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Abstract. A (0, 2)-graph is a connected graph, where each pair of vertices has either 0 or
2 common neighbours. These graphs constitute a subclass of (0, λ)-graphs introduced by
Mulder in 1979. A rectagraph, well known in diagram geometry, is a triangle-free (0, 2)-
graph. (0, 2)-graphs include hypercubes, folded cube graphs and some particular graphs
such as icosahedral graph, Shrikhande graph, Klein graph, Gewirtz graph, etc. In this
paper, we give some local properties of 4-cycles in (0, λ)-graphs and more specifically in
(0, 2)-graphs, leading to new characterizations of rectagraphs and hypercubes.
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1. Introduction

A (0, 2)-graph is a connected graph, where each pair of vertices has either 0 or 2

common neighbours. This class of graphs is a special case of (0, λ)-graphs, introduced

by Mulder, who showed that they are regular in [6]. A rectagraph, well-known in

diagram geometry, see [9], is a (0, 2)-graph without any triangles.

Since every pair of adjacent edges engenders a unique 4-cycle, we can easily com-

pute the number of 4-cycles in a (0, 2)-graph. In fact, there are |V (G)|d(d − 1)/8

4-cycles in a (0, 2)-graph G of order |V (G)| and degree d.

(0, 2)-graphs were studied in various contexts; existence and construction of (0, 2)-

graphs were intensively studied by several researchers, we can cite for instance [2], [3].

Another important aspect is characterizing hypercubes as (0, 2)-graphs; due to their

remarkable properties and multiple applications, many authors have investigated

this topic in order to give a new point of view which can be used for recognizing and

constructing hypercubes, see [1], [5], [6], [7], [10].
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In this paper, we give new characterizations of hypercubes and rectagraphs, in

addition to many local properties of 4-cycles in (0, λ)-graphs and more specifically in

(0, 2)-graphs, using an edge binary relation introduced by Sabidussi in his work [11]

on Cartesian graph products.

2. Definitions and notation

Let G be a simple connected graph with V (G) its vertex set and E(G) its edge

set, let x and y be two vertices in V (G). We denote by N(x) the set of neighbours

of x and by N(x, y) the set of common neighbours of x and y. An edge {x, y} will

be denoted xy, where vertices x and y are its extremities.

A hypercube or a d-dimensional cube is the graph, denoted Qd, with V (Qd) =

{0, 1}d where the d-tuples x and y are joined if and only if they differ in exactly one

coordinate. Let G be a graph and let u, v ∈ V (G). The distance d(u, v) between two

vertices u and v is the length of a shortest (u, v)-path. The diameter of the graph G,

denoted diam(G), is the maximum distance between any pairs of vertices. The in-

terval I (u, v) can be defined by I (u, v) = {w ∈ V (G) : d(u, v) = d(u,w) + d(w, v)}.

A vertex ū is an antipode of a vertex u if I(u, ū) = V (G). A graph G is an

antipodal graph if each vertex has a unique antipode. A subset W ⊆ V (G) is con-

vex if I(u, v) ⊆ W for any u, v ∈ W . A graph G is interval monotone if each of

its intervals is convex. A graph G is interval regular if |I(u, v) ∩ N(u)| = d(u, v)

for any two vertices u and v in V (G). Note that a hypercube is characterized as

a (0, 2)-graph, see [5], [6], interval monotone [4], interval regular [8] and an antipodal

graph [10].

Let G be a graph. A 4-cycle denoted C is defined by the sequence of its four

vertices. The set of all 4-cycles in G is denoted Φ(G).

Let e, é ∈ E(G), we define a binary relation θ on E(G), where eθé if there is

a 4-cycle C ∈ Φ(G) such that e, é are nonadjacent edges of C. We say that the edge

e is parallel to é and denote θ(e) = {é ∈ E(G) : eθé}. Note that θ was introduced

by Sabidussi in [11] as the relation ∼(0).

