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KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 5 , P AGES 7 5 7 – 7 8 4

A LINEAR PROGRAMMING APPROACH
TO ERROR BOUNDS FOR RANDOM WALKS
IN THE QUARTER-PLANE

Jasper Goseling, Richard J. Boucherie and Jan-Kees van Ommeren

We consider the steady-state behavior of random walks in the quarter-plane, in particular,
the expected value of performance measures that are component-wise linear over the state space.
Since the stationary distribution of a random walk is in general not readily available we establish
upper and lower bounds on performance in terms of another random walk with perturbed
transition probabilities, for which the stationary distribution is a geometric product-form. The
Markov reward approach as developed by van Dijk is used to bound the perturbation error. The
main contribution of the work is the formulation of finite linear programs that provide upper
and lower bounds to the performance of the original random walk. Most importantly, these
linear programs establish bounds on the bias terms. This leverages an important drawback
in the application of the Markov reward approach, which in existing literature is based on
meticulously crafted bounds on the bias terms.

Keywords: random walk, quarter-plane, reflected random walk, stationary distribution,
error bound, Markov reward approach, linear programming

Classification: 60K25, 60G50, 90B22

1. INTRODUCTION

We consider random walks in the quarter-plane, i. e., discrete-time Markov processes on
state space S = {0, 1, . . . }2. The random walks are homogeneous in the sense that within
the interior of the state space, {1, 2, . . . }2, the transition probabilities are translation
invariant. In both axes and in the origin of the state space — i. e., in {1, 2, . . . } × {0},
{0} × {1, 2, . . . } and {(0, 0)} — the transition probabilities are possibly distinct, but
again translation invariant. Our interest is in steady-state behavior. More precisely,
for a random walk R with stationary distribution π : S → [0,∞), our interest is in
F =

∑
n∈S F (n)π(n), for some performance measure F : S → [0,∞). In particular, as F

is generally not available in closed form, our interest is in characterizing the performance
of the random walk by finding upper and lower bounds on F .

Our approach to bounding the performance is based on two observations. The first
observation is that closed form results for F are readily obtained for the case that
the stationary distribution π is known to have a geometric product form. The second
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observation is that by carefully perturbing the transition probabilities of R one obtains
a random walk R̄ for which the stationary distribution π̄ has a geometric product form.
Hence, the performance F̄ of R̄ is known in closed form. The basic idea of our approach
is to bound the performance of R in terms of F̄ . The main contribution of the current
work is to show that |F − F̄| can be bounded by the solution of a linear program. In
particular, we construct such a linear program in which the transition probabilities of
R and R̄, the known stationary distribution π̄, and the performance measure F are the
only input parameters. Hence, this linear program is universal, in the sense that it can
be used to obtain a bound on |F − F̄| without any additional preprocessing.

The current work builds on the Markov reward approach to error bounds as intro-
duced by van Dijk and Puterman [19]. The method has since been further developed by
van Dijk [20, 21, 22, 26] and has been applied to, for instance, Erlang loss networks [3],
tandem networks with finite buffers [24], networks with breakdowns [19], queueing net-
works with non-exponential service [25] and wireless communication networks with net-
work coding [11]. An extensive description and overview of various applications of this
method can be found in [23]. The error bounding method provides a framework for
establishing bounds on |F − F̄|. Starting from the observation that F can be inter-
preted as the average reward over an infinite time horizon in a Markov reward process,
van Dijk formulates a bound on |F − F̄| in terms of bounds of the bias terms (a.k.a.
relative gains) of this Markov reward process. In addition to bounding the bias terms,
the method is based on allowing a different reward function F̄ on the perturbed process.

A major disadvantage of the error bound method is that the verification steps that
are required in application of the method can be technically quite complicated. Indeed,
no generic verification procedure is available in the literature and existing results de-
pend on case by case verification by means of cumbersome induction proofs. The main
contribution of the current work consists of developing such a verification technique for
random walks in the quarter-plane. The verification technique is based on formulating
the application of the error bound method as a linear program. In doing so, it avoids the
induction proofs completely. Moreover, if error bounds exist, the optimization frame-
work will inherently lead to the best possible error bounds. Finally, the method uses
piecewise linear functions to obtain bounds. It will be illustrated that the error bounds
that are obtained based on piecewise linear functions would most likely not have been
found with the approaches to error bounds that have so far been used in the literature.

Our method depends on perturbing some of the transition rates in order to get a
product-form stationary distribution. It was shown in [1] that for continuous-time
Markov processes in the quarter plane, such perturbations can always be found. A
related result was presented in [12, 14] for a (discrete-time) QBD processes that satisfy
a technical condition. In [5] the existence of such perturbations is demonstrated for all
random walks in the quarter-plane. Moreover, a constructive method is presented that
provides such a perturbation. In [4] similar results are obtained for a random walk on a
state space that is bounded in one of the dimenions. In the current work our concern is
not with constructing the perturbed process. Instead we assume that an original and a
perturbed process are given and establish a bound on the difference in performance.

Another means of establishing a relation between F and the performance of the
perturbed random walk R̄ is through stochastic comparison [17]. The advantage of the
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error bound method over stochastic comparison is that it not only provides a comparison
result on two systems, but also quantifies the performance difference between the two.
In addition, the error bound method is able to provide results in cases that stochastic
comparison results do not exist, see, for instance, [18].

While it is possible to obtain closed form expressions for F in special cases, e. g., for
random walks with a product-form stationary distribution, no methods exist that provide
such results for arbitrary random walks. There are some methods to find expressions for
the generating functions of π, cf. [6, 10]. However, these expressions can, in general,
not be used for a straightforward calculation of F .

Linear programming has been introduced by Kumar and Kumar [13] for bounding
the performance of multiclass queueing networks. The goal is to establish performance
bounds that hold for any stable scheduling policy. The method, which was generalized
by Bertsimas et al. in [2] and by Morrison and Kumar in [16] relies on approximating
the underlying average-cost Markov decision process. It was shown by de Farias and
Van Roy [7, 8] how this method fits into a general linear programming approach to
approximate dynamic programming. Another means of approximating the behavior of
a random walk is to analyze the tail asymptotics. An overview of such methods is given
in [15]. The most important difference between [2, 13, 15, 16] and the current work
is that in the current work we provide a bound on the performance difference of two
processes with fixed policies.

The remainder of this paper is organized as follows. In Section 2 we provide an
exact statement of our model and the problem formulation. In Section 3 we provide an
introduction to the Markov reward approach to error bounds as well as an example that
motivates our goal of developing a linear programming framework for obtaining error
bounds. The linear programming approach to the error bound method is developed
in Section 4 for the case that the transition probabilities of R and R̄ differ only for
transitions along the unit directions. An extension of the method to the general case
and some variations of the method are presented in Section 5. Examples that illustrate
application of the method are given in Section 6. Finally, in Section 7 we provide a
discussion of the current work and an outlook on future work.

2. PRELIMINARIES

2.1. Model

We consider two random walks R and R̄, the state space of which is the quarter plane,
denoted by S, i. e., S = {0, 1, . . . } × {0, 1, . . . }. A state is represented by a pair of
coordinates, i. e., for n ∈ S, n = (n1, n2).

We consider a partition of S into four components: C1 = {1, 2, . . . }×{0}, C2 = {0}×
{1, 2, . . . }, C3 = {(0, 0)} and C4 = {1, 2, . . . }×{1, 2, . . . }. We refer to these components
as the horizontal axis, the vertical axis, the origin and the interior respectively. Let k(n)
denote the index of the component of state n ∈ S, i. e., n ∈ Ck(n).

