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Abstract. We extend the analysis of the recently proposed nonlinear EIS scheme applied
to the partial eigenvalue problem. We address the case where the Rayleigh quotient iteration
is used as the smoother on the fine-level. Unlike in our previous theoretical results, where the
smoother given by the linear inverse power method is assumed, we prove nonlinear speed-
up when the approximation becomes close to the exact solution. The speed-up is cubic.
Unlike existent convergence estimates for the Rayleigh quotient iteration, our estimates
take advantage of the powerful effect of the coarse-space.
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1. Introduction

This paper is concerned with a convergence analysis of the nonlinear two-level

method of [7] with a nonlinear Rayleigh quotient iteration smoother, applied to the

partial eigenvalue problem. The matrix is assumed to be symmetric and positive

definite with a simple minimal eigenvalue. We seek the minimum eigenvalue and

the corresponding eigenvector. Our method belongs to the class of preconditioned

eigensolvers using projected methods or subspace correction methods like Davidson,

Jacobi-Davidson, and Generalized Davidson methods, see, for example, [3], [5], [9],

[10], [11]. At the same time, we strongly exploit the multigrid structure of the solution

spaces. In [4], we provided a convergence proof assuming the linear inverse power

method is used on the fine-level. We showed that under reasonable assumptions, the

DOI: 10.21136/AM.2017.0101-16 49

http://dx.doi.org/10.21136/AM.2017.0101-16


method accelerates with the growing condition number of the matrix. On the other

hand, there is no nonlinear speed-up when the iterate is close to the exact solution.

In this paper, we analyze the method of [7] with the Rayleigh quotient iteration

used as the smoother and prove a cubic nonlinear speed-up. Unlike the known

estimates for nonlinear inverse iteration (see e.g. [12]), our convergence estimates

take advantage of the powerful effect of the coarse-space and improve with growing

condition number of the matrix.

The convergence proof is limited to the two-level case. However, this limitation

may not be too restrictive since the convergence proof, assuming a reasonable (and

moderate) p-approximation property of the coarse-space, allows for radically aggres-

sive coarsening while preserving good asymptotic convergence bounds.

The method of [7] is a special type of Exact Interpolation Scheme (EIS) proposed

by Brandt with collaborators in [6], [1] and long before that, by Mandel and Sek-

erka in [8]. The coarse-level correction process is the Rayleigh-Ritz procedure with

non-orthonormal approximation of the eigenvectors given by the columns of the pro-

longator. EIS is a nonlinear multigrid scheme with the prolongator constructed so

that the current approximation x belongs to its range. While the authors of [6], [1]

use a more complicated way of guaranteeing x ∈ RangeP , we use a general pur-

pose prolongator and simply add the current approximation x as its first column.

The method was tested with extremely good results on problems of nuclear reactor

criticality computations ([7]).

Our convergence analysis consists in proving the speed-up of the method with the

Rayleigh quotient iteration smoother compared to the method that uses the linear

inverse power method as the smoother. In other words, we estimate how many times

faster is the method with the Rayleigh quotient iteration smoother compared to the

method with the linear inverse power method used on the fine-level. As such, our new

proof represents a natural extension of the convergence result of [4] that it invokes.

The analysis has been done for a partial eigenvalue problem assuming the matrix

is symmetric, positive definite and the minimum eigenvalue is unique. The result

can be easily extended to the case of a generalized eigenvalue problem where both

matrices are symmetric and positive definite. The methodology of the generalization

has been developed in [4].

Our numerical tests are performed on a model example. For numerical results of

real-life problems, namely on the nuclear reactor criticallity computatioins on highly

unstructured meshes, we refer to [7]. Here, we test the method on the partial eigen-

value problem obtained by Q1 discretization of the second order elliptic operator,

in particular the discretization of the Laplace operator and its inisotropic singular

perturbation. Both problems are discretized on the regular square grid on the square

computational domain. The first observation is that adding the coarse-space of even
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a very moderate size (few degrees of freedom) significantly reduces the number of

iterations compared to the Rayleigh quotient iteration applied to the same problem.

This reflects the fact that the eigenvector corresponding to the minimal eigenvalue

is, in general, smooth and as such well represented on a coarse level. The two-level

method with the Raileigh quotient iteration used as the smoother performs excel-

lently for highly anisotropic problems. The computational results for larger problems

(bigger condition number of A) are generally better than for a smaller problems,

mainly for multigrid method that uses linear inverse iteration as the smoother. This

confirms our theoretical findings.

The paper is organized as follows. In Section 2 we present the algorithm and the

convergence result of [4]. In the key Section 3 we analyze the nonlinear speed up of the

Rayleigh quotient iteration smoother compared to the linear inverse power method.

Section 4 contains the final convergence theorem. The numerical tests presented

in final Section 5 confirm our theoretical findings. For the results of experiments

with large problems that use inexact Rayleigh quotient iteration given by multigrid,

see [7].

2. Algorithm

In this section, we explain our nonlinear multigrid scheme of [7], applied to the

partial eigenvalue problem, and give the convergence result of [4].

The multigrid method consists of coarse-level correction along with smoothing,

an iterative process performed on the fine level. The coarse-level correction consists

in finding an approximation of the solution using the Ritz-Galerkin approximation

to the solution on the coarse-space. The coarse-space is introduced as the range of

a linear, injective prolongator P : R
m → R

n, m < n, with R
n being the space where

our fine-level problem is formulated.

Our method is a special type of Exact Interpolation Scheme (EIS) proposed in [1]

and [6]. To treat a nonlinear problem, EIS updates the prolongator in each iteration

so that the current approximation is contained in its range. While the authors of [6]

and [1] use a quite complicated way of guaranteeing x ∈ RangeP , we use a general

purpose prolongator and simply add the current approximation x as its first column.

To explain the reasons for enriching the coarse-space by a current fine-level ap-

proximation, we first notice the following difficulty when solving a nonlinear problem

by multigrid: in the linear case Ax = f , we can take the current approximation x

and formulate the residual equation Au = d, d = Ax− f . Due to the linearity of A,

the exact solution of the residual equation then gives a correction to the approxima-

tion x. For û = A−1d, x − û is the exact solution of the original system Ax = f .

In the standard multigrid, we repeatedly solve the residual problem approximately
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and use the correction. In the nonlinear case A(x) = f(x), this is not possible and

we are forced to use the coarse-level correction for the original problem rather than

for the residual equation.

