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Abstract. The classical Hardy-Littlewood maximal operator is bounded not only on
the classical Lebesgue spaces Lp(R?) (in the case p > 1), but (in the case when 1/p(-)
is log-Holder continuous and p— = inf{p(z): = € R?} > 1) on the variable Lebesgue
spaces Ly, ( [Rd), too. Furthermore, the classical Hardy-Littlewood maximal operator is of
weak-type (1,1). In the present note we generalize Besicovitch’s covering theorem for the

so-called v-rectangles. We introduce a general maximal operator M, 0 and with the help
of generalized ®-functions, the strong- and weak-type inequalities will be proved for this
maximal operator. Namely, if the exponent function 1/p(-) is log-Holder continuous and

p— > s, where 1 < s < oo is arbitrary (or p— > s), then the maximal operator Mg’é is
bounded on the space Lp(,)([Rd) (or the maximal operator is of weak-type (p(-),p(-))).

Keywords: variable Lebesgue space; maximal operator; v-rectangle; Besicovitch’s cover-
ing theorem; weak-type inequality; strong-type inequality

MSC 2010: 42B25, 42B35, 52C17

1. INTRODUCTION

Maximal operators are playing a central role in approximation theory and in
Fourier analysis (see Stein and Weiss [18], Stein [17], Weisz [20], [22]). The clas-
sical Hardy-Littlewood maximal operator is defined by

Mf(x) :—sup{ﬁ/de)\: xEQ}, z € RY,

where f is a locally integrable function and the supremum is taken over all cubes
Q C R? with sides parallel to the axis. It is well known that the classical Hardy-

This research was supported by the Hungarian Scientific Research Funds (OTKA)
No. K115804.
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Littlewood maximal operator is bounded on the classical L, spaces for any p > 1
and it is of weak type (1,1), i.e.,

S [rxss>rilh < Cllflhs - f € Ly (RY).

If we take the supremum over rectangles I = I; x ... x I, with 6= < |L;|/|1;] < 6,
i,7=1,...,d, where § > 1, then the previous result remains true (see e.g. Weisz [22]).
The set R := {z € R?: 6 'z; < z; < dxj, i,j =1,...,d} defines a cone in R%.

Gat in [12] introduced the following cone-like set. Given the functions v; and the
numbers §; > 1, the set R‘ié = {x € R%: 5;1%@1) <z < 0vilxr), i=1,...,d}
is called a cone-like set. The second author in [21] generalized the Hardy-Littlewood
maximal operator for cone-like sets, i.e., he took the supremum over all rectangles
I=1 x...x Iy with 8 ' (|I]) < |Li| < 6ivi(|I1]), i =1,...,d. He proved that the
maximal operator M7% is bounded on the classical L, spaces in the case p > 1 and
it is of weak type (1,1).

The topic of variable Lebesgue spaces is a new chapter of mathematics and is
studied intensively nowadays (see Cruz-Uribe, Diening and Fiorenza [4], Cruz-Uribe,
Diening and Hésto [5], Diening et al. [10], Cruz-Uribe, Fiorenza and Neugebauer [9],
Almeida and Drihem [1], Kopaliani [13]). The variable L,.)-norm is defined by

(z)
[ fllpy = inf{A >0: / J@) e g, < 1},
Rd

where p(x) < oo for all € R?. Variable L,y spaces contain all measurable functions

A

f for which || f[|,,(.y < oo. Variable Lebesgue spaces have a lot of common properties
with the classical Lebesgue spaces (see Kovacik and Rakosnik [14], Cruz-Uribe and
Fiorenza [6], Diening et al. [11], Cruz-Uribe, Fiorenza and Neugebauer [8], Cruz-
Uribe et al. [7]). For example if p_ := inf{p(x): z € R} > 1, then the classical
Hardy-Littlewood maximal operator is bounded on the variable L, . spaces and if
p— = 1, then it is of weak type (p(-),p(+)) (see Cruz-Uribe and Fiorenza [6], Diening
et al. [11]).