The random walks are discrete-time Markov processes, the transition probabilities of
which are homogeneous in the sense that they are translation invariant in each of the
components. Transitions are to neighbors only. We denote by Nk the transitions possible
from a state in Ck. More precisely N1 = {−1, 0, 1} × {0, 1}, N2 = {0, 1} × {−1, 0, 1},
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N3 = {0, 1} × {0, 1} and N4 = {−1, 0, 1} × {−1, 0, 1}. Also, let N = N4. For notational
convenience we let e1 = (1, 0), e2 = (0, 1), d1 = (1, 1) and d2 = (1,−1).

Let pk,u denote the probability of R jumping from any state n in component Ck to
n+u, where u ∈ Nk. Let p̄k,u denote the corresponding probability for R̄. For notational
convenience let

qk,u = p̄k,u − pk,u. (1)

The partition into components and notation for transition probabilities are illustrated
in Figures 1 and 2, respectively.

C3 C1

C2 C4

Fig. 1. Partition of state space S into components C1, . . . , C4.

→n1

n2
↑

p3,e1

p3,d1p3,e2

p1,-e1 p1,e1

p1,d1p1,e2p1,-d2

p2,-e2

p2,e1

p2,e2

p2,d2

p2,d1

p4,e1

p4,d1p4,e2p4,-d2

p4,-e1

p4,-d1 p4,-e2 p4,d2

p3,0
p1,0

p4,0p2,0

Fig. 2. Transition probabilities for random walk R.

Throughout this paper R and R̄ are assumed to be positive recurrent, irreducible
and aperiodic. Note that the conditions for positive recurrence for our class of random
walks are known and can be found in, for instance, [10, Theorem 1.2.1]. The stationary
distributions of R and R̄, denoted by π and π̄, are the probability distributions that
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satisfy for all n ∈ S,

π(n) =
∑

u∈Nk(n)

pk(n+u),-uπ(n+ u) and π̄(n) =
∑

u∈Nk(n)

p̄k(n+u),-uπ̄(n+ u),

respectively. We assume that π̄ is a product-form geometric distribution, i. e., that for
all n ∈ S,

π̄(n) =
∏

i=1,2

(1− ri)rni
i , (2)

for some r ∈ (0, 1) × (0, 1) that is known. The stationary distribution π is assumed to
be unknown.

2.2. Problem statement

Our goal is to establish upper and lower bounds on the steady-state performance of R
in terms of R̄ and π̄. The performance measure of interest is

F =
∑
n∈S

π(n)F (n), (3)

where F : S → [0,∞) is a function that is linear in each of the components of the state
space, i. e.,

F (n) =


f1,0 + f1,1n1, if n ∈ C1,

f2,0 + f2,2n2, if n ∈ C2,

f3,0, if n ∈ C3,

f4,0 + f4,1n1 + f4,2n2, if n ∈ C4,

(4)

where fk,i are the constants that define the function. We refer to functions that are
linear in each of the components of the state space as componentwise linear or as C-
linear. Let C denote the class of all C-linear functions, C+ is the set of all non-negative
C-linear functions.

Finally, for V ⊂ N and u ∈ N let V + u = {w| w − u ∈ V }.

2.3. Markov reward approach to error bounds

Our framework builds on the Markov reward approach for error bounds, an introduction
to which is provided in [23]. The gist of the approach is to interpret F as a reward
function, where F (n) is the one-step reward if the random walk is in state n. We denote
by F t(n) the expected cumulative reward at time t if the random walk starts from state
n at time 0, i. e.,

F t(n) =

{
0, if t = 0,
F (n) +

∑
u∈Nk(n)

pk(n),uF
t−1(n+ u), if t > 0.

(5)

We will have particular interest in terms of the form Dt
u(n) = F t(n+ u)−F t(n), which

we refer to as bias terms. For the unit vectors, let Dt
1(n) = Dt

e1
(n) and Dt

2(n) = Dt
e2

(n).
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The next result appears in, e. g., [23], and provides a bound on the approximation
error on F . We provide a presentation of the result for random walks in the quarter
plane. A more general formulation of the result, applicable to arbitrary Markov chains,
appears in [23].

Theorem 1. (van Dijk [23], Result 9.3.5) Let F̄ : S → [0,∞) and G : S → [0,∞)
satisfy ∣∣∣F̄ (n)− F (n) +

∑
u∈Nk(n)

qk(n),uD
t
u(n)

∣∣∣ ≤ G(n) (6)

for all n ∈ S and t ≥ 0. Then∑
n∈S

[
F̄ (n)−G(n)

]
π̄(n) ≤ F ≤

∑
n∈S

[
F̄ (n) +G(n)

]
π̄(n).

The crucial element in the above theorem are the bias terms Dt
u(n). It is in general

not possible to find closed form expressions for the bias terms. Therefore, the usual
means of applying the theorem is to find bounds on these bias terms. These bounds
then lead to a function G satisfying (6). The difficulty in practice is that even finding
suitable bounds on the bias terms is a challenging task. The only means that is available
in the literature for tightly bounding the bias terms is to carefully inspect the structure
of the process at hand and meticulously craft suitable bounds. The main contribution
of the current work is a means of establishing error bounds for random walks that do
not require manual construction of bounds on the bias terms.

We illustrate in the next section an application of Theorem 1 to an example. The pur-
pose is to illustrate the difficulties mentioned above, but more importantly to introduce
some of the techniques that will be developed in Section 4.

3. MOTIVATING EXAMPLE

We consider a random walk arising from a queueing application in communication net-
works. The application is network coding in a two-way relay as recently studied in [11].
For details on the application we refer the reader to [11] and the references therein.
The model corresponds to two queues with simultaneous departures from both queues.
In case one of the queues is empty the other queue services packets at a lower rate.
The non-zero transition probabilities in the corresponding random walk, obtained by
uniformization of the continuous-time queueing model with Poisson arrivals and expo-
nential service, are

pk,e1 = λ1, pk,e2 = λ2, (7)

for k = 1, . . . , 4,
p1,-e1 = µ1, p2,-e2 = µ2, p4,-d2 = µ, (8)

and
p1,0 = µ− µ1, p2,0 = µ− µ2, p3,0 = µ, (9)

where 0 < λi < µ and 0 < µi ≤ µ, i = 1, 2, and λ1 + λ2 + µ = 1. The conditions µi ≤ µ
follow from the application as described above. The conditions λi < µ are imposed to
obtain a positive recurrent process, cf. [11]. The normalization λ1 + λ2 + µ = 1 arises
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naturally from the uniformization of the continuous-time model and does not impose a
restriction on the models that can be analyzed. The transition diagram is depicted in
Figure 3. We will refer to this process as the random walk with joint departures.

→n1

↑n2

λ1

λ2

µ1 λ1

λ2

µ2

λ1

λ2

λ1

λ2

µ

µ
µ− µ1

µ− µ2

Fig. 3. Random walk with joint departures.

No closed form expression for the stationary distribution π of this random walk is
known in general. Now consider the perturbed random walk R̄, with

p̄1,-e1 = µ̄1, p̄2,-e2 = µ̄2, (10)

and p̄k,u = pk,u for other values of k and u. In particular, we consider µ̄1 + µ̄2 = µ, since
in that case it is known [11] that if 0 < r1 < 1 and 0 < r2 < 1 are the unique solution of

µ̄1r1 + µ̄2r1r2 = λ1, µ̄2r2 + µ̄1r1r2 = λ2, (11)

then the stationary distribution of R̄ is a geometric product-form, π̄(n) = (1−r1)rn1
1 (1−

r2)rn2
2 .