In our method, let P be the prolongator for now. The current fine-level approxi-

mation x must be available on the coarse-level, as we want to solve the coarse-level

equation:

(2.1) find x2 : PTA(x− Px2) = PTf(x− Px2),

where the final, corrected solution is x − Px2. We resolve the difficulty discussed

above by enriching the coarse-space V = Range(P ) with the current fine eigenvector

approximation x as its basis function in the first column of the prolongator. Thus,

we use the prolongator [x|P ] and instead of (2.1), we solve the problem

find x2 : [x|P ]TA([x|P ]x2) = [x|P ]Tf([x|P ]x2)

that has the same final solution [x|P ]x2 as equation (2.1), with [x|P ] in place of P .

That is,

find x′
2 : [x|P ]TA(x − [x|P ]x′

2) = [x|P ]Tf(x− [x|P ]x′
2).

Here, the final corrected solution is x− [x|P ]x′
2. In the sequence of the coarse-spaces,

each coarse-space contains the current approximation as a column of the prolongator.

Thus, in the limit, the coarse-space contains the exact solution as its basis function

and the solution of the coarse-level problem is the solution of the fine-level problem.

The description of our algorithm follows. Let A be a symmetric and positive

definite n×n matrix with eigenvalues λmin = λ1 < λ2 6 λ3 6 . . . 6 λn = λmax. The

particular case of interest is for A to be a finite element stiffness matrix.

We solve the partial eigenvalue problem:

(2.2) Find λ1, v1 ∈ R
n \ {0} : Av1 = λ1v1.

We consider a linear injective prolongator P : R
m → R

n, m < n. We are interested

in aggressive coarsening, i.e. m≪ n.

Our two-level algorithm with evolving coarse-space for solving (2.2) proceeds as

follows:

Algorithm 1.

⊲ Perform Rayleigh-Ritz procedure with non-orthonormal approximation of eigen-

vectors given by the columns of the prolongator [x|P ] as follows:

1. For given input iterate x ∈ R
n, construct/update the coarse-level matrices

(2.3) A2(x) = [x|P ]TA[x|P ], B2(x) = [x|P ]T[x|P ].
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See Remark 2.2.

2. Find the eigenvector v2 corresponding to the smallest eigenvalue of the coarse-

level problem

(2.4) A2(x)v
2 = λB2(x)v

2.

(If the coarse-level problem (2.4) is to be solved iteratively, a natural initial

guess for v2 is the first canonical basis vector e1 = (1, 0, . . . , 0)T ∈ R
m+1. See

Remark 2.1.)

3. Prolongate v← [x|P ]v2.

⊲ Post-smooth: either perform the inverse power method iteration (old variant of [4])

(2.5) xnew ← A−νv,

or perform the Rayleigh quotient iteration

setx0 = v;

for i = 1, . . . , ν perform xi ← (A−R(xi−1)I)−1xi−1 with(2.6)

R(x) =
〈Ax,x〉
‖x‖2 (the Rayleigh quotient);(2.7)

setxnew = xν .

⊲ Normalize xnew ← ‖xnew‖−1xnew.

R em a r k 2.1. Clearly, for the first canonical basis vector e1 = (1, 0, . . . , 0)T ∈
R

m+1 it holds that

x = [x|P ]e1.

The vector e1 is therefore (assuming x 6∈ Range(P )) a coarse level isomorphic coun-

terpart of the current approximation x; the coarse-level iteration started from e1

is therefore essentially (via the isomorphism [x|P ] : R
m+1 → Range([x|P ])) started

from x.

R em a r k 2.2. Note that only the first column of the prolongator [x|P ] changes

from one iteration to the next. Therefore, only the first row and the first column of

matrices A2(x) andB2(x) have to be recalculated in each iteration. If the coarse-level

problem (2.4) is to be solved by the inverse power method

v2 ← A2(x)
−1B2(x)v

2,

the action of the inverse A2(x)
−1 can be performed using pre-calculated Choleski

decomposition of the matrix A2(x) with the first column and the first row excluded.
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This matrix is the same in every iteration. Note also that the columns of P can

be (before the first iteration) A-orthonormalized, resulting in a very cheap action of

A2(x)
−1. An efficient way how to evaluate the action of A2(x)

−1 using the action of

(PAP )−1 by a Schur complement technique is given in [7], see (8).

R em a r k 2.3. The coarse-level correction part 1–3 of Algorithm 1 is the

Rayleigh-Ritz procedure with non-orthonormal approximation of eigenvectors given

by the columns of the prolongator [x|P ], resulting (due to the non-orthonormality of

the columns) in generalized eigenvalue problem on the coarse level (B2(x) 6= I). For

the vector v returned by Step 3 of Algorithm 1, the pair (λmin(B2(x)) = R(v),v) is

then a Ritz pair.

In more detail, the coarse-level problem (2.4) is the result (equivalent) of the

Galerkin formulation

(2.8) findv ∈ Range([x|P ]) \ {0} : 〈(A−R(v)I)v,w〉 = 0 ∀w ∈ Range([x|P ]).

Indeed, (2.8) is equivalent to the problem

find v2 ∈ R
m+1 \ {0} :

〈(

A− 〈A[x|P ]v2, [x|P ]v2〉
〈[x|P ]v2, [x|P ]v2〉 I

)

[x|P ]v2, [x|P ]w2

〉

= 0 ∀w2 ∈ R
m+1

which, after transposing prolongators [x|P ] in the right arguments of the inner prod-

ucts, becomes

〈(

A2(x) −
〈A2(x)v

2,v2〉
〈B2(x)v2,v2〉B2(x)

)

v2,w2

〉

= 0 ∀w2 ∈ R
m+1

with matrices A2(x) and B2(x) given by (2.3). The above identity holds if and only

if the left argument of the above inner product is zero, which happens if and only if

v2 is an eigenvector of (2.4). Thus, (2.8) and (2.4) are equivalent.

Define the scaled residual norm r(x) by

(2.9) r(x) =
‖Ax−R(x)x‖

‖x‖ , x 6= 0.

The following convergence theorem gives the estimate for Algorithm 1 with old

version of the smoother (2.5), in terms of r(·).

Theorem 2.4 ([4]). Let A be a symmetric and positive definite n × n matrix

with simple minimal eigenvalue λmin. We assume the eigenvalues are numbered so
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that λmin = λ1 < λ2 6 . . . 6 λn = λmax. Consider α ∈ (0, 1] and β > 0 such that

αβ − 1 > 0. We assume there is a linear mapping Q : R
n → Range(P ) such that

(2.10) ∀u ∈ R
n : λ

β/2
min‖u−Qu‖ 6 C

cond(A)αβ/2
‖u‖Aβ .