In this paper, we will investigate the operator M7+° for variable Lebesgue spaces.
We will prove that if p_ > 1, then the maximal operator M7 is bounded on the
variable L, spaces and, in the case p— > 1, we obtain that it is of weak type
(p(), p(-)), namely,

sup X (0075 >y llpey < Cllfllpc

for all f € L, (R).
In [19] we investigate the #-summation of the Fourier transform of functions from
the variable Lebesgue spaces over cone-like sets. To this end we need the inequalities
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with respect to the maximal operator M7-° proved in this paper. More exactly, in [19]
we estimate pointwise the maximal operator of the 8-means of the Fourier transforms
by the maximal operator M?-°. This implies the almost everywhere convergence of
the f-means of f to the function f from the variable Lebesgue spaces. This result is
a generalization of the classical result due to Marcinkiewicz and Zygmund, see [15],
concerning the almost everywhere convergence of the Fejér means of two-dimensional

Fourier series.

2. THE VARIABLE LEBESGUE SPACES

A function p(-) belongs to P(R?) if p: R? — [1,00] and p(-) is measurable. Then
we say that p(-) is an exponent function. Let

p_:=inf{p(z): z € RY} and p, :=sup{p(z): = € R}
Set
Qoo := {z € RY: p(z) = 00}.

Let us define the modular
on(f)i= [ IF@P do [ f o,
R\ Qoo

We can define the Ly.)( R?) space with the help of this modular. A measurable func-
tion f belongs to the space Ly(.)(R?) if there exists A > 0 such that oxr(f/\) < co.
This modular generates a norm

||f||KR = iﬂf{/\ > 0: QKR(§> < 1}.

Equipping the space Lp(.)([Rd) with this norm we get a Banach space. In the case
when p(-) = p is a constant, we get back the usual L,(R?) spaces. For some technical
reasons we will consider another modular and another norm, but we will get the same
space with an equivalent norm.
Let p(-) € P(R?) and let ¢,y R? x [0,00] — R be the function
tP@)if p(z) < 0o, t =0,
Op()(T,1) 1= Qpiz)(t) == ¢ 0 if p(x)=ocoandtel0,1], zeR%
00 if p() =occand t > 1,

The modular generated by the function ¢,y is defined by

b= [ eolalf@dei= [ o @)
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A measurable function f belongs to the L., (R?) space if there exists A > 0 such that
0p(y(f/A) < co. We can see that the modular g, is not a norm. The L,.)(R%)-
norm can also be defined by

: f
1l = {2 > 0: gy (5) <1}
The norms |[|-[[xr and ||-||,.) are equivalent (see Diening et al. [11], pages 72-73).

We say that r(-) is locally log-Hélder continuous if there exists a constant Cj such
that for all 7,y € R4, 0 < |z —y| < 1/2,

Co
r(z) —r(y)| < m7

where |z| = |72, = € R%. We denote this set by LHo(R?).

We say that r(-) is log-Holder continuous at infinity if there exist constants C
and r. such that for all z € R?

O
log(e + [z[)”

() = roo| <
We write briefly 7(-) € LH..(R%). Let
LH(RY) := LHy(R?) N LH,(R?).
It is easy to see that if p(-) € P(R?), then

(2.1) 0p(-Y (M) = 0p(y (IALF) < [Mepy (), 1Al <1

for all measurable functions f. The following result can be found in Diening et
al. [11], page 83. If p(-),q(-),7(:) € P(R?), p < ¢ < r almost everywhere, then

(2:2) Loy (RY) = Ly (RY) + Ly (R).

Moreover, if g € Ly(.)(R?), then 9112,y RO+ L,y (Ra) < 2[Glg()-

1082



3. BESICOVITCH’S COVERING THEOREM FOR Y-RECTANGLES

Now let us define the function v € R — RY. Let v := (y1,...,74), where
yi(z):=x, x > 0, 7;: (0,00) — (0,00), 7; is strictly increasing, continuous and
~vi(1) =1, lim ~;(z) = oo, lim ~;(z) =0, =1,...,d. Suppose, that there exist

T—00 r—0-+
C1,, €24, € > 1, for which

c1,ivi(x) < viléx) < cayvi(z), x>0,i=1,...,d.