Let us consider the probability that both queues are empty, i. e., we consider

F (n) =

{
1, if n = (0, 0),
0, otherwise

(12)

and we are interested in F =
∑

n∈S F (n)π(n).
The challenge is to apply Theorem 1 and obtain bounds on F in terms of π̄. As

indicated in the discussion below the statement of Theorem 1 we need to establish bounds
on the bias terms Dt

u(n). A first inspection of R̄ and R reveals that qk,u = p̄k,u − pk,u

are zero if u 6∈ {−e1,−e2, 0}. Therefore, we need to establish only bounds on Dt
-e1

(n),
Dt

-e2
(n) and Dt

0(n) in order to find functions F̄ and G satisfying (6). Since, furthermore,
Dt

0(n) = 0 and Dt
−ei

(n) = −Dt
i(n − ei), we will only consider Dt

1(n) and Dt
2(n). We

provide in the next proposition an expression for the bias terms at time t + 1 in terms
of the bias terms at time t. The result has been obtained by a careful examination of
the particular structure of the random walk with joint departures and the performance
measure at hand. We will use this recursive result on the bias terms to derive upper and
lower bounds on these bias terms.
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Proposition 1. Let R be a random walk with joint departures and F (n) = 1n=(0,0).
Then

Dt+1
1 (n) =


∑2

i=1 λiD
t
1(n+ ei) + µ1D

t
1(n− e1) + (µ− µ1)Dt

1(n), if n ∈ C1,∑2
i=1 λiD

t
1(n+ ei)− (µ− µ2)Dt

2(n− e2), if n ∈ C2,

−1 +
∑2

i=1 λiD
t
1(n+ ei) + (µ− µ1)Dt

1(n), if n ∈ C3,∑2
i=1 λiD

t
1(n+ ei) + µDt

1(n− d1), if n ∈ C4,

(13)

and

Dt+1
2 (n) =


∑2

i=1 λiD
t
2(n+ ei)− (µ− µ1)Dt

1(n− e1), if n ∈ C1,∑2
i=1 λiD

t
2(n+ ei) + µ2D

t
2(n− e2) + (µ− µ2)Dt

2(n), if n ∈ C2,

−1 +
∑2

i=1 λiD
t
2(n+ ei) + (µ− µ2)Dt

2(n), if n ∈ C3,∑2
i=1 λiD

t
2(n+ ei) + µDt

2(n− d1), if n ∈ C4,

(14)

for all n ∈ S and t ≥ 0.

P r o o f . We prove (13) for the case that n ∈ C2. The proofs for the other cases and
for (14) follow in similar fashion. Note that for n ∈ C2, n+ e1 ∈ C4. We have

Dt+1
1 (n) = F (n+ e1)− F (n) +

∑
u∈N4

p4,uF
t(n+ e1 + u)−

∑
v∈N2

p2,vF
t(n+ v) (15)

=
2∑

i=1

λiF
t(n+ e1 + ei) + µF t(n+ e1 − d1)

−
2∑

i=1

λiF
t(n+ ei)− µ2F

t(n− e2)− (µ− µ2)F t(n) (16)

=
2∑

i=1

λiD
t
1(n+ ei) + (µ− µ2)F t(n− e2)− (µ− µ2)F t(n− e2 + e2) (17)

=
2∑

i=1

λiD
t
1(n+ ei)− (µ− µ2)Dt

2(n− e2), (18)

where the first equality follows from (5) and the second equality from n ∈ C2 and the
structure of the random walk with joint departures. �

The general method as presented in Section 4 is also based on first establishing such a
recursive relation on the bias terms. It is a priori not clear that such a relation can always
be found. One of the results presented in this paper is that for random walks this is
indeed possible. Moreover, we provide a structured means of finding such relation. This
leverages the need for manual derivations as performed in development of Proposition 1.

The next proposition provides bounds on the bias terms for the symmetrical case
that λ1 = λ2 and µ1 = µ2 = µ∗. The result is obtained by looking for uniform bounds
−a ≤ Dt

i(n) ≤ b, with a, b ≥ 0, that are stable by induction with respect to (13) and (14).
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The induction leads to the conditions λb+λb+(µ−µ∗)a ≤ b and−1−λa−λa−(µ−µ∗)a ≥
−a for n ∈ C2 and n ∈ C3, respectively, in (13). Recall that λ1 +λ2 +µ = 1. Therefore,
all inequalities can be expressed in µ and µ∗ only. In particular, the above inequalities
are satisfied by choosing a = 1/µ∗ and b = a(µ−µ∗)/µ. It can be verified that all other
inequalities that follow by induction based on (13) and (14) are also satisfied for this
choice of a and b.

Proposition 2. Let R be a random walk with joint departures and F (n) = 1n=(0,0). If
λ1 = λ2 and µ1 = µ2 = µ∗ then

− 1
µ∗
≤ Dt

i(n) ≤ µ− µ∗

µµ∗
, (19)

for i ∈ {1, 2}, n ∈ S and t ≥ 0.

P r o o f . For t = 0 (19) holds since F 0(n) = 0 for all n ∈ S and µ∗ ≤ µ. The proof now
follows from a simple induction on t by verifying all eight cases in (13) and (14). �

The main result of this section is provided in the next proposition. It provides upper
and lower bounds on the probability that the random walk with joint departures is in
the origin. The result is based on a perturbed random walk with µ̄1 = µ̄2 = µ/2. Based
on the discussion above (11) it is clear that other values of µ̄1 and µ̄2 could have been
used. This is explored in [11], but outside the scope of the current paper.

Proposition 3. Let R and R̄ be random walks with joint departures, λ1 = λ2 = λ. Let
R have µ1 = µ2 = µ∗. Let R̄ have µ̄1 = µ̄2 = µ/2. Finally, let F (n) = 1n=(0,0). Then

(1− r)2 − g ≤ F ≤ (1− r)2 + g, (20)

where

r =
−1 +

√
1 + 8λ/µ
2

, g = 2r(1− r) |µ/2− µ
∗|

µ∗
. (21)

P r o o f . For this particular R and R̄ we have

qk,u =


µ/2− µ∗, if k = i, u = −ei, i ∈ {1, 2},
µ∗ − µ/2, if k ∈ {1, 2}, u = 0,
0, otherwise.

(22)

From (22) and the discussion leading to Proposition 1 it follows that if F̄ and G satisfy∣∣∣F̄ (n)− F (n)−
∑

i=1,2

qk(n),-ei
Dt

i(n− ei)
∣∣∣ ≤ G(n), (23)

then they satisfy (6). Let F̄ (n) = F (n) and

G(n) =


|µ/2− µ∗|

µ∗
, if n ∈ C1 or n ∈ C2,

0, otherwise.
(24)
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It is readily verified that these F̄ and G satisfy (23). By using that r = r1 = r2 is the
unique positive solution of (11) and that∑

n∈C1

π̄(n) =
∑

n∈C2

π̄(n) = r(1− r), (25)

the result follows from Theorem 1. �

The asymmetrical case λ1 6= λ2 and/or µ1 6= µ2 is significantly more challenging in
the sense that without the tools that are developed in Section 4 of the current paper,
generalizing Proposition 2 is mostly a matter of guessing the correct form of the bounds.
One of the contributions of this paper is to generate the bounds on the bias terms and
the functions F̄ and G by solving a linear program.