Let G be a (0, 2)-graph and let e be an edge in E(G). We define the edge level

decomposition relative to e by defining the subsets Ni(e) ⊆ E(G), 0 6 i 6 m, which

constitute the levels of the decomposition, where N0(e) = {e} and ei ∈ Ni(e), if

there is at least one edge ei−1 ∈ Ni−1(e) such that ei ∈ θ(ei−1) for 1 6 i 6 m, where

m denotes the index of the last level in the decomposition. It is then clear that in

any edge level decomposition relative to e, every edge f = xy in E(G) is either in

Nk(e), 0 6 k 6 m, or belongs to E(G) \
m
⋃

i=1

Ni(e). In this case, its two extremities
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x and y are incident with two different edges from
m
⋃

i=1

Ni(e), which are either in the

same level or different levels.

3. Some 4-cycle properties in (0, 2)-graphs

In this section, we give first some local properties of 4-cycles in (0, λ)-graphs. After

that, other results, using the relation θ, are presented for the specific case λ = 2,

including a characterization of rectagraphs.

Lemma 3.1. If G is a (0, λ)-graph, then every vertex in V(G) is in d(d − 1)×

(λ− 1)/2 4-cycles.

P r o o f. Let u be a vertex. Since G is regular, |N(u)| = d and for each pair of

vertices v, w ∈ N(u), there are (λ− 1) 4-cycles containing u, v, w at one time. Thus

the number of 4-cycles containing u equals (λ− 1)
(

d

2

)

. �

Lemma 3.2. If G is a (0, λ)-graph, then every edge e is contained in (λ−1)(d−1)

4-cycles.

P r o o f. Let e = uv be an edge. For each edge eu incident to u, there are λ − 1

edges e1, e2, . . . , eλ−1 incident to v such that e, eu and ei, 1 6 i 6 λ−1 are contained

in a 4-cycle. Since G is d-regular, e is then contained in (λ − 1)(d− 1) 4-cycles. �

Lemma 3.3. Let G be a (0, λ)-graph. If there is an edge e ∈ E(G) such that θ(e)

is a nonempty matching, then λ = 2.

P r o o f. Let G be a (0, λ)-graph. It is easy to see that if λ = 1 then Φ(G) = ∅.

Therefore, θ(e) = ∅ for all edges in E(G). Note that if λ > 2 and |E(G)| > 2, then

every two adjacent edges are contained in (λ− 1) 4-cycles, thus for any edge e, there

are at least λ− 1 adjacent edges that are parallel to e. Therefore, if there is an edge

e such that θ(e) is a matching, then we have necessarily λ = 2. �

Lemma 3.4. In a (0, 2)-graph G, we have

d− 2 6 |θ(e)| 6 d− 1, e ∈ E(G).

Furthermore, G is K4 free if and only if |θ(e)| = d− 1 for all e ∈ E(G).

P r o o f. Let G be a (0, 2)-graph. First, we prove that d − 2 6 |θ(e)| 6 d − 1 for

all e ∈ E(G).
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Let e = uv be an edge in E(G). According to Lemma 3.2, e is contained in (d− 1)

4-cycles, and by definition of the relation θ, we can easily deduce that |θ(e)| 6 d− 1.

On the other hand, assume that |θ(e)| 6 d−3, then there are e1 = xy, e2 = zt ∈ θ(e),

e1 6= e2, such that e and e1 are contained in two 4-cycles C1, C2 and e and e2 are

contained in two other 4-cycles C3, C4. Thus on one hand we have N(u, v) = {x, y},

and on the other hand we have N(u, v) = {z, t}. By the (0, 2)-property, this implies

that {x, y} = {z, t} which contradicts the fact that e1 6= e2.

Note that if the edge e = uv ∈ E(G) is such that |θ(e)| < d− 1, then there is an

edge ē ∈ θ(e) such that e and ē are contained in two different 4-cycles C1, C2, with

C1 = uvwt and C2 = uvtw, which means that vertices u, v, w, and t are pairwise

adjacent and the subgraph induced by the set {u, v, w, t} is isomorphic to K4.

