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A note on the adaptive estimation

of the differential entropy by wavelet methods

Christophe Chesneau, Fabien Navarro, Oana Silvia Serea

Abstract. In this note we consider the estimation of the differential entropy of
a probability density function. We propose a new adaptive estimator based on
a plug-in approach and wavelet methods. Under the mean Lp error, p ≥ 1, this
estimator attains fast rates of convergence for a wide class of functions. We
present simulation results in order to support our theoretical findings.
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1. Introduction

Entropy is a measure of uncertainty which plays a fundamental role in many
applications, such as goodness-of-fit tests, quantization theory, statistical com-
munication theory, source-coding, econometrics, and many other areas (see, e.g.,
[Beirlant et al. (1997)]).

In this paper, we focus our attention on the concept of differential entropy, ori-
ginally introduced by [Shannon (1948)]. More precisely, we explore the estimation
of the differential entropy of a probability density function f : [0, 1]d → [0,∞),
d ≥ 1. Recall that the entropy is defined by

H = −
∫

[0,1]d
f(x) log(f(x))dx.(1.1)

The literature on the estimation ofH is extensive, see, e.g., [Beirlant et al. (1997)]
and the references cited therein. Among the existing estimation methods, we
consider a plug-in integral estimator of the form:

Ĥ = −
∫

Â

f̂(x) log(f̂(x))dx,

where f̂ denotes an estimator for f , and Â ⊆ {x ∈ [0, 1]d; f̂(x) > 0}. This type of
plug-in integral estimators was introduced by [Dmitriev and Tarasenko (1973)],
in the context of kernel density estimation. The authors showed strong con-
sistency of the estimator, but other aspects have been studied as well, e.g.,
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by [Prakasa Rao (1983)], [Joe (1989)], [Mokkadem (1989)], [Györfi and van der
Meulen (1990)], [Györfi and van der Meulen (1991)] and [Mason (2003)]. Recent
developments can be found, e.g., in [Bouzebda and Elhattab (2011)], [Bouzebda
and Elhattab (2009)], [Bouzebda and Elhattab (2010)].

The contributions of this paper are twofold. Firstly, we establish a new general
upper bound for the mean Lp error of Ĥ , i.e., R(Ĥ,H) = E(|Ĥ −H |p), expressed

in terms of mean integrated L2p error of f̂ , i.e., R∗(f̂ , f) = E(
∫

[0,1]d
(f̂(x) −

f(x))2pdx). The obtained bound illustrates that the more efficient f̂ is under the

mean integrated L2p error, the more efficient is Ĥ under the mean Lp error. The
advantage of this result is its great flexibility with respect to both the model and

the estimation method for f̂ . This result can also be viewed as an extension of
the mean Lp error of Ĥ obtained by [Mokkadem (1989)] for the standard density
model and kernel method.

Secondly, we introduce a new integral estimator Ĥ based on a multidimen-

sional hard thresholding wavelet estimator for f̂ . Such a wavelet estimator f̂
was introduced by [Donoho et al. (1996)] and [Delyon and Juditsky (1996)]. The
construction of this estimator does not depend on the smoothness of f , and it is ef-
ficient under the mean integrated Lq error (with q ≥ 1). Further details on wavelet
estimators in various statistical setting can be found, e.g., in [Antoniadis (1997)],
[Härdle et al. (1998)] and [Vidakovic (1999)]. Applying our general upper bound,

we prove that Ĥ attains fast rates of convergence under mild assumptions on f :
we only suppose that f belongs to a wide set of functions, the so-called Besov
balls. Consequences of our results are Lp as well as a.s. convergence of our es-

timator. To the best of our knowledge, in this statistical context, Ĥ constitutes
the first adaptive estimator for H based on wavelets. We also propose a short
simulation study to support our theoretical findings.

The remainder of this paper is organized as follows. In the next section, we
present an upper bound for the mean Lp error of Ĥ . Section 3.1 is devoted to
our wavelet estimator and its performances in terms of rate of convergence under
the mean Lp error over Besov balls. Section 4 contains a short simulation study
illustrating the performance of our wavelet estimator. For the convenience of the
reader, the proofs are postponed to Section 5.

2. A general upper bound

2.1 Notations and assumptions. We define the Lp([0, 1]d)-spaces with p ≥ 1
by

Lp([0, 1]d) =







h : [0, 1]d → R;

(

∫

[0,1]d
|h(x)|pdx

)1/p

<∞







with the usual modification if p = ∞.
We formulate the following assumptions:
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(A1): There exists a constant c∗ > 0 such that

inf
x∈[0,1]d

f(x) ≥ c∗.