Note that, for example, if v(z) := 2™ (or y(z) := ¥/z) for an arbitrary 1 < n € N,
then the above assumptions are satisfied. We can see easily that

crivi(@) < vi(€'z) < egvi(z), >0

for all n € N and
¢ vi(x) < vil€le) <epvile), >0
forall0>1€ 7.

Let I C R,i=1,...,d, be intervals. Denote the Lebesgue measure of I;' by |I]|.
The set Z7 contains all rectangles I7 = I x ... x I] C R? for which |I]'| = v;(|I]]),
i=1,...,d. I7 € I7 is called y-rectangle. The point z = (z1,...,24) € R? is
the center of the rectangle I = I} x ... x Iy, if T = [(x1 — a1,21 + a1)] X ... X

[(zg — ad, x4 + aq)], where a; > 0,4 =1,...,d. Let us denote by I} € T7 a rectangle
with center z.

Now we will define the enlargement of the ~y-rectangles. Let o > 0 and let I be
a ~y-rectangle which has a center z and its sides are v;(a), ¢ = 1,...,d. Then denote
by oI the rectangle which has the same center x but its sides are ay;(a), i = 1,...,d.
Now we will prove two simple lemmas.

Lemma 3.1. Let 1 < k € N and n,ji=1..., k, be ~-rectangles having centers
z; € R? and sides v;(a;), i=1,...,d, j=1,..., k. Suppose that

k k
z; ¢ U I} and ﬂ 17 #0.
1=1,1#j j=1
Then k < 2¢.

Proof. Let z; :== (zj1,...,%54), J = 1,...,k. We can suppose that =; # 0,
k

j=1,....,k and 0 € (N I . Therefore |z;;| < vi(a;)/2,i=1,....d, j=1,... k.
j=1

Let l,j € {1,...,k} be arbitrary and j # [. Since z; ¢ I] , there exists ig € {1,...,d}
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such that |z, — i, | > 7io(a;)/2. We claim that there exists i’ € {1,...,d} such
that x; x;+ < 0. For contradiction, suppose that x;;x;; > 0,7 =1,...,d. We can
suppose that z;; > 0 and x;; > 0,7 =1,...,d. Since 0 € I;Yj, we have x;;, < 0 or
Tiio > Tjie + Vio(@;)/2. We have supposed that 2;; > 0, i = 1,...,d, thus we get
that z; ;, > Zjio T Vio (a]‘)/Q.

At the same time x;;, > 0 and 0 € I}, thus

1 1 1
3 Yio (aj) < 3 Yo (aj) + xjiy < T1iy < 3 i (1) = aj < ar = 7i(a;) < vi(a)

for i =1,...,d. Using this and the fact that 0 € I N1I7, we get

xp)

1 1 .
Tji < E'yi(aj) < E'yi(al), 1=1,.. .,d = TjE I;I“

which is a contradiction. Hence k < 2¢. O

Lemma 3.2. Let 1 < m € N, A C R? be a rectangle with sides a; > 0,
j=1,...,d, and By C R% k = 1,...,m, be rectangles with sides br,; = aj,
j=1,...,d. If ANBy # 0,k =1,...,m, then there exist rectangle Cy, k =1,...,m,
with sides c¢x j = aj and Cy, C (3A N By).

Proof. Since AN By # ), there are two cases:

1. By C 3A. Then By N3A = By, and due to a; < by 5, j =1,...,d, we can draw
a rectangle C); in the rectangle By, with sides i ; :==a;, 7 =1,...,d.