An added benefit of formulating the construction of error bounds in an optimization
framework is that we can use as an objective the minimization of the upper bound on F .
This will produce the tightest possible error bound within the class of functions F̄ and
G that are under consideration. In this section we obtained constant bounds on the bias
terms and piecewise constant functions F̄ and G. A natural question is to ask whether
better bounds could have been obtained by allowing, for instance, piecewise constant
functions for the bounds on the bias terms. The answer is affirmative. The improved
bounds will be presented in Section 6. In Section 6 we will also give performance bounds
for other performance measures, for instance, the marginal first moments.

4. A LINEAR PROGRAMMING APPROACH TO ERROR BOUNDS

In this section we will present our approach to the error bound method. We develop a
linear program that provides an upper bound to the performance approach to finding
the approximation error. We restrict our attention to the case that R and R̄ differ only
for transitions that are along the unit directions, i. e., throughout this section we assume
that

qk,u = p̄k,u − pk,u = 0 for u 6∈ {e1, e2,−e1,−e2, 0}. (26)

The reason for this restriction is that it significantly simplifies the presentation of the
result. A generalization of the result to arbitrary R and R̄ is given in Section 5. In
Section 5 we also present the corresponding result that provides a lower bound on the
performance.

The outline of this section is as follows. In Subsection 4.1 we formulate a first mini-
mization problem that provides an upper bound on F . This problem can not be solved
efficiently, since it depends on the unknown bias terms. Therefore, we develop a frame-
work for bounding the bias terms in Subsection 4.2. The main result of this section, the
error bound result itself, is given in Subsection 4.3. In Subsection 4.4 it is shown that
the corresponding optimization problem is linear with a finite number of variables and
a finite number of constraints.

4.1. An optimized error bound

To start, consider the following optimization problem.
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Problem 1.

minimize
∑
n∈S

[
F̄ (n) +G(n)

]
π̄(n), (27)

subject to
∣∣∣F̄ (n)− F (n) +

∑
i=1,2

(
qk(n),ei

Dt
i(n)

− qk(n),-ei
Dt

i(n− ei)
)∣∣∣ ≤ G(n), for n ∈ S, t ≥ 0, (28)

F̄ (n) ≥ 0, G(n) ≥ 0, for n ∈ S, (29)

The variables in Problem 1 are the functions F̄ and G; the functions F , π̄ and Dt
u are

parameters. Alternatively, we can interpret Problem 1 as an optimization over variables
F̄ (n) and G(n), with two such variables for each n ∈ S. The optimal value of Problem 1
provides an upper bound on F , since from Dt

0(n) = 0 and Dt
-ei

(n) = −Dt
ei

(n − ei) it
follows that if qk,u = p̄k,u − pk,u = 0 for u 6= {e1, e2,−e1,−e2, 0}, i. e., (6) is equivalent
to (28). Also, the problem is linear, since the objective function is linear and the modulus
in constraint (28) induces two linear inequalities for each n ∈ S and t ≥ 0. This linear
program has a countably infinite number of variables and constraints. Our main result,
to be presented later in this section, is a reduction of the above problem to a linear
program with a finite number of variables and constraints.

The most important difficulty in handling Problem 1 is that constraint (28) is ex-
pressed in terms of the bias terms, i. e., the unknown functions Dt

u(n). As a first step
in developing our linear program we introduce pairs of functions Ai : S → [0,∞) and
Bi : S → [0,∞), i = 1, 2. In the next subsection we will formulate a finite number of
constraints on these functions that guarantee that

−Ai(n) ≤ Dt
i(n) ≤ Bi(n), (30)

for all t ≥ 0, i. e., these functions provide bounds on the bias terms uniformly over all
t ≥ 0. For the moment we assume that constraints providing (30) can be constructed and
replace occurrences of Dt

u(n) with its bounds −Ai(n) and Bi(n). The advantage of doing
so is that the new problem does not involve the unknown terms Dt

i(n). In addition it
reduces countably many constraints (one constraint for each t ≥ 0) to a single constraint.
By replacing in Problem 1 occurrences of Dt

i(n) with its bounds −Ai(n) and Bi(n) we
make the constraints more stringent, i. e., the optimal value of an optimization problem
based on these bounds still provides an upper bound on F .

Starting from Problem 1, replacing Dt
i(n) with its bounds Ai and Bi, leads to the

following optimization problem.
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Problem 2.

minimize
∑
n∈S

[
F̄ (n) +G(n)

]
π̄(n), (31)

subject to

F̄ (n)− F (n) +
∑

i=1,2

(
max

{
qk(n),ei

Bi(n),−qk(n),ei
Ai(n)

}
+ max

{
−qk(n),-ei

Bi(n− ei), qk(n),-ei
Ai(n− ei)

})
≤ G(n), for n ∈ S, (32)

F (n)− F̄ (n) +
∑

i=1,2

(
max

{
−qk(n),ei

Bi(n), qk(n),ei
Ai(n)

}
+ max

{
qk(n),-ei

Bi(n− ei),−qk(n),-ei
Ai(n− ei)

})
≤ G(n), for n ∈ S, (33)

−Ai(n) ≤ Dt
i(n) ≤ Bi(n), for n ∈ S, i ∈ {1, 2}, t ≥ 0, (34)

F̄ (n) ≥ 0, G(n) ≥ 0, for n ∈ S, (35)

In the above problem F̄ , G, Ai and Bi are the variables. It remains to replace (34) with
constraints that do not involve the bias terms Dt

i(n) themselves. Therefore, the aim of
the next subsection is to provide such bounds on the bias terms.

4.2. Bounding the bias terms

The goal of this subsection is to obtain constraints on Ai : S → [0,∞) and Bi : S →
[0,∞) that ensure (34). These constraints are developed in an inductive framework, i. e.,
based on an induction in t. Therefore, the first goal of this subsection is to provide a
generalization of Proposition 1, by expressing Dt+1

i as a linear combination of Dt
1 and

Dt
2. Next, we will use this relation to develop the desired constraints.
Our first contribution is to show that we can always express Dt+1

i as a linear com-
bination of Dt

1 and Dt
2. More precisely, we introduce the constants ci,k,j,u, i ∈ {1, 2},

k ∈ {1, . . . , 4}, j ∈ {1, 2}, u ∈ Nk, and provide a set of sufficient conditions under which
these constants satisfy

Dt+1
i (n) = F (n+ ei)− F (n) +

∑
j=1,2

∑
u∈Nk(n)

ci,k(n),j,uD
t
j(n+ u). (36)

One can think of ci,k,j,u as the contribution of Dt
j(n + u) to Dt+1

i (n) if n ∈ Ck. In
addition to the sufficient conditions we prove that there always exist values for ci,k,j,u

that satisfy these conditions. In particular, we show that there exist a ‘universal’ set
of constants that can be used, i. e., constants that are given by a fixed function of the
transition probabilities.

First, sufficient conditions for (36) are given. The result is expressed using k[i]. For
i = 1, 2 we define k[i] as k(n + ei), for n ∈ Ck. Recall from Section 2 that Nk + ei =
{u| u − ei ∈ Nk}. We formulate our conditions in the following lemma, which also
provides a guarantee that the conditions can always be satisfied.
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Lemma 1. There exist constants ci,k,j,u, i, j = 1, 2, k = 1, . . . , 4, u ∈ Nk, that satisfy

1Nk
(w − e1)ci,k,1,w−e1 − 1Nk

(w)ci,k,1,w + 1Nk
(w − e2)ci,k,2,w−e2

− 1Nk
(w)ci,k,2,w = 1Nk[i](w − ei)pk[i],w−ei

− 1Nk
(w)pk,w (37)

for all i ∈ {1, 2}, k ∈ {1, . . . , 4} and w ∈ Nk ∪ (Nk[1] + e1) ∪ (Nk[2] + e2).

