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Abstract. A topological space X has a rank 2-diagonal if there exists a diagonal sequence
on X of rank 2, that is, there is a countable family {Un : n ∈ ω} of open covers of X such
that for each x ∈ X, {x} =

⋂
{St2(x,Un) : n ∈ ω}. We say that a space X satisfies the

Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty
open subsets of X is countable. We mainly prove that if X is a DCCC normal space with
a rank 2-diagonal, then the cardinality of X is at most c. Moreover, we prove that if X is
a first countable DCCC normal space and has a Gδ-diagonal, then the cardinality of X is
at most c.
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1. Introduction

Diagonal properties are useful in estimating on the cardinality of a space. For

example, Ginsburg and Woods in [4] proved that the cardinality of a space with

countable extent and a Gδ-diagonal is at most c. Therefore, if X is Lindelöf and

has a Gδ-diagonal, then the cardinality of X is at most c. However, the cardinality

of a regular space with the countable Souslin number and a Gδ-diagonal need not

have an upper bound (see [7], [8]). Buzyakova in [2] proved that if a space X with

the countable Souslin number has a regular Gδ-diagonal, then the cardinality of X

does not exceed c. Rank 3-diagonal is one type of diagonal property. Recently, we

proved that if X is a DCCC space (defined below) with a rank 3-diagonal, then the

cardinality of X is at most c (see [10]). The following question is also asked in [10]:
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Qu e s t i o n 1.1. Is the cardinality of a DCCC space with a rank 2-diagonal at

most c?

In this paper, we prove that if X is a DCCC normal space with a rank 2-diagonal,

then the cardinality of X is at most c. We also prove that if X is a first countable

DCCC normal space and has a Gδ-diagonal, then the cardinality of X is at most c.

2. Notation and terminology

All spaces are assumed to be Hausdorff unless otherwise stated.

The cardinality of a set X is denoted by |X |, and [X ]2 denotes the set of two-

element subsets of X . We write ω for the first infinite cardinal and c for the cardi-

nality of the continuum.

Definition 2.1 ([9]). We say that a space X satisfies the Discrete Countable

Chain Condition (DCCC for short) if every discrete family of nonempty open subsets

of X is countable.

If A is a subset of X and U is a family of subsets of X , then St(A,U) =
⋃

{U ∈ U : U ∩A 6= ∅}. We also put St0(A,U) = A and for a nonnegative integer n,

Stn+1(A,U) = St(Stn(A,U),U). If A = {x} for some x ∈ X , then we write Stn(x,U)

instead of Stn({x},U).

Definition 2.2 ([1]). A diagonal sequence of rank k on a space X , where k ∈ ω,

is a countable family {Un : n ∈ ω} of open coverings of X such that {x} =
⋂

{Stk(x,Un) : n ∈ ω} for each x ∈ X .

Definition 2.3 ([1]). A space X has a rank k-diagonal, where k ∈ ω, if there

is a diagonal sequence {Un : n ∈ ω} on X of rank k.

Therefore, a space X has a rank 2-diagonal if there exists a diagonal sequence

on X of rank 2, that is, there is a countable family {Un : n ∈ ω} of open covers of X

such that for each x ∈ X , {x} =
⋂

{St2(x,Un) : n ∈ ω}.

All notation and terminology not explained here is given in [3].

3. Results

We will use the following countable version of a set-theoretic theorem due to Erdős

and Radó.

Lemma 3.1 ([5], Theorem 2.3). Let X be a set with |X | > c and suppose [X ]2 =
⋃

{Pn : n ∈ ω}. Then there exists n0 < ω and a subset S of X with |S| > ω such

that [S]2 ⊂ Pn0
.
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Lemma 3.2. Let {Un : n ∈ ω} be a diagonal sequence on X of rank k, where

k > 1. If |X | > c, then there exists an uncountable closed discrete subset S ofX such

that for any two distinct points x, y ∈ S there exists n0 ∈ ω such that y /∈ Stk(x,Un0
).

P r o o f. Assume there exists a sequence {Un : n ∈ ω} of open covers of X such

that {x} =
⋂

{Stk(x,Un) : n ∈ ω} for every x ∈ X . We may suppose Stk(x,Un+1) ⊂

Stk(x,Un) for any n ∈ ω. For each n ∈ ω let

Pn =
{

{x, y} ∈ [X ]2 : x /∈ Stk(y,Un)}
}

.