2. By Z 3A. Then take the rectangle Dy := 3A N By, with sides d, j, 7 =1,...,d.
AN By # 0, therefore

3 1 .
dk,j>§aj—§aj:aj, j:].,...,d,

so we can draw a rectangle Cj in the rectangle Dj with sides ci; = a;,
7 =1,...,d, which proves the lemma.

O

Besicovitch’s covering theorem for cubes is the main point of the proof of the
weak-type inequality for the classical Hardy-Littlewood maximal operator in variable
Lp(,)([Rd) spaces. Now we will prove Besicovitch’s covering theorem for ~y-rectangles.
The proof of Besicovitch’s covering theorem for cubes can be found in [2] and [3] (see
also [16]). Our proof is similar.
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Theorem 3.1 (Besicovitch’s covering theorem for v-rectangles). Let A C R¢ be
a bounded set, A := {IJ € I7: x € A}. Then there exists finite or countable set
B C A such that

(1) A can be covered by the rectangles from B, i.e.,

Ac|Jr

IeB

(2) There exists a constant K > 0 such that

ZXI<K~

IeB

(3) There exist families A1, As, ..., Ay C B such that

M
AcC U U I, where I ;N Iy ; =0, i# j, IniInj € Ag, k=1,..., M.
k=1I€Ag

Here M > 0 is independent of the y-rectangles.

Proof. (1) Let I} € A be a ~-rectangle having center z and sides v;(a),
i=1,...,d and

Q:i={a,>0: I] € A, x€ A}, M, :=sup.

Since A is bounded, we can assume that M; < oo. Therefore we can choose a -
rectangle I, € A such that a,, > M;/2. Let I} € B. Inductively, if

1
_Mla

J
Tjt1 € A\ UI; and  ag,,, > 5

i=1

k1
then let I) € B. If there is no « € A such that x ¢ |J I}, then we have covered
ky =1 3
the set A. If there exists # € A such that x ¢ (J I, but for all z € A\ | I},
i=1 i=1

(3 (3

a; < My /2, then let

k1
M, = sup{az >0:z€ A\ UI;Y}

i=1
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k1
We can choose z,+1 € A\ U ), such that ay, ,, > Ma/2. Let I} € B.

Tkq+1
=1 !

Inductively again, if

J
1
Tjp1 € A\ U I and Apyyy = 51\427

i=1

then let I, a1 € B. Continuing this process we get a strictly increasing sequence (k, ),
a strictly decreasing sequence of positive numbers (M,,) with 2M,, 11 < M, and
a countable collection of y-rectangles B. Let

F12:{1,2,...,]€1}, ]:‘2;:{1451+1,k1+2,...,]€2},
Uji={kj1+ 1k 1+2,... .k} ..

Then the following properties hold:
(a) M;j/2<az, <Mj, iely, 1<jeN,

J
(b) wjpr1 g U I, 1<jeN,
=1

() 2, €A\ U U I, ielL
m#k jET,

The statements (a) and (b) follow from the construction. Let us prove (c). Suppose
that m £ k, j € Ty, i € I'g. If m < k, then for all a € T, @ < minT, thus j < i
and z; ¢ I . If k <'m, then i < j and by the construction a,, > as; and z; ¢ I],
i.e., there exists ip € {1,...,d} such that |z;:, — Tii| > Vig(az,)/2 > Yip(az;)/2.
We obtain that z; ¢ I7 .

Due to lim M,, = 0 and to the construction, we have

n—oo
o)
Acln =T
i=1 IeB

which proves statement (1).
Let us consider the statement (2). Suppose that

p
x € ﬂlgn
i=1 !
We will show that p < K for a suitable K > 0. Let us define the set
B:={1<jeN:T;Nn{m;: i=1,...,p} #0}.

Suppose that j,I € B, j # [, k; € T, ky € T;. Then by proposition (c) xy, ¢ I;kl

and w, ¢ I7, . At the same time, since B C {m;: i =1,...,p}, we obtain x € I ,
J

a € B, therefore by Lemma 3.1, |B| < 24.
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Fix 1 <1 € N and let us consider the set
C ::I‘lﬁ{mi: 1= ].,...,p}.