(A2(p)): Let p ≥ 1 and q = p/(p− 1). We have

f ∈ L2p([0, 1]d), log(f) ∈ Lq([0, 1]d), f log(f) ∈ Lq([0, 1]d).

(A3): There exists a constant C∗ > 0 such that

sup
x∈[0,1]d

f(x) ≤ C∗.

These assumptions are satisfied by a wide family of probability density functions.
They have ever been used in the context of estimating the differential entropy see,
for instance, [Beirlant et al. (1997)]. Note that (A1) and (A3) imply (A2(p))
(since | log(f(x))| ≤ max(| log(c∗)|, | log(C∗)|)).

2.2 An auxiliary result. In this section, we adopt a general estimation setting:

let f̂ : [0, 1]d → R be an estimator of f constructed from random vectors defined
on a probability space (Ω,A,P). Various estimation methods can be found in,
e.g., [Tsybakov (2004)]. Suppose that (A1) is satisfied. We study the following
plug-in integral estimator for H (1.1):

(2.1) Ĥ = −
∫

Â

f̂(x) log(f̂(x))dx,

where

Â =
{

x ∈ [0, 1]d; f̂(x) ≥ c∗
2

}

.

Such plug-in integral estimator was introduced by [Dmitriev and Tarasenko (1973)]

with a kernel density estimator (and a different Â). Related results can be
found in [Beirlant et al. (1997)] and the references cited therein. In particular,

[Mokkadem (1989)] has investigated the mean Lp error of Ĥ for the standard

density model and a kernel estimator (with a different Â).

Without the specification of the model and for any estimator f̂ for f , Propo-

sition 2.1 establishes a general upper bound for the mean Lp error of Ĥ in terms

of the mean integrated L2p error of f̂ .

Proposition 2.1. Let p ≥ 1. Suppose that (A1) and (A2(p)) are satisfied and

f̂ ∈ L2p([0, 1]d). Let Ĥ be defined by (2.1) and H be defined by (1.1). Then we
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have the following upper bound for the mean Lp error of Ĥ :

E(|Ĥ −H |p)

≤ K





√

√

√

√E

(

∫

[0,1]d
(f̂(x) − f(x))2pdx

)

+ E

(

∫

[0,1]d
(f̂(x) − f(x))2pdx

)



 ,

where

K = 2p−1 max
(

(C′)p, (c∗)
−p
)

,

C′ =
2

c∗

(

∫

[0,1]d
(f(x)| log(f(x))|)qdx

)1/q

+

(

∫

[0,1]d
(| log(f(x))| + 1)qdx

)1/q

with q = p/(p− 1).

Proposition 2.1 illustrates the intuitive idea that more f̂ is efficient in terms
of mean integrated L2p error, more Ĥ is efficient in terms of mean Lp error. The
obtained bound has the advantage of enjoying a great flexibility on the model and

the choice of f̂ .
In order to highlight this flexibility, one can consider the standard density

model: f is the common probability density function of n iid [0, 1]d-valued random
vectors, d ≥ 1, X1, . . . ,Xn, or with no iid assumption, or f can be a probability
density function emerging from a more sophisticated density model as the convo-
lution one (see, e.g., [Caroll and Hall (1988)], [Devroye (1989)] and [Fan (1991)]).
On the other hand, one can consider several type of estimators as kernel, spline,
Fourier series or wavelet series, as soon as they enjoy good mean integrated L2p

error properties.

Remark 2.1. If n is such that c∗ ≥ 1/ log(n), one can define Ĥ (2.1) by replacing

c∗ in Â by 1/ log(n) and Proposition 2.1 is still valid with 1/ log(n) instead of c∗,
implying that K ≤ C(log(n))p.

In the rest of the study we focus our attention on a nonlinear wavelet estimator
having the features to be adaptive and efficient under the mean integrated L2p

error for a wide class of functions f .

3. An adaptive wavelet estimator

Before introducing our main estimator, let us present some basics on wavelets
and the considered function spaces characterizing the unknown smoothness of f ;
the Besov balls.