In addition, assume that the input iterate x is reasonably close to the first eigenvector

v1 so that R(x) ∈ [λ1, λ2). Then the result x
new upon exit of Algorithm 1 with

ν > β/2 and the post-smoothing performed by (2.5) satisfies the estimate

r(xnew) = r(A−νv) 6 qMGII(x)r(x),

qMGII(x) =
C

cond(A)(αβ−1)/2

√

λ2/λmin − 1

(λ2 −R(x))/λmin
.

The rate of convergence qMGII(x) satisfies

(2.11) lim
cond(A)→∞

qMGII(x) = 0.

R em a r k 2.5. In specific applications, the parameter α is related to the mesh

resolution H of the coarse level space (H = hα, h being the fine-level resolution).

The parameter β corresponds to p-approximation quality of the coarse space (β =

p+1). In specific applications, the constant C in (2.10) is indeed bounded. Consider

a regular 2D finite difference discretization of the Poisson equation on a cube with

the resolution h and a P1 finite element coarse-space with the resolution H = hα.

Then A2 is a regular finite difference discretization of the biharmonic equation (the

problem with the H2-equivalent form). There is a mapping Q ([2]) such that

h‖u−Qu‖ 6 C′H2‖u‖A2, H = hα, cond(A) = h−2, λmin ≈ h2

with C′ uniformly bounded. Then,

λmin‖u−Qu‖ 6 C′h

cond(A)α
‖u‖A2 .

The condition (2.10) therefore holds with β = 2 and C = C′h.
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3. Acceleration effect of the Rayleigh quotient iteration method

In this section we prove that for x close to the first eigenvector, our method with

the Rayleigh quotient iteration (2.6) used as the smoother converges much faster

than the two-level method with the smoother given by inverse power method. The

method with linear smoother (2.5) was analyzed in [4]. As in [4], the new result

takes advantage of the powerful effect of the coarse-space and improves with growing

condition number of the matrix A. The acceleration effect in the smoothing iteration

is cubic.

We start our analysis with a straightforward observation.

Lemma 3.1. Let A be n× n symmetric and positive definite matrix with simple

minimal eigenvalue. For convenience, we assume that the matrix A is scaled so that

this minimal eigenvalue satisfies λmin(A) = λ1(A) = 1. Assume x ∈ R
n is a vector

such that R(x) ∈ [λ1(A), λ2(A)). Define the operator Q by

(3.1) Q(x) : u ≡
∑

i

civi 7→ v = c1(R(x)− λ1(A))v1 +
∑

i>1

civi.

Here, {vi} are orthonormal eigenvectors with the eigenvalue λi(A) corresponding to

the eigenvector vi. The eigenvalues are assumed to be ordered so that

λ1(A) < λ2(A) 6 . . . 6 λn(A).

Then, for all u ∈ R
n it holds that

(3.2) ‖(AQ(x))−1u‖ 6 ‖(A−R(x)I)−1u‖ 6 λ2(A)

λ2(A) −R(x)
‖(AQ(x))−1u‖.

P r o o f. Clearly, the operatorQ(·) defined by (3.1) is symmetric in the Euclidean
inner product, commutes with A, and AQ(x) = Q(x)A is symmetric as well. The

operators AQ(x) and A−R(x)I have the same eigenvectors {vi} as A; by λi(AQ(x))

or λi(A − R(x)I) we simply mean the eigenvalue corresponding to vi. First we

establish the inequality

(3.3) λ−1
k (AQ(x)) 6 |λ−1

k (A−R(x)I)| 6 λ2(A)

λ2(A) −R(x)
λ−1
k (AQ(x)).

Obviously, λ1(AQ(x)) = R(x)− λ1(A) = |λ1(A−R(x)I)| and

λ2(A)

λ2(A)−R(x)
> 1.
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Thus, for the first eigenvalue, (3.3) holds trivially. For k > 1, λk(AQ(x)) = λk(A).

Further,

λk(AQ(x)) = λk(A) > λk(A−R(x)I) = λk(A)−R(x)

=
λk(A)− R(x)

λk(A)
λk(A) >

λ2(A)−R(x)

λ2(A)
λk(A)

=
λ2(A)−R(x)

λ2(A)
λk(AQ(x)),

proving (3.3) for k > 1.

Recall that the eigenvectors are orthonormalized, so for u =
∑

i

civi we have

‖(AQ(x))−1u‖2 =
∑

i

c2iλ
−2
i (AQ(x))

and

‖(A−R(x)I)−1u‖2 =
∑

i

c2iλ
−2
i (A−R(x)I),

which together with (3.3) proves (3.2), completing the proof. �

The following lemma shows that for v such that R(v) ≈ λ1, the smoother given

by the Rayleigh quotient iteration yields the same residual r(·) as the inverse power
method for an approximation vector with a much smaller error.

Lemma 3.2. Let A be a symmetric and positive definite matrix with eigenvalues

1 = λ1 < λ2 6 . . . 6 λn and v1, . . . ,vn the corresponding orthonormalized eigenvec-

tors. Consider a vector v ∈ R
n in the form v = c1v1 + e, e ∈ span{v2,v3, . . . ,vn}

and a vector x ∈ R
n such that R(x) < λ2. Then

(3.4)
λ2 −R(x)

λ2
r(A−1v) 6 r((A −R(x)I)−1v) 6

λ2

λ2 −R(x)
r(A−1v),

v = c1v1 + (R(x) − λ1)e.

P r o o f. Let us prove first the second inequality of (3.4). Since R(x)x is the

orthogonal projection of Ax onto spanx, we have

‖(A−R(x)I)x‖ 6 ‖(A−R(x′)I)x‖
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for all vectors x′ ∈ R
n. Using this property, Lemma 3.1, and the fact that the

operators A−R(v)I and AQ(v) (see (3.1)) commute with A, we get

(3.5) r((A −R(x)I)−1v) =
‖[A−R((A−R(x)I)−1v)I](A −R(x)I)−1v‖

‖(A−R(x)I)−1v‖

6
‖[A−R((AQ(x))−1v)I](A −R(x)I)−1v‖

‖(A−R(x)I)−1v‖

=
‖(A−R(x)I)−1[A− R((AQ(x))−1v)I]v‖

‖(A−R(x)I)−1v‖

6
λ2

λ2 −R(x)

‖(AQ(x))−1[A−R((AQ(x))−1v)I]v‖
‖(AQ(x))−1v‖

=
λ2

λ2 −R(x)

‖[A−R((AQ(x))−1v)I](AQ(x))−1v‖
‖(AQ(x))−1v‖

=
λ2

λ2 −R(x)
r((AQ(x))−1v).