Since I'; is finite, we can suppose that C; = {l1,l2,...,l}. Then the 7-rectangles
determined by the set C} are I;’lk, k=1,...,q, having center z;, and sides 'yi(axlk ),
i=1,....,d, k=1,...,q. Let 1 < s € N such that ¢*~! < 2 < £ and ¢ =
max{cg;: i =1,...,d}, B:=1/(1+¢c®) (< 1/2). The rectangles enlarged by this

have the property that
/Bl;yzkmﬁ[;’,,j:@a k?’éjzl,...,q.

Indeed, we can suppose that I, < ;. Then by case (b) z;, ¢ I3, . Therefore there
exists o € {1,....d}: |21 — @iy.00] > Yie(as, )/2. Since ly,l; € Ty, we have
M;/2 < Oy, s Qo < M, thus Oy, < 2ag,, - If there exists z € ﬂI;’lk N ﬂI;’lj, then

1
57% (az,,k) < |xlk7i0 - xlj;i0| < |xlk7i0 - Zi0| + |Zi0 - xlj,i0|
1

:1—1—03

8 8 1 1
< 5’71'0 (a’l’lk) + 5% (G‘Il,j) (57% (az,,k) + Elyio (a’l’lj ))

2
Here v;, (axlj) < Yio (202, ) < Vip (§%amy, ) < €55, Vi0 (@, ) < €*7ig(as,, ), therefore

< 1 1 c’
STre (5%‘0 (az, )+ 5 Yio (amlk))

1 1 1
1+ ¢ (57% (az,,k) + 571‘0 (az,,j))

1
< 5710 (a:clk )a

Le., Vi (az, ) < io(@s,, ), which is a contradiction, so BI;Y”C NIy, =9.
Let a := max{axlk : k=1,...,q} and let us define the rectangle I, having center
z and sides 27;(a), i = 1,...,d. Then 2v;(a) > 2%‘(%%), i=1,...,d,k=1,...,q.

We claim that .

Usn, c .

k=1
Indeed, suppose that z € ,BI;Y”C for a suitable k € {1,...,q}, e, |z — 2,4 <
,B’yi(axlk)/Z, i=1,...,d. Since l, € C; C {m;: i=1,...,p}, thus z € I;Ylk. Due to
B < 1/2 we get

B 1
|z — x| < |z — @iy il + |2, — @] < §’Yi(azz,k) + §’Yi(azz,k)
< ’yi(az;,k) <

ie, z€l,.
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Since the rectangles BIglk, k=1,...,q, are pairwise disjoint and the rectangle I,
covers these rectangles, we obtain

q d d
Z BI7, | < L] = HQ’%(@) = QdH%(a)-
k=1 =1 =1

Let 0 > 7 € Z such that " < 1/2 < ¢, ¢ := max{cy;: i = 1,...,d}. Then
ey, =2c1=1,...,d, and by a;, > M;/2

q q d qg d d

> 1810, [ => ] Bvilas,) =8> ] 100 > gpt [[i(¢ )
k 2

k=1 k=11i=1 k=11i=1 =1

.

d d d
' . c d
> B [[ (M) = q(Ben) [ [ (M) = 9(1 " Cs) 1),
i=1 i=1 i=1
At the same time, since a = max{a,, : k=1,...,q} < M; we get

d d
2 T ita) < 2¢ T (M),
i=1

i=1

namely,

T d d \
q(l —T— cs )dH%(Ml) < 2dH’Yi(Ml) & q < (%)d
=1 i=1

Here the constants ¢, s and r are independent of the rectangles, they only depend
on . We obtain that

4(1 +cs)>d < K4(1 +cs)>dJ t1o K

p<IBla< (—— -

thus (2) is proved.
Finally let us consider (3). For simplicity, denote I; := I}, a; := az,, 1 <i €N,
and let the chosen rectangles be B := {I;: 1 < i € N} with A ¢ |J I. For
IeB
any € > 0 there are only finitely many rectangles I; with a; > €. Suppose that