3.1 Wavelet bases on [0, 1]. We consider an orthonormal wavelet basis gene-
rated by dilations and translations of the scaling and wavelet functions φ and
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ψ from the Daubechies family db2R, with R ≥ 1 (see [Daubechies (1992)]). We
define the scaled and translated version of φ and ψ by

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then, with an appropriate treatment at the boundaries, there exists an integer τ
satisfying 2τ ≥ 2R such that, for any integer j∗ ≥ τ , the collection

{φj∗,k, k ∈ {0, . . . , 2j∗ − 1}; ψj,k; j ∈ N − {0, . . . , j∗ − 1}, k ∈ {0, . . . , 2j − 1}},

forms an orthonormal basis of L2([0, 1]). See [Meyer (1992)], [Daubechies (1992)],
[Cohen et al. (1993)] and [Mallat (2009)].

3.2 Wavelet tensor product bases on [0, 1]d. We use compactly supported
tensor product wavelet bases on [0, 1]d based on the Daubechies family. Their
construction is recalled below. For any x = (x1, . . . , xd) ∈ [0, 1]d, we set

Φ(x) =

d
∏

v=1

φ(xv),

and

Ψu(x) =



























ψ(xu)

d
∏

v=1
v 6=u

φ(xv) for u ∈ {1, . . . , d},

∏

v∈Au

ψ(xv)
∏

v/∈Au

φ(xv) for u ∈ {d+ 1, . . . , 2d − 1},

where (Au)u∈{d+1,...,2d−1} forms the set of all non void subsets of {1, . . . , d} of
cardinality greater or equal to 2.

For any integer j and any k = (k1, . . . , kd), we consider

Φj,k(x) = 2jd/2Φ(2jx1 − k1, . . . , 2
jxd − kd),

Ψj,k,u(x) = 2jd/2Ψu(2jx1 − k1, . . . , 2
jxd − kd), for any u ∈ {1, . . . , 2d − 1}.

Let Dj = {0, . . . , 2j − 1}d. Then, with an appropriate treatment at the boun-
daries, there exists an integer τ such that the collection

{Φτ,k,k ∈ Dτ ; (Ψj,k,u)u∈{1,...,2d−1}, j ∈ N − {0, . . . , τ − 1}, k ∈ Dj}

forms an orthonormal basis of L2([0, 1]d).
For any integer j∗ such that j∗ ≥ τ , a function h ∈ L2([0, 1]d) can be expanded

into a wavelet series as

h(x) =
∑

k∈Dj∗

αj∗,kΦj∗,k(x) +

2d−1
∑

u=1

∞
∑

j=j∗

∑

k∈Dj

βj,k,uΨj,k,u(x), x ∈ [0, 1]d,
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where

αj,k =

∫

[0,1]d
h(x)Φj,k(x)dx, βj,k,u =

∫

[0,1]d
h(x)Ψj,k,u(x)dx.(3.1)

3.3 Besov balls. Let M > 0, s ∈ (0, R), p ≥ 1 and q ≥ 1. We say that a
function h in Lr([0, 1]d) belongs to Bs

r,q(M) if, and only if, there exists a constant
M∗ > 0 (depending on M) such that the associated wavelet coefficients (3.1)
satisfy







∞
∑

j=τ






2j(s+d/2−d/r)





2d−1
∑

u=1

∑

k∈Dj

|βj,k,u|r




1/r






q





1/q

≤M∗.

In this expression, s is a smoothness parameter and p and q are norm parameters.
Besov spaces include many traditional smoothness spaces as the standard Hölder
and Sobolev balls. See [Meyer (1992)], [Härdle et al. (1998)] and [Mallat (2009)].

3.4 Wavelet estimations. Let X1, . . . ,Xn be n iid [0, 1]d-valued random vec-
tors, d ≥ 1, with common probability density function f . We aim to estimate the
differential entropy of f defined by

H = −
∫

[0,1]d
f(x) log(f(x))dx,

from X1, . . . ,Xn. Under (A1), we consider the following estimator for H :

Ĥ = −
∫

Â

f̂(x) log(f̂(x))dx,(3.2)

where

Â =
{

x ∈ [0, 1]d; f̂(x) ≥ c∗
2

}

and f̂ is the following hard thresholding wavelet estimator for f :

(3.3)

f̂(x) =
∑

k∈Dτ

α̂τ,kΦτ,k(x)

+

2d−1
∑

u=1

j1
∑

j=j∗

∑

k∈Dj

β̂j,k,u1{|β̂j,k,u|≥κλn}Ψj,k,u(x),

where

α̂j,k =
1

n

n
∑

i=1

Φj,k(Xi), β̂j,k,u =
1

n

n
∑

i=1

Ψj,k,u(Xi),
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j1 is the resolution level satisfying 2dj1 = [n/ log(n)] (the integer part of n/ log(n)),
1 is the indicator function, κ is a large enough constant and λn is the threshold

λn =

√

log(n)

n
.