By definition (3.1) ofQ(·) and using the fact that the operators A and Q(x) commute

with A, we get

(AQ(x))−1v = (AQ(x))−1(c1v1 + e) = A−1Q−1(x)(c1v1 + e)

= A−1
( c1
R(x)− λ1

v1 + e
)

=
1

R(x)− λ1
A−1(c1v1 + (R(x)− λ1)e).

Since r(·) is independent of the scaling of the argument, the previous identity yields

(3.6) r((AQ(x))−1v) = r(A−1[c1v1 + (R(x)− λ1)e]).

The proof of the second inequality of (3.4) now follows by (3.6).

To prove the first inequality of (3.4) we estimate again using the minimizing prop-

erty of the orthogonal projection, the fact that the operators AQ(x) and A−R(x)I

commute, and Lemma 3.1:

r((A −R(x)I)−1v) =
‖[A−R((A−R(x)I)−1v)I](A −R(x)I)−1v‖

‖(A−R(x)I)−1v‖

=
‖(A−R(x)I)−1[A−R((A−R(x)I)−1v)I]v‖

‖(A−R(x)I)−1v‖

>
λ2 −R(x)

λ2

‖(AQ(x))−1[A−R((A−R(x)I)−1v)I]v‖
‖(AQ(x))−1v‖
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=
λ2 −R(x)

λ2

‖[A−R((A− R(x)I)−1v)I](AQ(x))−1v‖
‖(AQ(x))−1v‖

>
λ2 −R(x)

λ2

‖[A−R((AQ(x)−1v)I](AQ(x))−1v‖
‖(AQ(x))−1v‖

=
λ2 −R(x)

λ2
r((AQ(x))−1v).

The proof of the first inequality of (3.4) now follows by (3.6). �

The following lemma and its corollary contain the key result of this section.

Namely, we prove that for an approximation close to the first eigenvector, the method

using the smoother given by the Rayleigh quotient iteration converges much faster

than the method with the inverse power method given by A−1. The acceleration

effect is cubic. As in [4], where the method with the smoother A−1 is analyzed,

the result takes advantage of the effect of the coarse-space. The lemma is very

convenient: we simply take the recent result for the smoother v ← A−1v and im-

mediately get the asymptotically accelerated result for the fine-level smoother given

by the Rayleigh quotient iteration v← (A−R(v)I)−1v. In other words, we get the

accelerated result in the terms of the former result of [4] for A−1.

Lemma 3.3. Let A be a symmetric and positive definite matrix with eigenvalues

1 = λ1 < λ2 6 . . . 6 λn and v1, . . . ,vn the corresponding orthonormal eigenvectors.

Consider a vector v in the form v = c1v1 + e, e ⊥ v1 and set e
′ = ‖v‖−1e. We

assume that |c1| > c′1,min‖v‖, c′1,min ∈ (0, 1]. Let x ∈ R
n be a vector such that

R(x) < λ2 and R(x)− λ1 6 1. Then it holds that

(3.7) r((A −R(x)I)−1v)) 6
λ2

(λ2 −R(x))|c′1,min|
(R(x)− λ1)r(A

−1v)

+ C(R(x) − λ1)‖e′‖2.

Here, C > 0 is a constant independent of e, dependent exclusively on c′1,min.

P r o o f. In view of the previous lemma, we first investigate the dependence of

r(A−1v) on the magnitude of e. Let us set v′ = ‖v‖−1v, c′1 = c1/‖v‖ and recall
that e′ = ‖v‖−1e. Then

v′ = c′1v1 + e′, r(A−1v) = r(A−1v′).

Thus, we will investigate r(A−1v′) in terms of the scaled error e′ ⊥ v1. As 1 =

‖v′‖2 = c′1
2
+ ‖e′‖2, we have ‖e′‖ 6 1. Further, we set eu = ‖e‖−1e. Then the

parameter t in the expression r(A−1v) = r(A−1(c′1v1+teu)) stands for the Euclidean
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norm of the actual scaled error e′. Since R(w)w is the orthogonal projection of Aw

onto span{w} w.r.t. the Euclidean inner product, we find that
(3.8)

r(w) =
‖Aw −R(w)w‖

‖w‖ =
(‖Aw‖2 −R2(w)‖w‖2

‖w‖2
)1/2

=
(‖Aw‖2
‖w‖2 −R2(w)

)1/2

.

Define the function

(3.9) ϕ(t) = r(A−1(c′1v1 + teu)).

By (3.8), eu ⊥ v1, and the fact that the eigenvectors are orthonormal, we have

(3.10) ϕ(t) =
( ‖c′1v1 + teu‖2
‖A−1(c′1v1 + teu)‖2

−
(‖A−1/2(c′1v1 + teu)‖2
‖A−1(c′1v1 + teu)‖2

)2)1/2

=
( (c′1)

2 + t2‖eu‖2
(c′1)

2 + t2‖A−1eu‖2
−

((c′1)
2 + t2‖A−1/2eu‖2

(c′1)
2 + t2‖A−1eu‖2

)2)1/2

.

Let us set a = 1−‖A−1eu‖2 and b = 1−‖A−1/2eu‖2. Clearly, a, b 6 1. As ‖eu‖ = 1

and λ1 = λmin(A) = 1, it also holds that ‖A−1eu‖ 6 λ−1
1 ‖eu‖ 6 1 and ‖A−1/2eu‖ 6

λ
−1/2
1 ‖eu‖ 6 1, hence a, b > 0. Since t = ‖e′‖ and 1 = ‖v′‖2 = (c′1)

2 + ‖e′‖2, we
have (c′1)

2 + t2 = 1 and therefore,

(3.11) ϕ(t) =
[ 1

1− at2
−
( 1− bt2

1− at2

)2]1/2

, a, b ∈ [0, 1],

and t2 = 1− (c′1)
2 ∈ [0, 1− (c′1,min)

2]. We have

(ϕ2)′(0) = 0,(3.12)

(ϕ2)′′(0) = 4b− 2a,(3.13)

(ϕ2)(3)(0)) = 0,(3.14)

and

(3.15) (ϕ2)(4)(t) = 384
a4t4

(1 − at2)5
+ 288

a3t2

(1− at2)4

− 6
[

24
a2t2

(1− at2)4
+ 4

a

(1− at2)3

]

[8b2t2 − 4b(1− bt2)]

+ 24
a2

(1− at2)3
+ 16bt

[

192
a3t3

(1− at2)5
− 72

a2t

(1− at2)4

]

(1 − bt2)

−
[

1920
a4t4

(1 − at2)6
+ 1152

a3t2

(1− at2)5
+ 72

a2

(1− at2)4

]

(1− bt2)2

− 384
ab2t2

(1− at2)3
− 24

b2

(1− at2)2
.
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Set

C = max{|(ϕ2)(4)(t)| : a, b ∈ [0, 1], t2 6 1− (c′1,min)
2}.