Iy, ..., In are rectangles such that a; > ... > ay > € for a suitable 1 < N € N.
Let I1 := I and I 1 € A;. If there exists a rectangle I; such that I; N [; 1 = 0,
then let k1o := min{i € {1,...,N}: ;N I;; = 0}. Choose this rectangle and let
Iio =1, and I 5 € Aq. Inductively, suppose that we have chosen the rectangles
Ii1,...,11; and collected them the set A;. If there exists a rectangle I; such that

LN (lLiJl IM) — 0, then let ky i1 := min{i ef{l,...,N}: I,n (lLiJl Iu) - (2)} and
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J
let I j4+1 = Iy, s and [; j41 € Ay. If for any rectangle I;, I; N (U ILZ) £ 0,
’ =1

i=1,...,N, then let ky; := min{i € {1,...,N}: I; ¢ A} and let Io; := Iy, ,

and I3 € Ag. (If the set {i € {1,...,N}: I; ¢ A1} is empty, then instead of ¢

choose /2. Then there are only finitely many rectangles I; with £/2 < a; < €.)

Continuing this process we obtain families of pairwise disjoint rectangles Ay, Ao, ...
We claim that there is M > 0 such that

Ac L]Vj \J I, where M = {(Mﬂ Tl

C'I"
k=1I€A,

| (12(1 +¢®*)/c")¢] + 1 is enough for sure, but it is possible that a lower number
M

is good as well. If M is such that there exists z € A\ ( U u I), then M <
k=1I€A,

[(12(1 +¢®)/c")¢]. Since A C (U I), there is I; € B such that x € I;, where

IeB
the rectangle I; has center z; and sides v;(a;), ¢ = 1,...,d. Then I; ¢ Ay k =
M
1,..., M, otherwise due to x € I; C ( U I), we get x € (U U I), which is
IEA, k=1I€Ay
a contradiction. At the same time for all k£ € {1,..., M} there exists ji such that

I, € Ay and I; N 1I;, # 0, or else I; € Ay, which is a contradiction, too. Let the
center of I, be z;, with sides v;(a;,), ¢ =1,...,d, k=1,...,M. Then a; < aj,,
k=1,...,M, otherwise we would have chosen the rectangle I; in A instead of I, .
By Lemma 3.2, there are rectangles J;, with sides v;(a;), k=1,...,M,i=1,...,d,

and J, C (31;NnI;, ), k=1,...,M. Forallz € R%: Y x;(z) < 4(1+¢*)/c")? =1 K
IeB
and due to J, C I;, € B we obtain the same for the rectangles Ji. Therefore

M M
> X, S KXUM | g e XM g, 2 K= 3" xy,. Using this and the fact that
k=1 = = k=1

M
Ji C 31}, we obtain
k=1

M

M
1
i :/XuﬁiledA> }Z/XMM:
k=1 k=1

1A 1A 1
= EZ'JM = EZ'Iﬂ'l = EM|Ij|7
k=1 k=1

3911 = 3L, >

ie, M < 39K = (12(1+ ¢*)/c")%, which means M < [(12(1 + ¢®)/c¢")?] and the
proof is complete. O
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4. WEAK-TYPE INEQUALITY FOR THE CONE-LIKE MAXIMAL OPERATOR

Let ¢ := (61,...,04), where 61 = 1,0; > 1,7 =2,...,d, and let us define the set
R:s:={x=(21,...,2q) € R 6; ' yi(w1) @i < Syilar), i=1,....d}.

With the help of this set we can introduce the Hardy-Littlewood maximal operator
on cone-like sets. Let 1 < s < oo, f € L!°°(R?) and define the maximal operator by

1/s
1
MO f(z) := sup{ (m/l|f|sd>\> cxel, (|L,...,| 1) € R%}, xR

Here I = I} x ... x I C R? are rectangles whose sides are parallel to the axes.
If § = 1, then R‘fm = graph(y) and the maximal operator on this set is denoted
by MJ. If we choose s = 1, then we write simply M7 or M7°. It is clear that
MY f = (MYS(|f|*))"/*. Weisz proved in [21] that

MIf < MY°f<CM]f.

