
n∑
i=1

I

{[
β(1)

]′
ZiX

′

iβ
(1) < 0,

[
β(2)

]′
ZiX

′

iβ
(2) ≥ 0

}

−P
([
β(1)

]′
Z1X

′

1β
(1) < 0,

[
β(2)

]′
Z1X

′

1β
(2) ≥ 0

)∣∣∣∣ > Kε

})
> 1−ε.

P r o o f . Proof runs again along the similar lines as the proof of Lemma 6.7. �

Let us put
T (ζ,∆) =

{∥∥∥β(1)
∥∥∥ ≤ ζ,∥∥∥β(2)

∥∥∥ ≤ ζ,∥∥∥β(1) − β(2)
∥∥∥ < ∆

}
. (45)
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Lemma 6.15. Let Conditions C3 hold and fix arbitrary ε > 0 and ζ > 0. Then there
is ∆ > 0 so that

sup
(β(1), β(2))∈T (ζ,∆)

P

([
β(1)

]′
ZX

′
β(1) < 0,

[
β(2)

]′
ZX

′
β(2) ≥ 0

)
< ε.

P r o o f . Proof is again a chain of approximations of probabilities of some sets employing
the continuity of probability. �

Lemma 6.16. Let Conditions C1, C2 and C3 hold. Then for any positive ζ

β
′
IE
[
w (Fβ(|ri(β)|))Zi

(
ei −X

′

iβ
)]

(46)

is uniformly in i ∈ N , uniformly continuous in β on B = {β ∈ Rp : ‖β‖ ≤ ζ}, i. e. for
any ε > 0 there is δ > 0 so that for any pair of vectors β(1), β(2) ∈ Rp,

∥∥β(1) − β(2)
∥∥ < δ

we have

sup
i∈N

∣∣∣∣[β(1)
]′
IE
[
w
(
Fβ(1)(|ri(β(1))|)

)
Zi

(
ei −X

′

iβ
(1)
)]

−
[
β(2)

]′
IE
[
w
(
Fβ(2)(|ri(β(2))|)

)
Zi

(
ei −X

′

iβ
(2)
)]∣∣∣∣ < ε.

P r o o f . Proof is full of technicalities utilizing a simple estimate of upper bounds of
differences of the values of (46) for close pair of points in Rp. �

Lemma 6.17. Let Conditions C3 hold. Then for any positive ζ

β
′
IE
[
Z1X

′

1 · I
{
β
′
Z1X

′

1β < 0
}]

β

is uniformly continuous in β on B = {β ∈ Rp : ‖β‖ ≤ ζ}.

P r o o f . Proof is a rather long series of approximations of some differences of weight
function employing mostly a basic differential calculus. �

Let us recall that for any ζ ∈ R+ we have denoted

τζ = − inf
‖β‖≤ζ

β
′
IE
[
Z1X

′

1 · I{β
′
Z1X

′

1β < 0}
]
β.

Lemma 6.18. Let Conditions C3 be fulfilled. Then for any ε > 0, δ ∈ (0, 1) and ζ ≥ 1
there is nε,δ,ζ ∈ N so that for any n > nε,δ,ζ we have

P

({
ω ∈ Ω : inf

‖β‖≤ζ

1
n

n∑
i=1

β
′
ZiX

′

iβ · I{β
′
ZiX

′

iβ < 0} > −τζ − δ

})
> 1− ε.
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P r o o f . Proof is a similar chain of approximations and estimations of upper bounds as
the proof of Lemma 6.16. �

Lemma 6.19. Let Conditions C1 hold. Then for any ε > 0 and δ ∈ (0, 1) there is ζ > 0
and nε,δ ∈ N so that for all n > nε,δ

P

ω ∈ Ω : sup
r∈R

sup
‖β(1)−β(2)‖<ζ

∣∣∣F (n)

β(1)(r)− F
(n)

β(2)(r)
∣∣∣ < δ


 > 1− ε. (47)

P r o o f . Proof follows nearly immediately from Corollary 6.10. �

Lemma 6.20. Let for some p ∈ N ,
{
V(n)

}∞
n=1

, V(n) =
{
v

(n)
ij

}j=1,2,...,p

i=1,2,...,p
be a sequence

of (p× p) matrixes such that for i = 1, 2, . . . , p and j = 1, 2, . . . , p

lim
n→∞

v
(n)
ij = qij in probability (48)

where Q = {qij}j=1,2,...,p
i=1,2,...,p is a fixed nonrandom regular matrix. Moreover, let

{
θ(n)

}∞
n=1

be a sequence of p–dimensional random vectors such that

∃ (ε > 0) ∀ (K > 0) lim sup
n→∞

P
(
‖θ(n)‖ > K

)
> ε.

Then ∃ ( δ > 0)

so that ∀ (H > 0) lim sup
n→∞

P
(∥∥∥V(n)θ(n)

∥∥∥ > H
)
> δ.
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[60] J. Á. Vı́̌sek: The least weighted squares I. The asymptotic linearity of normal equations.
Bull. Czech Econometr. Soc. 9 (2002), 31–58.
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[72] J. Á. Vı́̌sek: Robustifying estimation of the model with fixed and random effects.
Part I – Theoretical considerations. Part II – Numerical study. Workshop on Algo-
rithm for Outliers/regressors Selection organized by Bent Nielsen, Nuffield College, Ox-
ford 2013. Methodology and Computing in Applied Probability 17 (2014), 4, 999–1014.
DOI:10.1007/s11009-014-9432-5

[73] R. Wagenvoort and R. Waldmann: On B-robust instrumental variable estimation of the
linear model with panel data. J. Econometr. 106 (2002), 297–324. DOI:10.1016/s0304-
4076(01)00102-6

[74] H. White: A heteroskedasticity – consistent covariance matrix estimator and a direct
test for heteroscedasticity. Econometrica 48 (1980), 817–838. DOI:10.2307/1912934

[75] J. M. Wooldridge: Econometric Analysis of Cross Section and Panel Data. MIT Press,
Cambridge 2001. (Second edition 2008.)

[76] J. M. Wooldridge: Introductory Econometrics. A Modern Approach. MIT Press, Cam-
bridge 2006. (Second edition 2009.)

Jan Ámos Vı́̌sek, Department of Macroeconomics and Econometrics, Faculty of Social
Sciences, Charles University, Opletalova 26, Praha 1, the Czech Republic.

e-mail: visek@fsv.cuni.cz

http://dx.doi.org/10.1007/978-3-7908-2656-2
http://dx.doi.org/10.1007/978-3-7908-1709-6
http://dx.doi.org/10.1007/s10463-007-0159-8
http://dx.doi.org/10.1080/02331881003768891
http://dx.doi.org/10.1007/s11009-014-9432-5
http://dx.doi.org/10.1016/s0304-4076(01)00102-6
http://dx.doi.org/10.1016/s0304-4076(01)00102-6
http://dx.doi.org/10.2307/1912934

		webmaster@dml.cz
	2018-01-10T14:14:55+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