This estimator was introduced by [Donoho et al. (1996)] for d = 1 and generalized
to the multidimensional case by [Delyon and Juditsky (1996)]. The central idea
is to estimate only the wavelet coefficients with a high magnitude because they
contain all the necessary information inherent to f . The others, less important,
are suppressed instead of being estimated in order to avoid the accumulation of
superfluous errors in their estimation.

This estimator is adaptive; its construction does not depend on the unknown
smoothness of f .

Let us mention that αj,k and βj,k,u are unbiased estimators for the wavelet coef-
ficients αj,k and βj,k,u respectively. They also satisfied powerful moment inequal-
ities and concentration inequalities. Further details on wavelet estimation can be
found in, e.g., [Antoniadis (1997)], [Härdle et al. (1998)] and [Vidakovic (1999)].

Theorem 3.1 below investigates the rates of convergence attained by Ĥ under
the mean Lp error over Besov balls for f .

Theorem 3.1. Let p ≥ 1. Suppose that (A1) and (A3) are satisfied. Let Ĥ
be (3.2). Suppose that f ∈ Bs

r,q(M) with s > d/r, r ≥ 1 and q ≥ 1. Then there

exists a constant C > 0 such that, for n large enough,

E(|Ĥ −H |p) ≤ Cϕn(p),

where

ϕn(p) =































































(

log(n)

n

)sp/(2s+d)

,

for 2rs > d(2p− r),
(

log(n)

n

)(s−d/r+d/(2p))p/(2s−2d/r+d)

,

for 2rs < d(2p− r),
(

log(n)

n

)(s−d/r+d/(2p))p/(2s−2d/r+d)

(log(n))max(2p−r/q,0),

for 2rs = d(2p− r).

The proof of Theorem 3.1 is based on Proposition 2.1 and a result on the rates

of convergence of f̂ under the mean integrated L2p error.

The rate of convergence ϕn(p) is closed to the one attains by f̂ (3.3) under the
mean integrated Lp error. We do not claim that ϕn(p) is the optimal one for the
estimation of H in the minimax sense. However, Theorem 3.1 is enough to prove
that:
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Figure 1. Test densities.

• Ĥ converges to H under the mean Lp error, i.e., limn→∞ E(|Ĥ−H |p) = 0,
• under some restriction on s, r and q, one can find p such that, for any ǫ >

0, by the Markov inequality,
∑∞

n=1 P(|Ĥ −H | ≥ ǫ) ≤ ǫ−p
∑∞

n=1 ϕn(p) <

∞ (convergent Bertrand series). Therefore Ĥ converges to H a.s. by the
Borel-Cantelli lemma.

Remark 3.1. As in Remark 2.1, if n is such that c∗ ≥ 1/ log(n), one can define

Ĥ (3.2) by replacing c∗ in Â by 1/ log(n) and Theorem 3.1 is still valid with the
rate of convergence (log(n))pϕn(p).

4. Numerical results

We now illustrate these theoretical results by a short simulation study. We
have compared the numerical performances of the adaptive wavelet estimator Ĥ
(2.1) to those of the traditional kernel estimator denoted by H̃ and based on the
same plug-in approach. All experiments were conducted using a Gaussian kernel
and we have been focused on a global bandwidth selector: the rule of thumb (rot)
bandwidth selector (see, e.g., [Silverman (1986)]). Thus, the optimal bandwidth
is given by hrot = 1.06 min(σ̂, Q/1.34)n−1/5, where σ̂ is the sample standard
deviation and Q is the interquartile range.

In order to satisfy the assumptions (A1) and (A2), we have considered mix-
tures of uniform distributions and the two-sided truncated normal distribution on
[a, b] denoted by N (µ, σ2, a, b), with density

f(x;µ, σ, a, b) =







1

σ
ϕ(x−µ

σ )
Φ( b−µ

σ )−Φ( a−µ
σ )

if a ≤ x ≤ b

0 otherwise

where ϕ(x) = 1√
2π

exp
(

− 1
2x

2
)

is the probability density function of the stan-

dard normal distribution, Φ(·) is its cumulative distribution function and the
parameters µ and σ are respectively the mean and the standard deviation of the
distribution.