S

The following lemma plays a central role in the proof of the weak-type and strong-
type inequality for the maximal operator M7%. An analogous version of this lemma
for cubes can be found in Cruz-Uribe and Fiorenza [6], page 95, and in Diening et
al. [11], page 99.

Lemma 4.1. If p(-): R? — [0,00), py < oo, then the following statements are
equivalent:

(1) p(-) € LHo(R?), i.e., there exists a constant Cy > 0 constant such that

Co

«— 0 pyeR:L 0<|z—y <1/2.
“Tog(z —3]) o=yl <1/

(2) There exists a constant C' > 0 (which depends on d, v and p(-) but is indepen-
dent of the vy-rectangles) such that

| PP+ < ¢ and |DP-UNDP@ <O el
for all y-rectangles I7.
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Proof. We begin the proof with (1) = (2). We will prove the first inequality
of (2), the second one is similar. First, suppose that the diagonal of I7 is d(I7) :=

d 1/2
(Z v2 (a)) < 1/2. Then for such a 7-rectangle I7 containing z, | —y| < d(I"7) <
i=1

1/2 (y € I"). Let fi(z) == min{yi(x): i = 1,....d}, fox) = max{y;(z): i
., d}, z €(0,1). Then fi(a) < vi(a) < () €(0,1),i=1,...,d and

|z —yl <d{I7) = <Z% )1/2<\/Ef2(a)-

We claim that there exists 1 < k € N such that f¥(a) < Cfi(a), a € (0,1), where the
constant C is independent of a. Indeed, let a € (0,1) be arbitrary and 1 < k; ; € N,
i,j = 1,...,d, i # j be exponents such that c]szij_l < e < c]fj’z‘-j, i,7=1,...,d,
it# jand k:=max{k;,;: i,j=1,...,d, i # j}, C :=max{cp;: i =1,...,d}. Let
0 > 1 € Z be such that £ < a < fl Then by | < 0 we obtain
7(a) < vf“( ) <E) <) = () < by < (e
%(EETY) < eayyi(€17) < eayyila) < C(a).

We obtain that for any i,j = 1,...,d, i # j: v¥(a) < Cv;(a), i-e., f¥(a) < Cfi(a).
Using this we get

o — y| < Vidfa(a) < VAC* 1M (a) & fi(a) > (\|/Jig‘1y/|k) ’

and
71 = o) > fito) > (Vagie)

Since p(z) — p4(I7) < 0, we get

|7 P@ =P+ (M)’“d@w)wum

\/gcq/k

In our hypothesis p(-) € LHy(R?), i.e., p(-) is necessarily continuous. We may assume
that I7 is closed, therefore there exists y € I such that py(I7) = p(y) and

Co

p(@) = p+(I7) = pl@) = p(y) = ~lp@) =pW)| > — o — 5
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Since (|z — y|/(vV/d CY/*))k < 1, we obtain

|z — y| \kdp@)—p+(I7)) o |z — y| \~kdCo/—log(lz—yl)
(\/ECl/k) (\/ECl/k>

- (logﬁfcc—oyl)lo <\|/x‘;1y/|k))

1
= exp (de’o — kdCy log(\/acl/k)M).