It follows from (3.15) that C is uniformly bounded, dependent exclusively on c′1,min.

Since t = ‖e′‖, by (3.12)–(3.14) we have a Taylor series

(3.16) r2(A−1v) = ϕ2(t) = (ϕ2)′′(0)t2 + (ϕ2)(4)(t̂)t4

for some t̂ ∈ [0, 1] and |ϕ2(t̂))(4)| 6 C.

In view of Lemma 3.2, we also have to investigate r(A−1(c′1v1 + (R(x) − λ1)eu).

We stress that we arrived at the form of the function ϕ using the assumption that

(c′1)
2 + t2 = 1. To be able to use (3.16) for r2((A − R(x)I)−1v), we need a simple

substitution. Let us set

c′′1 =
c′1

√

(c′1)
2 + (R(x)− λ1)2t2

, ξ = t
R(x)− 1

√

(c′1)
2 + (R(x)− λ1)2t2

.

Clearly ξ ≈ (R(x) − λ1)t for x close to the first eigenvector. Then, (c
′′
1 )

2 + ξ2 = 1

and we can use (3.16) to get

r2(A−1(c′1v1 + (R(x)− λ1)eu)) = r2(A−1(c′′1v1 + ξeu)) = ϕ2(ξ)

= (ϕ2)′′(0)ξ2 + (ϕ2)(4)(ξ̂)ξ4

for some ξ̂ ∈ [0, 1] with |ϕ2(ξ̂))(4)| 6 C. We have

ξ2 =
(R(x)− λ1)

2

(c′1)
2 + (R(x)− λ1)2t2

t2 6
(R(x) − λ1)

2

(c′1,min)
2

t2

and we conclude that

(3.17) r2(A−1(c′1v1+(R(x)−λ1)eu)) 6
(ϕ2)′′(0)

(c1,min)2
(R(x)−λ1)

2t2+O((R(x)−λ1)
4t4),

where the constant hidden in the symbol O((R(x)−λ1)
4t4) is dependent exclusively

on c′1,min > 0. Multiplying (3.16) by −(R(x)−1)2/(c′1,min)
2 and adding this to (3.17)

yields

r2(A−1(c′1v1 + (R(x)− λ1)eu))−
(R(x) − 1)2

(c′1,min)
2

r2(A−1v) 6 O(R(x) − λ1)
2t4.

Since t = ‖e′‖, we get

(3.18) r(A−1(c′1v1 + (R(x) − λ1)eu)) 6
R(x)− λ1

|c′1,min|
r(A−1v) +O(R(x) − λ1)‖e′‖2.

Statement (3.7) now follows by Lemma 3.2. �
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It remains to avoid the assumption λ1 = 1.

Corollary 3.4. Let A be a symmetric and positive definite n × n matrix with

eigenvalues λ1 < λ2 6 . . . 6 λn and v1, . . . ,vn the corresponding orthonormal

eigenvectors. Consider a vector v in the form v = c1v1 + e, e ⊥ v1 and set e
′ =

‖v‖−1e. We assume that |c1| > c′1,min‖v‖, c′1,min ∈ (0, 1]. Let x ∈ R
n be a vector

satisfying R(x) < λ2 and R(x)− λ1 6 λ1. Then we have

(3.19) r((A −R(x)I)−1v)) 6
λ2

(λ2 −R(x))|c′1,min|
(R(x)

λ1
− 1

)

r(A−1v)

+ Cλ1

(R(x)

λ1
− 1

)

‖e′‖2.

Here, C > 0 is a constant independent of e, dependent exclusively on c′1,min.

P r o o f. Set A′ = λ1
−1A, and rA′(·), RA′(·) to be r(·), R(·), respectively, with

A replaced by A′. Lemma 3.3 gives

(3.20)

rA′((A′ −RA′(x)I)−1v)) 6
λ2/λ1

(λ2/λ1 −RA′(x))|c′1,min|
(RA′(x)− 1)rA′((A′)−1v)

+ C(RA′(x) − 1)‖e′‖2.

Clearly, rA′(·) = λ−1
1 r(·), RA′(·) = 1/λ1R(·) and A′−RA′(x)I = λ−1

1 (A−R(x)I).

Hence,

rA′((A′ −RA′(x)I)−1v)) =
1

λ1
r((A −R(x)I)−1v))

and

rA′((A′)−1v) =
1

λ1
r(A−1v).

The proof of (3.19) follows from (3.20), the last two identities, and RA′(·) = λ−1
1 R(·).

�

Corollary 3.4 proves the acceleration effect in the estimate for r(v) in terms of

R(v)/λ1 − 1. To eliminate the inconsistency, we prove that R(v)/λ1 − 1 can be

controlled by Cr2(v).

Lemma 3.5. Let A be a symmetric and positive definite n× n matrix and {vi}
its system of orthonormal eigenvectors with λi the eigenvalue corresponding to vi.

We assume the usual numbering λi 6 λi+1, i = 1, . . . n − 1. We consider a vector

x =
∑

i

civi such that R(x) 6 λ2. Then

(3.21)
R(x)

λ1
− 1 6

‖x‖2
(λ2/λ1 − 1)c21

(r(x)

λ1

)2

.
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In addition, it holds that

(3.22) c21 >

(

1− R(x)/λ1 − 1

λ2/λ1 − 1

)

‖x‖2.

R em a r k 3.6. In the above estimates, (c′1)
2 ≡ (c1/‖x‖)2 ∈ (0, 1].

P r o o f. Without loss of generality, we assume that λ1 = 1 and ‖x‖ = 1. The

generalization follows by a trivial argument.

Let us set c = R(x)− 1. Thus, to prove (3.21) and (3.22) means to prove

(3.23) r2(x) > (λ2 − 1)cc21

and

(3.24) c21 > 1− c

λ2 − 1
.

We first prove the auxiliary estimate

(3.25)
‖Ax‖2
‖x‖2A

− ‖x‖
2
A

‖x‖2 > (λ2 − 1)
c

1 + c
c21.

By assumption, x =
∑

i

civi,
∑

i

c2i = 1 and c21 +
∑

i>1

c2iλi = 1 + c. Set

q =

∑

i>1

c2iλi

∑

i>1

c2i
> λ2.

Then c21 + q
∑

i>1

c2i = 1 + c, or, c21 + q(1 − c21) = 1 + c. Thus, we have

(3.26) q = 1 +
c

1− c21
, c21 > 1− c

λ2 − 1
.