P r o o f . It is readily verified that if ci,k,j,u are chosen according to Table 1 then (37)
holds. �

Note that the constraints given in (37) can be interpreted as a flow problem in which
the variable ci,k,j,u is the amount of flow assigned to the ‘edge’ from n+ u to n+ u+ ej

and the RHS of (37) is the demand at ‘vertex’ w. It is not necessary to solve this
problem for each random walk at hand. Instead, the values from Table 1 can be used,
which provide values for ci,k,j,u in terms of the transition probabilities of the random
walk.

Note, that the values of ci,k,j,u as given in Table 1 are not the only values for which (38)
is satisfied. It would be of interest to include an optimization over these constants in the
optimization problems that will be stated below. However, while the constraints (38)
themselves are linear, the overall optimization problem would be non-linear. Therefore,
it is outside the scope of the current work.

Condition (37) provides sufficient conditions for (36), a result that we formulate more
precisely here.

Lemma 2. With the conditions specified in Lemma 1,

Dt+1
i (n) = F (n+ ei)− F (n) +

∑
j=1,2

∑
u∈Nk(n)

ci,k(n),j,uD
t
j(n+ u), (38)

for i = 1, 2, n ∈ S and t > 0.

P r o o f . Consider arbitrary i ∈ {1, 2}, n ∈ S and t > 0. For notational convenience,
let k = k(n).

From (5) it follows directly that

Dt+1
i (n) = F (n+ ei)− F (n) +

∑
u∈Nk[i]

pk[i],uF
t(n+ ei + u)−

∑
v∈Nk

pk,vF
t(n+ v). (39)

Therefore, we need to show that∑
u∈Nk[i]

pk[i],uF
t(n+ ei + u)−

∑
v∈Nk

pk,vF
t(n+ v) =

∑
j=1,2

∑
u∈Nk

ci,k,j,uD
t
j(n+ u). (40)
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k j u c1,k,j,u

1 1 N1 p1,u

2 1 {d1, e1, d2} p4,u

2 1 e2 p4,e2 − p2,d1 + c1,2,1,d1

2 1 0 p4,0 − p2,e1 + c1,2,1,e1

2 1 −e2 p4,-e2 − p2,d2 + c1,2,1,d2

2 2 0 p4,-d2 − p2,e2 + c1,2,1,e2

2 2 −e2 p4,-e1 − p2,0 + c1,2,2,0 + c1,2,1,0

3 1 {e1, d1} p1,u

3 1 e2 p1,e2 − p3,d1 + c1,3,1,d1

3 1 0 p1,0 − p3,e1 + c1,3,1,e1

3 2 0 p1,-d2 − p3,e2 + c1,3,1,e2

4 1 N4 p4,u

k j u c2,k,j,u

1 2 {d1, e2, -d2} p4,u

1 2 e1 p4,e1 − p1,d1 + c2,1,2,d1

1 2 0 p4,0 − p1,e2 + c2,1,2,e2

1 2 −e1 p4,-e1 − p1,-d2 + c2,1,2,-d2

1 1 0 p4,d2 − p1,e1 + c2,1,2,e1

1 1 −e1 p4,-e2 − p1,0 + c2,1,1,0 + c2,1,2,0

2 2 N2 p2,u

3 2 {d1, e2} p2,u

3 2 e1 p2,e1 − p3,d1 + c2,3,2,d1

3 2 0 p2,0 − p3,e2 + c2,3,2,e2

3 1 0 p2,d2 − p3,e1 + c2,3,2,e1

4 2 N4 p4,u

Tab. 1. Values for constants ci,k,j,u.
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The result follows by∑
u∈Nk[i]

pk[i],uF
t(n+ei + u)−

∑
v∈Nk

pk,vF
t(n+ v)

=
∑

w∈Nk∪(Nk[i]+ei)

[
1Nk[i]+ei

(w)pk[i],w−ei
− 1Nk

(w)pk,w

]
F t(n+ w) (41)

=
∑

w∈Nk∪(Nk[1]+e1)

∪(Nk[2]+e2)

[
1Nk[i]+ei

(w)pk[i],w−ei
− 1Nk

(w)pk,w

]
F t(n+ w) (42)

=
∑

w∈Nk∪(Nk[1]+e1)

∪(Nk[2]+e2)

[
1Nk

(w − e1)ci,k,1,w−e1 − 1Nk
(w)ci,k,1,w

+ 1Nk
(w − e2)ci,k,2,w−e2 − 1Nk

(w)ci,k,2,w

]
F t(n+ w) (43)

=
∑

j=1,2

∑
u∈Nk

ci,k,j,u

[
F t(n+ u+ ej)− F t(n+ u)

]
(44)

=
∑

j=1,2

∑
u∈Nk

ci,k,j,uD
t
j(n+ u), (45)

where: — (42) holds because we extend the summation over w for which 1Nk[i]+ei
(w) =

1Nk
(w) = 0, — (43) follows directly from (37), — (44) is an immediate consequence

of (43) and finally, — (45) follows by definition of Dt
j . �

In the remainder we will assume that the conditions from Lemma 1 are satisfied.
Next, we present a set of linear constraints on the functions Ai and Bi that ensure (30).
The proof of the following lemma follows straightforwardly from an induction over t and
is, therefore, omitted.

Lemma 3. If Ai : S → [0,∞) and Bi : S → [0,∞), i = 1, 2 satisfy

F (n+ ei)− F (n) +
∑

j=1,2

∑
u∈Nk

max{−ci,k,j,uAj(n+ u), ci,k,j,uBj(n+ u)} ≤ Bi(n), (46)

F (n)− F (n+ ei) +
∑

j=1,2

∑
u∈Nk

max{−ci,k,j,uBj(n+ u), ci,k,j,uAj(n+ u)} ≤ Ai(n), (47)

for all n ∈ S and k = k(n), then

−Ai(n) ≤ Dt
i(n) ≤ Bi(n), (48)

for i = 1, 2, n ∈ S and t ≥ 0.

4.3. Main result: An error bound without bias terms

Combining the results from the previous subsections leads to the following optimization
problem. Like Problem 2, this problem provides an upper bound on F . A precise
formulation of this result is given below.
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Problem 3.

minimize
∑
n∈S

[
F̄ (n) +G(n)

]
π̄(n), (49)

subject to

F̄ (n)− F (n) +
∑

i=1,2

(
max

{
qk(n),ei

Bi(n),−qk(n),ei
Ai(n)

}
+ max

{
−qk(n),-ei

Bi(n− ei), qk(n),-ei
Ai(n− ei)

})
≤ G(n), for n ∈ S, (50)

F (n)− F̄ (n) +
∑

i=1,2

(
max

{
−qk(n),ei

Bi(n), qk(n),ei
Ai(n)

}
+ max

{
qk(n),-ei

Bi(n− ei),−qk(n),-ei
Ai(n− ei)

})
≤ G(n), for n ∈ S, (51)

F (n+ ei)− F (n) +
∑

j=1,2

∑
u∈Nk(n)

max{−ci,k(n),j,uAj(n+ u),

ci,k(n),j,uBj(n+ u)} ≤ Bi(n), for n ∈ S, i ∈ {1, 2}, (52)

F (n)− F (n+ ei) +
∑

j=1,2

∑
u∈Nk(n)

max{−ci,k(n),j,uBj(n+ u),

ci,k(n),j,uAj(n+ u)} ≤ Ai(n), for n ∈ S, i ∈ {1, 2}, (53)

F̄ (n) ≥ 0, G(n) ≥ 0, Ai(n) ≥ 0, Bi(n) ≥ 0, for n ∈ S, i ∈ {1, 2}. (54)

The next theorem provides the main contribution of the current paper. As indicated
at the start of this section, we will give the generalized result for the case that R and
R̄ can have non-equal transition probabilities for transitions in arbitrary directions in
Section 5.