Conversely, if the subgraph induced by Y = {u, v, w, t} ⊆ V (G) is isomorphic

to K4, then there are two 4-cycles C1, C2 ∈ Φ(G) containing e and ē with C1 = uvwt

and C2 = uvtw, hence |θ(e)| = d− 2 < d− 1. �

Lemma 3.5. Let G be a (0, 2)-graph and let é ∈ E(G). If ē ∈ θ(é), then there is

at most one edge ¯̄e ∈ θ(é) such that ē, ¯̄e are adjacent. In this case, G contains K4−e

as an induced subgraph.

P r o o f. Let G be a (0, 2)-graph. Let é = uv ∈ E(G) and ē = wz ∈ θ(é). Suppose

that there are two edges e1, e2 adjacent to ē such that e1, e2 ∈ θ(é). We have then,

without loss of generality, two cases:

Case 1 : e1 = wt and e2 = wy. Since ē ∈ θ(é), there is a 4-cycle C1 = uvwz

and N(u,w) = {v, z}. On the other hand, e1 = wt ∈ θ(é) implies that ut /∈ E(G)

(otherwise N(u,w) = {v, z, t}) thus there is a 4-cycle C2 = uvtw and N(v, w) =

{u, t}. Since e2 = wy ∈ θ(é), there is a 4-cycle C3 such that C3 = uvyw or C3 =

uvwy. But if C3 = uvyw, thenN(v, w) = {u, t, y} and if C3 = uvwy, thenN(u,w) =

{v, z, y}, which is impossible in both the cases.

Case 2 : e1 = wt and e2 = zy. Since ē ∈ θ(é), there is a 4-cycle C1 = uvwz

and N(v, z) = {u,w}. We have also e1 = wt ∈ θ(é) and ut /∈ E(G) (otherwise

N(u,w) = {v, z, t}) which implies that there is C2 = uvtw and thus N(v, w) = {u, t}.

On the other hand, e2 = zy ∈ θ(é) implies that there is C3 ∈ Φ(G) such that

C3 = uvyz or C3 = uvzy. But if C3 = uvyz, then N(v, z) = {u,w, y}, and if

C3 = uvzy, then N(v, w) = {u, z, t}, which is also impossible.

Note that if ē = wz and e1 = wt are parallel to é = uv, then there are two 4-cycles

C1 = uvwz and C2 = uvtw in Φ(G) and the subgraph induced by {u, v, z, w} is

isomorphic to K4 − e with e = uz, which concludes this proof. �
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Theorem 3.6. Let G be a (0, λ)-graph of degree d. G is a rectagraph if and only

if θ(é) is a matching of (d− 1) edges for any edge é.

P r o o f. Let G be a rectagraph and let é ∈ E(G). Since G is triangle free, G

is also K4 free and (K4 − e) free. According to Lemma 3.4, |θ(é)| = d − 1 and by

Lemma 3.5, there are no adjacent edges in θ(é). It follows that θ(é) is a matching of

d− 1 edges.

Conversely, if θ(é) is a matching of d − 1 edges for every edge é ∈ E(G) then

according to Lemma 3.3, G is a (0, 2)-graph. Now assume that G is a (0, 2)-graph

that contains triangles, and let x, y, z be three vertices inducing a triangle. Let

e1 = xy, e2 = yz and e3 = xz. Since z ∈ N(x, y), there is a unique vertex t such

that N(x, y) = {t, z}. Hence there is C1 ∈ Φ(G) such that C1 = xzyt and it follows

that ê = xt ∈ θ(e2). On the other hand, since y ∈ N(x, z), there is a unique vertex

w such that N(x, z) = {w, y}. Note that w 6= t, otherwise the subgraph induced by

{x, y, z, t} is isomorphic to K4 and according to Lemma 3.4, |θ(ê)| = d − 2 < d− 1.

Consequently, there is a 4-cycle C2 ∈ Φ(G) such that C2 = xyzw and ẽ = xw ∈ θ(e2).