This proves (3.24). Further, for any nonzero w ∈ R
n,

(3.27)
‖Aw‖
‖w‖A

>
‖w‖A
‖w‖ .

Indeed, ‖w‖2A = 〈Aw,w〉 6 ‖Aw‖‖w‖. Dividing the above estimate by ‖w‖‖w‖A
yields (3.27). Setting w =

∑

i>1

civi, we get

(3.28)

∑

i>1

c2iλ
2
i

∑

i>1

c2iλi
>

∑

i>1

c2iλi

∑

i>1

c2i
= q.
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Using (3.26) and (3.28), we have

q − 1 =
c

1− c21
and

1

1− c21
>

λ2 − 1

c
.

To conclude, from the fact that
∑

i>1

c2i = 1− c21 and from (3.28) it follows that

‖Ax‖2
‖x‖2A

− ‖x‖
2
A

‖x‖2 >

c21 + q
∑

i>1

c2iλi

c21 +
∑

i>1

c2i λi
−

c21 + q
∑

i>1

c2i

c21 +
∑

i>1

c2i

=

c21 + q2
∑

i>1

c2i

c21 + q
∑

i>1

c2i
−

c21 + q
∑

i>1

c2i

c21 +
∑

i>1

c2i

=

(

c21 + q2
∑

i>1

c2i

)(

c21 +
∑

i>1

c2i

)

−
(

c21 + q
∑

i>1

c2i

)(

c21 + q
∑

i>1

c2i

)

(

c21 + q
∑

i>1

c2i

)(

c21 +
∑

i>1

c2i

)

=

(q − 1)2c21
∑

i>1

c2i

c21 + q
∑

i>1

c2i
>

c2c21
(1 − c21)(1 + c)

>
cc21(λ2 − 1)

1 + c
.

This constitutes the proof of (3.25).

The estimate (3.23) is a more or less straightforward consequence of (3.25). Indeed,

we first notice that in the definition of r in (2.9), the term R(x)x is the projection

of Ax onto span{x} orthogonal in the Euclidean inner product. Therefore, we have
by the Pythagorean Theorem

(3.29) r2(x) =
‖Ax‖2
‖x‖2 −R2(x) =

‖x‖2A
‖x‖2

(‖Ax‖2
‖x‖2A

− ‖x‖
2
A

‖x‖2
)

,

and (3.23) follows by (3.25) and R(x) = 1 + c. Statements (3.21) and (3.22) follow

by substitution A← 1/λ1A and x← ‖x‖−1x. �

R em a r k 3.7. Let v = c1v1 + e, e ⊥ v1. Let us set v
′ = ‖v‖−1v, c′1 = c1/‖v‖,

and e′ = ‖v‖−1e. Viewing v as an input iterate of the Rayleigh quotient iteration

(2.6), let us make a realistic assumption that

(3.30) R(v)− λ1 6 λ2 −R(v).

This assumption represents a minimal requirement on the input iterate of the

Rayleigh quotient iteration (2.6), if we expect it to work reasonably. By (3.30),
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R(x) 6 (λ1 + λ2)/2 and therefore (3.22) gives

(c′1)
2 >

1

2
.

In the assumption of Lemma 3.3, we can therefore take c′1,min =
√

1/2.

Also, note that since ‖e′‖2 = 1− (c′1)
2, (3.22) gives

(3.31) ‖e′‖2 =
‖e‖2
‖v‖2 6

R(v) − λ1

λ2 − λ1
.

Hence under assumption (3.30), ‖e′‖ 6
√

1/2.

4. Final result

In this section we give the proof establishing our final convergence estimate. To

this end, we need one technical result proved in [4] and one more straightforward

technical result.

Lemma 4.1 ([4], it follows also from the Courant-Fischer principles). Let x be

the iterate upon entry to Algorithm 1 and v = [x|P ]v2 the prolongated solution of

the coarse-level problem (2.4). Then

(4.1) R(v) = inf
u∈Range([x|P ])

R(u) 6 R(x).

P r o o f. We will derive the coarse-level problem (2.4) by minimizing R(u) on

the subspace Range([x|P ]).

The minimizer v of R(u) on Range([x|P ]) satisfies the condition

d

dt

∣

∣

∣

t=0
R(v + tw) = 0 ∀w ∈ Range([x|P ]).

We have

d

dt

∣

∣

∣

t=0
R(v + tw) =

d

dt

∣

∣

∣

t=0

〈A(v + tw),v + tw〉
‖v + tw‖2

=
2〈Av,w〉‖v‖2 − 2〈v,w〉‖v‖2A

‖v‖4

=
2

‖v‖2 〈Av −R(v)v,w〉.
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Thus the minimizer v ∈ Range([x|P ]) is the solution of the Galerkin problem (2.8)

that leads to the coarse-level problem (2.4); see Remark 2.3. Let v2,i be the gen-

eralized eigenvectors of (2.4) and λ2,i the corresponding eigenvalues. We assume

the natural numbering λ2,i 6 λ2,i+1. Clearly, λ2,i = R([x|P ]v2,i). The eigenvalues

λ2,i = R([x|P ]v2,i) are (all) extremes and the values in the saddle points of R(v)

on Range[x|P ]. The value λ2,1 = R([x|P ]v2,1) = R([x|P ]v2) is therefore the global

minimum. �

Before formulating the final convergence theorem, we need one more technical

result.

Lemma 4.2. We have

(4.2) R(A−1v) 6 R(v).

At the same time, assuming R(x)− λ1 6 λ2 −R(x),

(4.3) R((A−R(x)I)−1v) 6 R(v).

P r o o f. We prove a more difficult statement (4.3). The proof of (4.2) is anal-

ogous. Without loss of generality, we assume that the matrix A is scaled so that

λmin(A) = 1. The generalization follows by a trivial argument, namely, by substitu-

tion A← λ−1
minA. Assume the eigenvalues {λi} of A are numbered so that λi 6 λi+1

and the corresponding eigenvectors {vi} are orthonormalized. Set

S(x) =
[∣

∣

∣

1

λmin(A−R(x)I)

∣

∣

∣
(A−R(x)I)

]−1

.

Denote by λS
i the eigenvalue of S(x) corresponding to the eigenvector vi. Clearly,

(λS
i+1)

2 6 (λS
i )

2. The vector v can be expressed as a linear combination of the

eigenvectors vi as v=
∑

i

civi. Thus, to prove (4.3) means to proveR(S(x)v) 6 R(v),

that is,

(4.4)

∑

i

c2i (λ
S
i )

2λi

∑

i

c2i (λ
S
i )

2
6

∑

i

c2iλi

∑

i

c2i
.