Theorem 2. Let qk,u = 0 if u 6∈ {−e1, e1,−e2, e2, 0}. Finally, let F∗ denote the optimal
value of Problem 3. Then F ≤ F∗.

P r o o f . By Lemmas 2 and 3 and Constraints (52) and (53) it follows that

−Ai(n) ≤ Dt
i(n) ≤ Bi(n). (55)

Now it follows from constraints (50) and (51) and from the fact that qk,u = 0 if u 6∈
{−e1, e1,−e2, e2, 0} that∣∣∣F̄ (n)− F (n) +

∑
u∈Nk(n)

qk(n),uD
t
u(n)

∣∣∣ ≤ G(n). (56)

Finally, the result follows from Theorem 1. �
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4.4. A finite linear program

The final step is to reduce Problem 3 to a linear program with a finite number of
variables and a finite number of constraints. So far, besides constraints (50) – (54) we
have not put any restrictions on the functions F̄ , G,A1, A2, B1 and B2. In the most
general case, each of these functions is specified by one variable for each element in the
state space, i. e., we have a linear program with countably many variables. Next, we
put additional constraints on these functions, such that the total number of variables
is finite. Recall from Section 2 that the performance measures that we consider are
induced by componentwise linear functions, i. e., F is C-linear, see (4). Moreover, the
transition probabilities of R and R̄ are homogeneous within each component. Therefore,
we restrict our attention to functions F̄ , G,A1, A2, B1 and B2 that are C-linear. It is
clear that by doing so the resulting linear program has a finite number of variables.
Constraints (50) – (54), in addition, reduce to a finite number of linear constraints in
these variables. Finally, the objective function is linear in these variables, leading to the
following result.

Theorem 3. If F̄ , G,A1, A2, B1 and B2 are C-linear, then Problem 3 is a finite linear
program.

5. GENERALIZATION AND VARIATIONS

In this section we present three additional results. First we present a method to establish
a comparison result, i. e., an ordering, on R and R̄. After that we generalize Theorem 2
from Section 4 to include the case that the transition rates of R and R̄ are different
for transitions that are not along the unit directions. Finally, we present results on
establishing lower bounds on performance.

5.1. Comparison result

The results that have been presented in Section 4 are based on the error bound result
by van Dijk Theorem 1. The next result by van Dijk, as found in, for instance [23],
provides a direct comparison between two random walks.

Theorem 4. (van Dijk [23], Result 9.3.2) Let F̄ : S → [0,∞) satisfy

F̄ (n)− F (n) +
∑

u∈Nk(n)

qk(n),uD
t
u(n) ≥ 0, (57)

for all n ∈ S and t ≥ 0. Then

F ≤
∑
n∈S

F̄ (n)π̄(n).

The relevance of the above result is twofold. First, there are cases in which Theorem 4
results in a better upper bound on F than Theorem 1. In Section 6 we will provide some
examples.

The second use of Theorem 4 stems from the fact that useful results can be deducted
without explicit knowledge of π̄, the invariant measure of the perturbed random walk.



774 J. GOSELING, R. J. BOUCHERIE AND J. C.W. VAN OMMEREN

Indeed a comparison can be made between two systems directly. This can be useful, for
instance, in analyzing the effect of changing certain parameters, like specific transition
probabilities.

The first variation of Problem 3 that we consider is a straightforward application
of Theorem 4. The variables in the optimization problem below are the functions
F̄ , A1, A2, B1 and B2. Since the aim is no longer to obtain a bound on the modulus
of the LHS of (57), there is no function G.

Problem 4.

minimize
∑
n∈S

F̄ (n)π̄(n), (58)

subject to

F̄ (n)− F (n) +
∑

i=1,2

(
min

{
qk(n),ei

Bi(n),−qk(n),ei
Ai(n)

}
(59)

+ min
{
−qk(n),-ei

Bi(n− ei), qk(n),-ei
Ai(n− ei)

})
≥ 0, for n ∈ S, i ∈ {1, 2}, (60)

and Constraints (52) – (54) of Problem 3. (61)

The next corollary is an immediate consequence of Theorems 2 and 4.

Corollary 1. Let qk,u = 0 if u 6∈ {−e1, e1,−e2, e2, 0} and let F∗ denote the optimal
value of Problem 4. Then F ≤ F∗.

The difference between Problems 3 and 4 is small in the sense that both problems
require upper and lower bounds on Dt

i(n). There are cases for which it is not possible
to find such upper and lower bounds in which case neither Problem 3 nor Problem 4 has
a feasible solution. However, in some of these cases it might still be possible to obtain a
result on the sign of Dt

i(n). Together with the sign of qk,ei
and qk,-ei

this could be used
to establish (57) and obtain a comparison result.

5.2. Arbitrary perturbations

In Section 4 we derived an error bound result for the case that the perturbations from
R to R̄ were along the unit directions only, i. e., qk,u = 0 if u 6∈ {−e1, e1,−e2, e2, 0}. In
this subsection we extend this result to arbitrary perturbations, i. e., arbitary qk,u. The
method we use for this generalization is to use the bounds on the bias terms Dt

e1
= Dt

1

and Dt
e2

= Dt
2 that are obtained from Constraints (52) and (53) to construct bounds

on the bias terms Dt
u in the other directions, i. e., for u 6= {e1, e2}. In order to prevent

confusion, in this section we will refrain from using the notation Dt
i , Ai and Bi. Instead

we will use the full forms Dt
ei

, Aei
and Bei

.
For the purpose of bounding Dt

u we introduce functions Au and Bu for each u ∈ N .
In similar spirit to previous considerations the aim is to achieve

−Au(n) ≤ Dt
u(n) ≤ Bu(n). (62)
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In Section 4 we have obtained bounds on Aei and Bei , for i = 1, 2. We present a
construction to reuse these bounds and obtain the desired result on Au and Bu for all
u ∈ N .

Before giving the general construction of the functions Au, Bu, we provide an example
for the case that u = −d2. First note that Dt

-d2
(n) is only defined if n − d2 ∈ S. Now,

using the fact that −d2 = −e1 + e2 we have

Dt
-d2

(n) = F t(n− d2)− F t(n) (63)

=
(
F t(n− e1 + e2)− F t(n− e1)

)
−
(
F t(n− e1 + e1)− F t(n− e1)

)
(64)

= Dt
e2

(n− e1)−Dt
e1

(n− e1). (65)

By constructing A-d2 and B-d2 on domain S ∩ (S + d2) as

A-d2(n) = Ae2(n) +Be1(n− e1), (66)
B-d2(n) = Be2(n) +Ae1(n− e1), (67)

we achieve −A-d2(n) ≤ Dt
-d2

(n) ≤ B-d2(n) as required. The general construction for
arbitrary u ∈ N is given in the next result. Since Dt

u(n) = F t(n + u) − F t(n) is not
defined if n+ u 6∈ S we need to take some care in defining the domain of the functions
Au and Bu.