More precisely we have considered the following examples, see Figure 1

#1 f is the two-sided truncated normal distribution N (0, 1,−2, 1).
#2 f is the two-sided truncated normal distribution N (0, 1,−2, 2).
#3 f is a mixture of two uniform densities 1

2U(− 1
2 ,

1
2 ) + 1

2U(−2, 2).
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Figure 2. L2 risk as a function of the sample sizes n (in a log-log

scale) of Ĥ (dashed) and H̃ (solid).

#4 f is a mixture of four uniform densities 1
4U(− 1

2 ,
1
2 ) + 1

4U(−2, 2)

+ 1
4U(−1, 1) + 1

4U(3
2 , 2).

Since our estimation method is adaptive, we have chosen a predetermined
threshold κ =

√
2 and the density was evaluated at T = 2J equispaced points

ti = 2ib1/T , i = −T/2, . . . , T/2 − 1 between −b1 and b1, where J is the in-
dex of the highest resolution level and T is the number of discretization points,
with J = 8, T = 256 and b1 = 4. The primary level j∗ = 3 and the Haar
wavelet was used throughout all experiments. For both estimation methods we
used the trapezoidal rule to approximate the integral estimate of entropy with

Â = {x ∈ [0, 1]d; f̂(x) ≥ c∗
2 }. Note that this amounts to evaluating the integral

over the grid points located within densities supports (i.e., [−2, 2] for #2–#4 and
[−2, 1] for #1). All simulations have been implemented under Matlab.

Each method was applied for sample sizes ranging from 100 to 10, 000. The
L2−risk from 100 repetitions are depicted as a function of the sample size in
Figure 2. It shows that none of the methods clearly outperforms the others in
all cases. However, our estimator outperforms the kernel estimator in many cases
especially for the moderate or large sample sizes. In comparison to the kernel
method, our method provided much better results on the non-smooth uniform
mixture densities. Without any prior smoothness knowledge on the unknown

density, Ĥ provides competitive results in comparison to H̃ . Furthermore, as
expected, for both methods, and in all cases, the L2−risk is decreasing as the
sample size increases.

5. Proofs

Proof of Proposition 2.1: Let p ≥ 1 and q = p/(p− 1). We have

Ĥ −H = −
∫

Â

(f̂(x) log(f̂(x)) − f(x) log(f(x)))dx +

∫

Âc

f(x) log(f(x))dx.

The triangular inequality yields

|Ĥ −H | ≤ F +G,(5.1)
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where

F =

∫

Â

|f̂(x) log(f̂(x)) − f(x) log(f(x))|dx, G =

∫

Âc

f(x)| log(f(x))|dx.

Upper bound for G. By the Hölder inequality and (A2(p)), we have

G ≤
(∫

Âc

dx

)1/p
(

∫

[0,1]d
|f(x) log(f(x))|qdx

)1/q

.(5.2)

Observe that, thanks to (A1), we have

(5.3)
Âc =

{

x ∈ [0, 1]d; f̂(x) <
c∗
2

}

⊆
{

x ∈ [0, 1]d; f(x) − f̂(x) >
c∗
2

}

⊆
{

x ∈ [0, 1]d; |f̂(x) − f(x)| > c∗
2

}

.

It follows from (5.2), (5.3) and the Markov inequality that

(5.4)

G ≤
(∫

Âc

(

2

c∗

)p

|f̂(x) − f(x)|pdx
)1/p

(

∫

[0,1]d
|f(x) log(f(x))|qdx

)1/q

≤ Co

(

∫

[0,1]d
|f̂(x) − f(x)|pdx

)1/p

,

where Co = (2/c∗)
(

∫

[0,1]d(f(x)| log(f(x))|)qdx
)1/q

.

Upper bound for F . Since f ∈ L2p([0, 1]d) and f̂ ∈ L2p([0, 1]d), we have

max(f̂(x), f(x)) <∞ almost surely. The Taylor theorem with Lagrange remain-

der applied to ϕ(y) = y log(y) between f(x) and f̂(x) ensures the existence of a

function θ(x) ∈ [min(f̂(x), f(x)),max(f̂(x), f(x))] ⊆ [c∗/2,∞) satisfying

ϕ(f̂ (x)) − ϕ(f(x)) = ϕ′(f(x))(f̂ (x) − f(x)) +
1

2
ϕ′′(θ(x))(f̂ (x) − f(x))2

= (log(f(x)) + 1)(f̂(x) − f(x)) +
1

2θ(x)
(f̂(x) − f(x))2.