This means that θ(e2) is not a matching, since ê and ẽ are adjacent, which contradicts

our assumption. �

4. New characterizations of hypercubes

Hypercubes constitute a remarkable class of graphs with very interesting proper-

ties, including the (0, 2)-property. In this section, we show new characterizations of

a hypercube as a (0, 2)-graph. But first, let us recall important results due to Mulder

and Laborde and Rao Hebbare that we shall use:

Proposition 4.1 (Mulder [6], Laborde and Rao Hebbare [5]). Let G be a (0, 2)-

graph of degree d, then |V (G)| 6 2d. Furthermore, G is a hypercube of dimension d

if and only if |V (G)| = 2d.

Mulder has also shown the following result:

Proposition 4.2 (Mulder [8]). Let G be a connected graph. G is a hypercube if

and only if G is bipartite and interval regular.

Theorem 4.3. Every interval monotone rectagraph is interval regular.

P r o o f. Let G be an interval monotone rectagraph. The proof is by induction on

d(u, v) where u, v ∈ V (G). If d(u, v) = 2, then I(u, v) = {x, y} and |N(u)∩I(u, v)| =

|N(u, v)| = 2. Let u, v ∈ V (G) such that d(u, v) = k > 3, and let w ∈ N(u)∩ I(u, v).
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By induction hypothesis, we have |N(w) ∩ I(w, v)| = d(w, v) = k − 1. We denote

by t1, t2, . . . , tk−1, the neighbours of w in I(w, v). Since d(u, ti) = 2, 1 6 i 6 k − 1,

there are w1, w2, . . . , wk−1 ∈ V (G) with wi 6= w, 1 6 i 6 k − 1, such that N(u, ti) =

{w,wi}. Hence d(wi, v) = d(ti, v) + 1 = k − 1 and wi ∈ N(u) ∩ I(u, v). Note that

wi 6= wj for i 6= j, otherwise N(w,wi) = N(w,wj) = {u, ti, tj}. Assume now that

there is a vertex x ∈ N(u) ∩ I(u, v) such that x 6= w,w1, w2, . . . , wk−1. Therefore

u ∈ N(x,w) and there is a unique vertex y 6= u such that y ∈ N(x,w). Note that

y 6= ti, 1 6 i 6 k − 1, otherwise N(u, ti) = {x,w,wi}. Since G is interval monotone

and triangle free, y ∈ I(x,w) ⊂ I(u, v), and consequently, y ∈ N(w) ∩ I(u, v), which

contradicts the induction hypothesis. �

Corollary 4.4. Let G be a graph. G is a hypercube if and only if G is a bipartite

interval monotone rectagraph.

P r o o f. A hypercube is a bipartite interval monotone rectagraph. Conversely,

according to Theorem 4.3, an interval monotone rectagraph G is interval regular.

Since G is bipartite, G is a hypercube by Proposition 4.2. �

Theorem 4.5. LetG be a rectagraph of degree d. G is a hypercube of dimension d

if and only if in an edge level decomposition relative to any edge e, we have |N0(e)| =

|Nm(e)| = 1, |Ni−1(e) ∩ θ(ei)| = i and |Ni+1(e) ∩ θ(ei)| = d − 1 − i for any edge

ei ∈ Ni(e), 1 6 i 6 m.

P r o o f. Let Qd be a hypercube of dimension d, let e = uw be an edge in E(Qd)

and let N0(e), N1(e), . . . , Nm(e) be the subsets of edges in the level decomposition

relative to the edge e.

First, we prove that |Nm(e)| = 1 and m = d − 1. Let v be the unique antipode

of u in Qd and t the unique antipode of w, thus I(u, v) = I(w, t) = V (Qd) and

d(u, v) = d(w, t) = d. Since v ∈ I(w, t), we have d(w, t) = d = d(w, v) + d(v, t). On

the other hand, w ∈ I(u, v) implies that d(u, v) = d = d(u,w)+d(w, v). We can easily

deduce that d(u,w) = d(v, t), and v, t are adjacent. Since d(u, t) = d(w, v) = d− 1,

the edge vt ∈ Nm(e) and m = d − 1. This edge is unique in Nd−1(e), otherwise

there would be another pair of vertices x and y which are antipodes of u and v,

respectively. Hence |Nm(e)| = 1.