Lemma 4. Consider for u ∈ N \ {e1, e2} the functions Au : S ∩ (S − u) → [0,∞) and
Bu : S ∩ (S − u)→ [0,∞) defined as

Au(n) =1u1=1Ae1(n) + 1u1=−1Be1(n− e1) + 1u2=1Ae2(n+ u1e1)
+ 1u2=−1Be2(n+ u1e1 + u2e2),

Bu(n) =1u1=1Be1(n) + 1u1=−1Ae1(n− e1) + 1u2=1Be2(n+ u1e1)
+ 1u2=−1Ae2(n+ u1e1 + u2e2),

where, for i = 1, 2, Aei
: S → [0,∞) and Bei

: S → [0,∞). If −Aei
(n) ≤ Dt

ei
(n) ≤

Bei
(n), i = 1, 2, t ≥ 0, then

−Au(n) ≤ Dt
u(n) ≤ Bu(n), (68)

for all u ∈ N , n ∈ S and all t ≥ 0.

P r o o f . The results follows directly from the observation that we can write

D-e1(n) = −De1(n− e1), D-e2(n) = −De2(n− e2),
Dd1(n) = De1(n) +De2(n+ e1), D-d1(n) = −De1(n− e1)−De2(n− e1 − e2),
Dd2(n) = De1(n)−De2(n+ e1 − e2), D-d2(n) = −De1(n− e1) +De2(n− e1),

i. e., that

Du(n) = 1u1=1De1(n)− 1u1=−1De1(n− e1) + 1u2=1De2(n+ u1e1)
− 1u2=−1De2(n+ u1e1 − e2).

�
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Next, we provide the natural extension of Problem 3 that includes the bounds on the
bias terms in all directions. Like Problem 3 the optimal value of the problem provides
an upper bound on F . A formal statement of this result is given below.

Problem 5.

minimize
∑
n∈S

[
F̄ (n) +G(n)

]
π̄(n), (69)

subject to∣∣∣∣F̄ (n)− F (n) +
∑

u∈Nk(n)

qk(n),uEu(n)
∣∣∣∣ ≤ G(n), for n ∈ S, (70)

−Au(n) ≤ Eu(n) ≤ Bu(n), for n ∈ S ∩ (S − u), u ∈ N, (71)

Au(n) = 1u1=1Ae1(n) + 1u1=−1Be1(n− e1) + 1u2=1Ae2(n+ u1e1)
+ 1u2=−1Be2(n+ u1e1 + u2e2), for n ∈ S ∩ (S − u), u ∈ N, (72)

Bu(n) = 1u1=1Be1(n) + 1u1=−1Ae1(n− e1) + 1u2=1Be2(n+ u1e1)
+ 1u2=−1Ae2(n+ u1e1 + u2e2), for n ∈ S ∩ (S − u), u ∈ N, (73)

F (n+ ei)− F (n) +
∑

j=1,2

∑
u∈Nk(n)

max{−ci,k(n),j,uAej
(n+ u),

ci,k(n),j,uBej (n+ u)} ≤ Bei(n), for n ∈ S, i ∈ {1, 2}, (74)

F (n)− F (n+ ei) +
∑

j=1,2

∑
u∈Nk(n)

max{−ci,k(n),j,uBej
(n+ u),

ci,k(n),j,uAej
(n+ u)} ≤ Aei

(n), for n ∈ S, i ∈ {1, 2}, (75)

F̄ (n) ≥ 0, G(n) ≥ 0, Au(n) ≥ 0, Bu(n) ≥ 0, for n ∈ S ∩ (S − u), u ∈ N. (76)

Theorem 5. Let F∗ denote the optimal value of Problem 5. Then F ≤ F∗.

P r o o f . Directly from Lemmas 2, 3 and 4 and Theorem 1. �

Lemma 4 and Problem 5 provide one means of establishing a linear programming
based error bound. An alternative approach is to directly extend Lemma 2 to the case
of bias terms in arbitrary directions. More precisely, this approach would involve finding
constants gu,k,v,w for u, v, w ∈ N , k = 1, . . . , 4 such that

Dt+1
u (n) = F (n+ u)− F (n) +

∑
v∈N

∑
w∈Nk(n)

gu,k(n),v,wD
t
v(n+ w), (77)

for u ∈ N , n ∈ S and t > 0. From (77) we could then develop a generalization of
Lemma 3 and an alternative to Problem 5. Such an approach would not be hampered
by any technical difficulties. However, it would also not provide any additional insights
over Problem 5. Therefore, this approach is not pursued in the current paper.
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5.3. Lower bounds

All results that have been presented in this paper so far deal with upper bounds on
F . Corresponding lower bounds can trivially be obtained. We have for instance the
following maximization problem and corollary to Theorems 1 and 2.

Problem 6.

maximize
∑
n∈S

[
F̄ (n)−G(n)

]
π̄(n), (78)

subject to Constraints (50) – (54) of Problem 3. (79)

Corollary 2. Let qk,u = 0 if u 6∈ {−e1, e1,−e2, e2, 0}. Finally, let F∗ denote the optimal
value of Problem 6. Then F ≥ F∗.

In similar spirit a variation of Problem 4 and Corollary 1 can be obtained from the
following corollary to Theorem 4.

Corollary 3. Let F̄ : S → [0,∞) satisfy

F̄ (n)− F (n) +
∑

u∈Nk(n)

qk(n),uD
t
u(n) ≤ 0, (80)

for all n ∈ S and t ≥ 0. Then

F ≥
∑
n∈S

F̄ (n)π̄(n).

6. EXAMPLES

In this section we provide a number of examples that illustrate the use of the linear
programming approach to obtaining error bounds. First we revisit the example from
Section 3. Subsequently we will consider the case of coupled processors.

6.1. Joint departures

We continue with the example of a random walk with joint departures that was discussed
in Section 3. In this section we will provide more extensive results on the performance
of this random walk. We restrict our attention to the symmetric case that λ1 = λ2 = λ,
2λ + µ = 1 and µ1 = µ2 = µ∗, with 0 < µ∗ ≤ µ. The purpose of this section is to
demonstrate the following: i) The performance bounds given in Proposition 3 can be
improved, ii) The use of componentwise linear functions Ai, Bi can significantly improve
performance, iii) There are values of λ, µ and µ∗ for which bounds cannot be obtained
since the corresponding linear program does not have any feasible solutions, and finally
iv) There are cases in which error bounds exist, but a comparison result cannot be
obtained.

We first provide results for the performance measure that was considered in Section 3,
the probability that the system is empty, i. e., F (n) = 1n=0. Moreover we consider the
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perturbed random walk with µ̄1 = µ̄2 = µ/2, again as in Section 3. Let F1 and F2

denote the values of the upper and lower bound, respectively, as given in Proposition 3
in Section 3. Moreover, let F3 and F4 denote the optimal values of Problems 3 and 6,
respectively. Finally, let F5 denote the optimal value of Problem 4, i. e., the comparison
result. The values of these bounds are illustrated in Figure 4 as a function of the system
load λ/µ. Recall from above that µ = 1− 2λ.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

λ/µ

F

F1

F3

F5

F4

F2

Fig. 4. Probability that the symmetric random walk with joint

departures is empty, i. e., F (n) = 1n=0. Upper bounds in solid lines,

lower bounds in dashed lines. (µ∗ = 0.4µ)

In Figure 4 we observe that the optimized bounds F3 and F4 are tighter than the
bounds F1 and F2 that were manually derived in Section 3. Next, note that the com-
parison result of Problem 4 provides an even better upper bound. Observe, moreover,
that the value of F5 as given by Problem 4 consists of two piecewise smooth parts. The
reason is the following. A more careful inspection of the optimal values of F̄ , A1, A2,
B1 and B2 for Problem 4 reveals that the structure of the optimal F̄ can have two forms
depending on the value of λ/µ. The final remark with respect to Figure 4 is that Prob-
lem 6 does not always provide a meaningful lower bound, i. e., in our case it provides for
some values of λ/µ a negative lower bound on a probability.