We proceed by induction; assume that

(4.5)

k
∑

i=1

c2i (λ
S
i )

2λi

k
∑

i=1

c2i (λ
S
i )

2

6

k
∑

i=1

c2iλi

k
∑

i=1

c2i
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for some k < n. Then, since (λS
k )

2 are non-increasing, (4.5) holds also for k + 1 in

the place of k. Indeed, set q =
k
∑

i=1

c2i (λ
S
i )

2λi

/ k
∑

i=1

c2i (λ
S
i )

2 6 λk+1. By induction

assumption (4.5) we get

(4.6)
k

∑

i=1

c2iλi > q
k
∑

i=1

c2i .

We have

(4.7)

k+1
∑

i=1

c2i (λ
S
i )

2λi

k+1
∑

i=1

c2i (λ
S
i )

2

=

q
k
∑

i=1

c2i (λ
S
i )

2 + c2k+1(λ
S
k+1)

2λk+1

k
∑

i=1

c2i (λ
S
i )

2 + c2k+1(λ
S
k+1)

2

.

The function on the right-hand side of the above inequality is a convex com-

bination of q and λk+1 and q 6 λk+1, that is, it is a non-increasing function

of
k
∑

i=1

c2i (λ
S
i )

2/
[ k
∑

i=1

c2i (λ
S
i )

2 + c2k+1(λ
S
k+1)

2
]

, hence a non-increasing function of

k
∑

i=1

c2i (λ
S
i )

2 (enlarging
k
∑

i=1

c2i (λ
S
i )

2 makes larger the weight
k
∑

i=1

c2i (λ
S
i )

2/
[ k
∑

i=1

c2i (λ
S
i )

2+

c2k+1(λ
S
k+1)

2
]

in front of the smaller or equal q at the expense of the weight of the

larger or equal λk+1). Therefore, since
k
∑

i=1

c2i (λ
S
i )

2 > (λS
k+1)

2
k
∑

i=1

c2i , we have

k+1
∑

i=1

c2i (λ
S
i )

2λi

k+1
∑

i=1

c2i (λ
S
i )

2

6

q(λS
k+1)

2
k
∑

i=1

c2i + c2k+1(λ
S
k+1)

2λk+1

(λS
k+1)

2
k
∑

i=1

c2i + c2k+1(λ
S
k+1)

2

=

q
k
∑

i=1

c2i + c2k+1λk+1

k
∑

i=1

c2i + c2k+1

.

The proof of (4.5) with k + 1 in the place of k now follows by (4.6). The proof of

(4.4) follows by induction with the fact that for k = 1, both sides of (4.5) are equal

to λ1.

This proves (4.3). The proof of (4.2) follows by setting S = A−1, that is,

λS
i = 1/λi. �

Theorem 4.3. Let A be a symmetric and positive definite n × n matrix with

simple minimal eigenvalue λmin. We assume the eigenvalues are numbered so that

λmin = λ1 < λ2 6 . . . 6 λn = λmax. Consider α ∈ (0, 1] and β > 0 such that

αβ − 1 > 0. We assume there is a linear mapping Q : R
n → Range(P ) and a

constant CA > 0 such that

∀u ∈ R
n : λ

β/2
min‖u−Qu‖ 6 CA

cond(A)αβ/2
‖u‖Aβ .
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In addition, assume that the input iterate x is reasonably close to the first eigenvector

v1 so that R(x) − λ1 6 λ2 − R(x) and R(x)/λ1 − 1 6 1. Then the result xnew on

exit of Algorithm 1 with ν > β/2 and post-smoothing performed by the Rayleigh

quotient iteration (2.6) satisfies the estimate

(4.8)
r(xnew)

λmin
6 qMGRQI(x)

( r(x)

λmin

)3

+ Cν
( r(x)

λmin

)4

,

where

qMGRQI(x) = 2
CA

cond(A)(αβ−1)/2

( λmin

λ2 − λmin

)1/2( 2
√
2λminλ2

(λ2 − λmin)2

)ν

.

The quantity qMGRQI(x) satisfies

lim
cond(A)→∞

qMGRQI(x) = 0.

The constant C depends only on λ2/λmin.

P r o o f. Let x be the iterate upon entry of Algorithm 1, v = [x|P ]v2 the

prolongated solution of the coarse-level problem (2.4), and xi the i-th iterate in

smoothing procedure (2.6). Clearly,

xi = (A−R(xi−1)I)−1xi−1.

By Lemma 4.1 and Lemma 4.2 we have that

(4.9) R(xnew) = R(xν) 6 R(xν−1) 6 . . . 6 R(x0) = R(v) 6 R(x).

For a vector w ∈ R
n, define c′(w) and e′(w) by

1

‖w‖w = c′(w)v1 + e′(w), e′(w) ⊥ v1.

Set

yk =

( 0
∏

i=k,k−1,...

(A−R(xi−1)I)−1

)

A−(ν−k)x0, k = 0, . . . , ν,

and

zk =

( 0
∏

i=k−1,k−2,...

(A−R(xi−1)I)−1

)

A−(ν−k)x0, k = 1, . . . , ν
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(with
0
∏

i=0

≡ I). By Lemma 4.2 we have

(4.10) R(yk) 6 R(x0), R(zk) 6 R(x0), k = 0, . . . , ν.

Note that x0 = v. Clearly, yν = xν , y0 = A−νx0 = A−νv, A−1zk = yk−1, and

yk = (A−R(xk−1)I)−1zk. By Corollary 3.4, we get

(4.11) r(yk) 6
λ2

(λ2 −R(xk−1))|c′1,min|
(R(xk−1)

λ1
− 1

)

r(A−1zk)

+ C
(R(xk−1)

λ1
− 1

)

‖e′(zk)‖2

6
λ2

(λ2 −R(xk−1))|c′1,min|
(R(xk−1)

λ1
− 1

)

r(yk−1)

+ C
(R(xk−1)

λ1
− 1

)

‖e′(zk)‖2.

Further, by virtue of (3.31) and (4.10),

‖e′(zk)‖2 6
1

λ2/λ1 − 1

(R(zk)

λ1
− 1

)

6
1

λ2/λ1 − 1

(R(x

λ1
− 1

)

.

Substituting this estimate and (4.9) into (4.11), we get

r(yk) 6
λ2

(λ2 −R(x))|c′1,min|
(R(x)

λ1
− 1

)

r(yk−1) +
C

λ2/λ1 − 1

(R(x)

λ1
− 1

)2

and therefore,

(4.12) r(xν ) 6
( λ2

(λ2 − R(x))|c′1,min|
)ν(R(x)

λ1
− 1

)ν

r(A−νx0) + Cν
(R(x)

λ1
− 1

)2

.