Hence, by the triangular inequality, we have

|f̂(x) log(f̂(x)) − f(x) log(f(x))| = |ϕ(f̂(x)) − ϕ(f(x))|

≤ (| log(f(x))| + 1)|f̂(x) − f(x)| + 1

2θ(x)
(f̂(x) − f(x))2

≤ (| log(f(x))| + 1)|f̂(x) − f(x)| + 1

c∗
(f̂(x) − f(x))2.
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By the Hölder inequality and (A2(p)), we have

(5.5)

F ≤
∫

[0,1]d
(| log(f(x))| + 1) |f̂(x) − f(x)|dx +

1

c∗

∫

[0,1]d
(f̂(x) − f(x))2dx

≤ Coo

(

∫

[0,1]d
|f̂(x) − f(x)|pdx

)1/p

+
1

c∗

∫

[0,1]d
(f̂(x) − f(x))2dx,

where Coo = (
∫

[0,1]d(| log(f(x))| + 1)qdx)1/q.

Combining (5.1), (5.4) and (5.5), we have

|Ĥ −H | ≤ C′
(

∫

[0,1]d
|f̂(x) − f(x)|pdx

)1/p

+
1

c∗

∫

[0,1]d
(f̂(x) − f(x))2dx,

where C′ = Co + Coo.
The inequality: |x+ y|p ≤ 2p−1(|x|p + |y|p), (x, y) ∈ R

2, implies that

|Ĥ −H |p

≤ 2p−1

(

(C′)p

∫

[0,1]d
|f̂(x) − f(x)|pdx + (c∗)

−p

(

∫

[0,1]d
(f̂(x) − f(x))2dx

)p)

≤ K

(

∫

[0,1]d
|f̂(x) − f(x)|pdx +

(

∫

[0,1]d
(f̂(x) − f(x))2dx

)p)

,

where K = 2p−1 max((C′)p, (c∗)−p).
The Hölder inequality applied two times gives

|Ĥ −H |p ≤ K

(√

∫

[0,1]d
(f̂(x) − f(x))2pdx +

∫

[0,1]d
(f̂(x) − f(x))2pdx

)

.

It follows from the Cauchy-Schwarz inequality that

E(|Ĥ −H |p)

≤ K





√

√

√

√E

(

∫

[0,1]d
(f̂(x) − f(x))2pdx

)

+ E

(

∫

[0,1]d
(f̂(x) − f(x))2pdx

)



 .

The proof of Proposition 2.1 is complete. �

Proof of Theorem 3.1: First of all, let us present a result on the rates of

convergence of f̂ (3.3) under the mean Lθ error over Besov balls.

Theorem 5.1 (Delyon and Juditsky (1996) & Kerkyacharian and Picard (2000)).

Suppose that (A3) holds. Let θ ≥ 1 and f̂ be (3.3). Suppose that f ∈ Bs
r,q(M)
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with s > d/r, r ≥ 1 and q ≥ 1. Then there exists a constant C > 0 such that

E

(

∫

[0,1]d
|f̂(x) − f(x)|θdx

)

≤ CΨn(θ),

where

Ψn(θ) =































































(

log(n)

n

)sθ/(2s+d)

,

for 2rs > d(θ − r),
(

log(n)

n

)(s−d/r+d/θ)θ/(2s−2d/r+d)

,

for 2rs < d(θ − r),
(

log(n)

n

)(s−d/r+d/θ)θ/(2s−2d/r+d)

(log(n))max(θ−r/q,0),

for 2rs = d(θ − r).

Theorem 5.1 can be proved using similar arguments to [Kerkyacharian and

Picard (2000), Theorem 5.1] for a bound of the mean integrated Lθ error of f̂
and [Delyon and Juditsky (1996), Theorem 1] for the determination of the rates
of convergence.

It follows from Proposition 2.1 and Theorem 3.1 with θ = 2p that, for any
f ∈ Bs

r,q(M) with s > d/r, r ≥ 1 and q ≥ 1, and for n large enough,

E(|Ĥ −H |p)

≤ K





√

√

√

√E

(

∫

[0,1]d
(f̂(x) − f(x))2pdx

)

+ E

(

∫

[0,1]d
(f̂(x) − f(x))2pdx

)





≤ Kmax(
√
C,C)

(

√

Ψn(2p) + Ψn(2p)
)

≤ 2Kmax(
√
C,C)

√

Ψn(2p)

= C⋆ϕn(p),

with C⋆ = 2Kmax(
√
C,C). This ends the proof of Theorem 3.1. �
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