Next, we consider the performance measure F (n) = n1, i. e., F is the first marginal
moment in dimension 1. Since we consider a completely symmetrical system this is equal
to the first marginal moment in dimension 2. Hence, we will simply refer to F as the first
marginal moment. In Figure 5 we have depicted various bounds on F as a function of λ/µ
for the case that µ∗ = 0.4µ. More precisely, the bounds in Figure 5 correspond to two
different perturbed system. The first perturbed system that we consider is µ̄1 = µ− µ∗
and µ̄2 = µ∗, leading to bounds F1 and F2. The second perturbed system has µ̄1 = µ∗

and µ̄2 = µ − µ∗, leading to bounds F3 and F4. Upper bounds F1 and F3 are given
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by Problem 4, lower bounds F2 and F4 by Problem 6. The first thing to observe from
Figure 5 is that the perturbed system that is considered can have significant impact on
the tightness of the bounds that are derived. The second thing to note is that for larger
values of λ/µ the bounds diverge. Inspection of the relevant linear programs reveals that,
for λ/µ > 0.5 the Problems 3 – 6 are infeasible. It was shown in [11] that the symmetric
random walk with joint departures is ergodic as long as λ/µ < 1 and µ∗ > 0. Therefore,
non-ergodicity of one of the random walks at hand is not the reason for infeasibility of
the linear programs. A more careful examination reveals that in this case the bias terms
cannot be bounded by componentwise linear functions.

In addition to results as a function of λ/µ, we provide in Figure 6 the behavior of the
bounds as a function of µ∗ for a fixed value of λ/µ. Upper bounds F1 and F2 are given
by Problems 3 and 4 for the case that µ̄1 = µ − µ∗ and µ̄1 = µ∗, respectively. Lower
bounds F3 and F4 are given by problem 6 for the case that µ̄1 = µ∗ and µ̄1 = µ − µ∗,
respectively. It is clearly reflected in the figure that larger perturbations of the transition
rates lead to looser bounds. Note also, that for µ∗/µ = 1/2 the original random walk
has a product form distribution and the upper and lower bounds coincide. The results in
the figure demonstrate that the comparison result might lead to useful bounds in cases
that the error bound result does not. Indeed for µ∗/µ < 0.5, F1 does not provide much
insight, but F2 does. In relation to Figure 6 finally note that a lower bound following
from a comparison result does not exist. More precisely, the lower bound equivalent of
Problem 4 is infeasible.
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Fig. 5. Marginal first moment, i. e., F (n) = n1, of the symmetric

random walk with joint departures. Upper bounds in solid lines, lower

bounds in dashed lines. (µ∗ = 0.4µ)
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Fig. 6. Marginal first moment, i. e., F (n) = n1, of the symmetric

random walk with joint departures. Upper bounds in solid lines, lower

bounds in dashed lines. (λ = 0.1)

6.2. Coupled processors

The next example that we consider is the random walk with coupled processors [9]. This
model arises from a queueing network with two queues, each with a single server. The
coupling of the processors is such that in the interior of the state space the processors
operate at rates µ1 and µ2 respectively. If one of the processors is idle, the other
processor adjusts its rates. The transition probabilities are as follows:

p1,e1 = λ1, p1,e2 = λ2, p1,-e1 = µh, p1,0 = µ1 + µ2 − µh,

p2,e1 = λ1, p2,e2 = λ2, p2,-e2 = µv, p2,0 = µ1 + µ2 − µv,

p3,e1 = λ1, p3,e2 = λ2, p3,0 = µ1 + µ2,

p4,e1 = λ1, p4,e2 = λ2, p4,-e1 = µ1, p4,-e2 = µ2,

where λ1 + λ2 + µ1 + µ2 = 1. The transition diagram is depicted in Figure 8.
It is known [9] that this random walk has product-form stationary distribution if

and only if µh + µv = µ1 + µ2. In that case the parameters r1, r2, of the geometric
distribution can be found as the unique solution of r1, r2 in (0, 1)2 of the following
system of equations:

r−1
1 λ1 + r1µh + r2µ2 = λ1 + λ2 + µh,

r−1
2 λ2 + r1µ1 + r2µv = λ1 + λ2 + µh,

r1µh + r2µv = λ1 + λ2,

r−1
1 λ1 + r−1

2 λ2 + r1µ1 + r2µ2 = 1,
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Fig. 7. Marginal first moment, i. e., F (n) = n1, of the symmetric

random walk with coupled processors. Upper bounds in solid lines,

lower bounds in dashed lines.

that represent the balance equations in each of the components of the state space.
Even though an expression for the generating function of π(n) is given in [9] also

for the case that µh + µv 6= µ1 + µ2, it is not trivial to use the results from [9] to
evaluate various performance measures. Therefore, the bounds that are given in this
paper provide a convenient means of evaluating the performance of a random walk with
coupled processors.

In Figure 7 we have presented numerical results for the case that λ1 = λ2 = λ,
µ1 = µ2 = µ, µh = µv = µ∗. The figure presents bounds on the first marginal moment,
i. e., F (n) = n1, as a function of the system load λ/µ for µ∗ = 0.4µ. The perturbed
system that we use for all bounds has transition probabilities µ̄h = µ∗ and µ̄v = 2µ−µ∗.
The upper bound F2 and lower bound F3 result from Problems 3 and 6, respectively. In
addition we have presented upper bound F1 and lower bound F4 that arise from putting
the additional constraints to Problems 3 and 6, respectively. These constraints require
the functions Au, Bu, u ∈ N , to be linear. Note that this is a stronger constraint than
the componentwise linear condition that is imposed in Problems 3 and 6. It is clearly
reflected in Figure 7 that bounding the bias terms with componentwise linear functions
significantly improves performance over bounding with (completely) linear functions.

7. DISCUSSION

In this paper we have presented a linear programming approach to establishing error
bounds for random walks in the quarter-plane. Thereby we obtain the first generic
method of establishing such bounds for a large class of processes. The current work can
be extended in a multitude of directions, some of which include extensions to higher di-
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→n(1)

↑n(2)

λ1
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µh λ1

λ2

µv

λ1

λ2
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µ1

µ2

µ1 + µ2
µ1 + µ2 − µh

µ1 + µ2 − µv

Fig. 8. Random walk with coupled processors.

mensional random walks and random walks on bounded state spaces. Another extension
of interest is to include an optimization over the perturbed system into the optimization
problem that was used to establish the error bound. In addition to such extensions it
is important to analyze the linear programs that have been formulated in this paper in
more detail. We have seen, for instance, in this paper, that the linear programs are not
always feasible in which case no performance bounds can be obtained. It will be useful
to formulate sufficient conditions under which the linear programs are guaranteed to be
feasible.
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