Statement (4.8) now follows by Theorem 2.4, Lemma 3.5, and Remark 3.7. �

R em a r k 4.4. The convergence results can be easily extended to the case of

the generalized eigenvalue problem assuming both matrices are symmetric, positive

definite. The methodology has been developed in Section 4 of [4].
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5. Numerical experiments

In the following numerical examples, we use the bilinear FE on the fine level and

the bilinear FE on the coarse level. No orthogonalization process is applied to the

coarse basis vectors. The computational domain is rectangular with the uniform

square grid. The coarse-level mesh is also uniform. There is n (fine) DOFs and m

coarse DOFs.

Tables show the numbers of iterations of several methods:

⊲ inverse iteration method (II),

⊲ Rayleigh quotient iteration (RQI),

⊲ multigrid Rayleigh-Ritz method with one step of inverse iteration in every cycle

(MGII),

⊲ multigrid Rayleigh-Ritz method with one step of the Rayleigh quotient iteration

in every cycle (MGRQI).

The last three columns in every table present reduction ratios of norms of the

last two residuals r(xj), i.e. r(xk+1)/r(xk), where k is the number of iterations to

achieve the prescribed threshold of r(xj). In particular, there are reduction ratios of

residuals of MGII method (rMGII), reduction ratios of the cubic powers of residuals

of MGII method (rMGII3), and the reduction ratios of residuals of MGRQI method

(rMGRQI), respectively.

To allow for the reproducibility of the presented numerical results, we start with

the vector of ones. In our numerical experiments, the presented results are fully

comparable to the ones that start with the random vectors.

We use Matlab routines for solving systems of linear equations. Of course, solving

systems with almost singular matrices becomes costly. This is the usual drawback of

the Rayleigh quotient iterations and we thus do not consider this issue in this paper.

We only note that preconditioning methods for such cases may exploit the multi-

grid scheme presented here. For the numerical results with the non-exact Rayleigh

quotient iteration given by multigrid, see [7].

E x am p l e 1. Equation −∆u = λu on a rectangle with a uniform mesh and

homogeneous Dirichlet boundary conditions.

E x am p l e 2. Equation −∇·A∇u = λu on a rectangle with a uniform mesh and

homogeneous Dirichlet boundary conditions, where

A =

(

1 0

0 α

)

.

Adding the coarse-space of even a very moderate size (few degrees of freedom)

significantly reduces the number of iterations compared to RQI. The MGRQI method
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n m it. MGII it. MGRQI rMGII rMGII3 rMGRQI

9801 9 8 4 1.18e-01 1.66e-03 1.35e-05

16 6 3 7.73e-02 4.62e-04 1.04e-07

81 5 3 1.84e-02 6.28e-06 3.01e-10

361 4 3 1.98e-03 1.01e-11 2.25e-10

39601 9 7 4 1.18e-01 1.63e-03 6.26e-05

16 6 3 7.47e-02 4.16e-04 1.07e-07

81 5 3 1.53e-02 3.57e-06 4.38e-10

361 4 3 1.02e-03 1.06e-09 1.19e-09

1521 4 3 7.42e-04 4.09e-10 4.90e-09

Table 5.1. Example 1. Tolerance 1e-11. For n = 9801 we have 14 steps of II method and
7 steps of RQI method. For n = 39601 we have 13 steps of II method and 5 steps
of RQI method.

n m it. MGII it. MGRQI rMGII rMGII3 rMGRQI

9801 9 15 4 4.01e-01 6.43e-02 1.06e-06

16 12 4 3.12e-01 3.03e-02 1.12e-05

81 7 3 9.66e-02 9.02e-04 2.76e-09

361 5 3 1.15e-02 1.53e-06 1.49e-10

39601 9 12 4 4.00e-01 6.39e-02 4.90e-06

16 10 3 3.08e-01 2.93e-02 7.86e-07

81 6 3 6.27e-02 2.47e-04 2.63e-09

361 5 3 8.54e-03 6.23e-07 6.73e-10

1521 4 3 1.85e-03 6.35e-09 2.78e-09

Table 5.2. Example 2 with α = 0.1. Tolerance 1e-11. For n = 9801 we have 33 steps
of II method and 8 steps of RQI method. For n = 39601 we have 30 steps of
II method and 7 steps of RQI method.

n m it. MGII it. MGRQI rMGII rMGII3 rMGRQI

9801 9 61 4 8.47e-01 6.07e-01 6.48e-08

16 46 4 8.11e-01 5.33e-01 8.35e-07

81 15 3 5.02e-01 1.26e-01 3.08e-08

361 7 3 1.69e-01 4.84e-03 2.03e-10

39601 9 48 4 8.45e-01 6.03e-01 3.02e-07

16 35 4 8.09e-01 5.29e-01 3.66e-06

81 12 3 4.94e-01 1.20e-01 2.83e-08

361 6 3 8.19e-02 5.50e-04 5.50e-10

1521 5 3 1.84e-02 6.25e-06 2.21e-09

Table 5.3. Example 2 with α = 0.01. Tolerance 1e-11. For n = 9801 we have 198 steps of
II method and 10 steps of RQI method. For n = 39601 we have 178 steps of II
method and 9 steps of RQI method.
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performs excellently for highly anisotropic problems. The computational results for

larger problems (bigger condition number ofA) are generally better than for a smaller

problems, mainly for MGII. This confirms our theoretical findings.

n m it. MGII it. MGRQI rMGII rMGII3 rMGRQI

9801 9 488 5 9.84e-01 9.57e-01 6.00e-06

16 346 4 9.80e-01 9.42e-01 9.30e-08

81 81 4 9.21e-01 7.80e-01 8.88e-06

361 23 3 7.47e-01 4.17e-01 2.01e-09

39601 9 315 5 9.82e-01 9.47e-01 9.93e-07

16 215 4 9.77e-01 9.34e-01 1.30e-07

81 50 3 9.08e-01 7.49e-01 4.54e-06

361 15 3 6.94e-01 3.34e-01 1.32e-09

1521 7 3 1.70e-01 4.95e-03 2.16e-09

Table 5.4. Example 2 with α = 0.001. Tolerance 1e-11. For n = 9801 we have 1851 steps
of II method and 6 steps of RQI method. For n = 39601 we have 1449 steps of
II method and 11 steps of RQI method.
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Figure 5.1. Graphical plot of errors corresponding to the third row in Table 5.4 (20 steps).
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