Now let ei = xy ∈ Ni(e). Since d(u, x) = i and Qd is interval regular, |N(x) ∩

I(u, x)| = i, thus there are i neighbours x1, x2, . . . , xi of x in I(u, x). Note that

d(u, xj) = i− 1 and x ∈ N(y, xj), 1 6 j 6 i, which implies that there are i vertices,

y1, y2, . . . , yi such that yj ∈ N(y, xj), 1 6 j 6 i. It follows that xjyj ∈ θ(ei),

1 6 j 6 i and we have necessarily the edges xjyj ∈ Ni−1(e), 1 6 j 6 i. Thus

|Ni−1(e) ∩ θ(ei)| = i. In the same way, let vt ∈ Nd−1(e) be such that d(u, t) =
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d(w, v) = d − 1. So d(x, t) = d − 1 − i and there are d − 1 − i neighbours of the

vertex x (say x́1, x́2, . . . , x́d−1−i) in I(x, t). Since x ∈ N(y, x́j), 1 6 j 6 d − 1 − i,

there are vertices ý1, ý2, . . . , ýd−1−i, such that ýj ∈ N(y, x́j), 1 6 j 6 d− 1− i. Thus

x́j ýj ∈ Ni+1(e), 1 6 j 6 d− 1− i and |Ni+1(e) ∩ θ(ei)| = d− 1− i.

Conversely, let G be a rectagraph satisfying the hypothesis of Theorem 4.5 and

let e ∈ E(G). Let N0(e), N1(e), . . . , Nm(e) be the subsets of edges in the level

decomposition relative to the edge e. Note that for any edge ei ∈ Ni(e), every edge

of θ(ei) is either in Ni−1(e) or Ni+1(e).

First we prove that Ni(e) is a matching for 1 6 i 6 m. So let us assume the

contrary, and choose the smallest k such that Nk(e) is not a matching. So there are at

least two adjacent edges in Nk(e), say ek = xy and ék = yz. Since |Nk−1(e)∩θ(ek)| =

k, there is an edge ek−1 = x́ý parallel to ek in Nk−1(e). Note that ék /∈ θ(ek−1), since

G is a rectagraph. Therefore, since y ∈ N(ý, z), there is necessarily another vertex

ź ∈ N(ý, z), thus the edge ék−1 = ýź ∈ θ(ék) and consequently, ék−1 ∈ Nk−1(e). But

edges ek−1 and ék−1 are adjacent, which contradicts the fact that k is the smallest

integer such that Nk(e) contains adjacent edges. It follows that Ni(e) is a matching

for 1 6 i 6 m.

Now let us prove, by induction on i, that |Ni(e)| =
(

d−1
i

)

, 0 6 i 6 m.

For i = 0, we have |N0(e)| = 1 =
(

d−1
0

)

. Assume now that for all k 6 i − 1,

|Nk(e)| =
(

d−1
k

)

. Since each edge ei−1 ∈ Ni−1(e) is parallel to d − i edges in Ni(e),

the total number of 4-cycles lying between Ni−1(e) and Ni(e) equals
(

d−1
i−1

)

(d− i).

On the other hand, each edge ei ∈ Ni(e) is parallel to i edges from Ni−1(e). Thus,

the number of 4-cycles lying betweenNi(e) andNi−1(e) equals |Ni(e)|i, and it follows

that

|Ni(e)| =

(

d−1
i−1

)

(d− i)

i
=

(

d− 1

i

)

.

Note that |Nm(e)| = 1 =
(

d−1
m

)

implies m = d− 1.

By counting the total number of edges in the levels, we have

|N0(e)|+ |N1(e)|+ . . .+ |Nd−1(e)| =
d−1
∑

i=0

(

d− 1

i

)

= 2d−1.

Since each level is a matching, it follows that |V (G)| = 2 · 2d−1 = 2d. According to

Proposition 4.1, G is a hypercube of dimension d. �
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