Thus, [X ]2 =
⋃

{Pn : n ∈ ω}. Then by Lemma 3.1 there exists a subset S of X with

|S| > ω and [S]2 ⊂ Pn0
for some n0 ∈ ω. It is evident that for any two distinct

points x, y ∈ S, y /∈ Stk(x,Un0
). Now we show that S is closed and discrete. If

not, let x ∈ X and suppose x were an accumulation point of S. Since X is T1, each

neighborhood U ∈ Un0
of x meets infinitely many members of S. Therefore there

exist distinct points y and z in S ∩U . Thus, y ∈ U ⊂ St(z,Un0
) ⊂ Stk(z,Un0

). This

is a contradiction. Thus, S has no accumulation points in X ; equivalently, S is a

closed and discrete subset of X . This completes the proof. �

In Lemma 3.2, if the diagonal rank of X is at least 2, i.e., k > 2, then S has a

disjoint open expansion {St(x,Un0
) : x ∈ S}. Indeed, if there exist distinct x, y ∈ S

such that St(x,Un0
) ∩ St(y,Un0

) 6= ∅, then y ∈ St2(x,Un0
) ⊂ Stk(x,Un0

). This is

impossible.

Lemma 3.3. If S is a closed discrete set in a normal space X and U = {U(x) :

x ∈ S} is a disjoint open expansion of S, then there is a discrete open expansion

V = {V (x) : x ∈ S} of S with x ∈ V (x) ⊂ U(x) for all x ∈ S.

P r o o f. By normality there exists an open setW in X such that S ⊂ W ⊂ W ⊂
⋃

U . For all x ∈ S let V (x) = U(x)∩W . It is easily verified that V = {V (x) : x ∈ S}

is a discrete open collection of cardinality |S|. �

Theorem 3.4. If X is a DCCC normal space and if it has a rank 2-diagonal, then

the cardinality of X does not exceed c.

P r o o f. Assume the contrary. It follows from Lemma 3.2 that {St(x,Un0
) :

x ∈ S} is an uncountable pairwise disjoint family of nonempty open sets of X . Since

X is normal, by Lemma 3.3 there is a discrete open expansion V = {V (x) : x ∈ S}

of S with x ∈ V (x) ⊂ St(x,Un0
), for all x ∈ S. This contradicts the fact that X is

DCCC. This proves that |X | 6 c. �
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Recall that a space X is star countable if whenever U is an open cover of X , there

is a countable subset A of X such that St(A,U) = X . In [10], the authors have

proved that every star countable space is DCCC. Moreover, the cardinality of every

star countable space with a rank 2-diagonal is at most c (see [11]). Therefore, by

the above observations, it is natural to ask whether a DCCC normal space is star

countable. However, the answer is negative (see [6], page 99).

We say that a topological space X has a Gδ-diagonal if there exists a sequence

{Gn : n ∈ ω} of open sets in X2 such that ∆X =
⋂

{Gn : n < ω}, where ∆X =

{(x, x) : x ∈ X}. A spaceX has a Gδ-diagonal if and only if X has a rank 1-diagonal.

Theorem 3.5. If X is a first countable DCCC normal space and if it has a Gδ-

diagonal, then the cardinality of X does not exceed c.

P r o o f. By the assumption, there exists a sequence {Un : n ∈ ω} of open covers

of X such that {x} =
⋂

{St(x,Un) : n ∈ ω} for every x ∈ X . We may suppose

St(x,Un+1) ⊂ St(x,Un) for any n ∈ ω. Let B(x) = {Bm(x) : m ∈ ω} be a local base

for x. Assume Bm+1(x) ⊂ Bm(x) for any m ∈ ω. For each n ∈ ω let

Pn =
{

{x, y} ∈ [X ]2 : x /∈ St(y,Un);Bn(x) ∩Bn(y) = ∅}
}

.

Thus, [X ]2 =
⋃

{Pn : n ∈ ω}. Suppose that |X | > c. Then by Lemma 3.1 there

exists a subset S of X with |S| > ω and [S]2 ⊂ Pn0
for some n0 ∈ ω. As in the proof

of Lemma 3.2, one easily sees that S is closed and discrete. Besides, it is evident

that for any two distinct points x, y ∈ S, Bn0
(x) ∩Bn0

(y) = ∅.

Since X is normal, by Lemma 3.3 there is a discrete open expansion V = {V (x) :

x ∈ S} of S with x ∈ V (x) ⊂ Bn0
(x), for all x ∈ S. This contradicts the fact that X

is DCCC. This proves that |X | 6 c. �

Theorem 3.5 suggests the following question.

Q u e s t i o n 3.6. LetX be a DCCC normal space with aGδ-diagonal. IsX CCC?

It is well known that the cardinality of a first countable CCC space is at most c.

Therefore, a positive answer to Question 3.6 would imply a trivial proof of Theo-

rem 3.5.

A c k n ow l e d gm e n t s. The authors are grateful to the referee, because he made

valuable suggestions and helped them to improve the writing of this paper.
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