(4.1)

Since 0 < |z — y| < 1/2, we have log(]x — y|) < 0 and

1 1 1
> = , Jlz—yle0,=).
log(lz —yl) ~ log (%) | | ( 2)
By kdCylog(v/d C'/*)/log(|z —y|) < 0, we can estimate (4.1) by

) = C(d.p(). ),

exp (deo — kdCy log(Vd CV/*F)——
lo g(§)

which proves the claim (1) = (2) in the case d(I7) < 1/2. We can split the case
d(I”) > 1/2 into three cases:

(a) fi(a) =1/(2V4d),

(b) fi(a) <1/(2v4d) < fafa),

() fa2(a) < 1/(2Vd).
First, let us consider the case (a). Then ~;(a) > 1/(2Vd), i = 1,...,d, and [I7| >
1/(2vd)*. By p(x) — p4(I7) <0, we get

|7 [P@ =P+ () < (24/d) ~4P@) =P+ (M) < (2/d)1P+=P=) = C(d, p(-), 7).

Let us consider the case (b). Suppose that [ € {1,...,d} such that fz(a) = 7(a),
i.e., the I*™ side of the y-rectangle I7 is the longest side. Then 1/(2v/d) < 7i(a),
therefore a > ~; ' (1/(2v/d)). Then

1= 1o I (7)) = 7y IO )

Since p(z) — py(I7) <0, 2/d > 1 and H vi(y 1(1/(2Vd))) < 1, we obtain

I —p(x
PP ) < 2\1/8 >p+< )—p(x)
[T i (1 (1/(2V)))

2v/d P
s (H#l%( (1/(2f)))>

S A { (H#l il Nﬁ/(zf d)) >} =@t

+—P-
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Finally, in the case (c), the diagonal of the ~y-rectangle I7, d(I7) < 1/2, so we have
finished the induction (1) = (2).

The other way can be proved analogously as in Cruz-Uribe and Fiorenza [6],
page 96. 0

The following results can be found in Diening et al. [11], pages 102-105, for cubes.
We can prove them analogously for y-rectangles by the help of Lemma 4.1. For the
sake of completeness, Lemmas 4.2-4.5 are presented here, though they are used only
for the proof of Theorem 4.1 (see Diening et al. [11], page 115).

Lemma 4.2. Let p(-) € P(RY), 1/p(-) € LH(R?). Then there exists § € (0,1)
such that
Pp() AU KN v e

for every X € [0, 1] and v-rectangle I7.

Lemma 4.3. Let p(-) € P(R?), 1/p(-) € LHo(R?) and Iet q: R% x R? — R such
that

; — max 1 B 1 1 J .
ek {p(x) p(y),o}, T € LH(R! X RY)

Then for any n € (0,1) there exists u € (0,1) such that

¢p<x>< II”I/ 1f ()l y) IIVI/ ey (1 ()] dy

+ 7 | Patey) (MX{o<|rw)<13(¥) dy,
|IV| I
for every v-rectangle I7, x € I7 and f € Lp(.)([Rd)—l—LOO([Rd), ||f||Lp(_)(Rd)+Loo(Rd) <1

Lemma 4.4. Letp(-) € P(R?), 1/p(-) € LH(R?). Then for any m > 0 there exists
B € (0,1) depending only on m, p(-), v and d but independent of the y-rectangles,
such that

owor (97 [ 1) < 17 [ w170

+%<|117| /1 {(e+ e (e+1|y|) ,}X{0<|f(y)\<1}(y) dy) 7

and

owor (877 [ 1 lay) < |m/ oo (17 )

+

| o
2Iﬁl I (e+lfc|) (e+lyhm

X{o<|f(y)I<13(y) dy
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for every ~y-rectangle I" C R? all x € I" and all f € L, (R?) + Le(R?),
1 f11L, ) (RE) 4 Loo(r) < 1.
If we integrate the second estimate over a y-rectangle 17, then we get the following

corollary.

Lemma 4.5. Let p(-) € P(RY), 1/p(-) € LH(RY). Then for any m > 0 there
exists 5 € (0,1) such that

1 1
/zv Pp(x) <5W /zv |f(y)|dy> dr < /I‘Y sap(y)(If(y)I)dy+ /lh Wdy;
1
[ owo (577 [ 101w} ao < [ (5D ay + Ly e 175 0 < 5] < 1)

for every y-rectangle I" C R and all f € L(.)(R?)+Loo(R?), £z (RE)+ Lo (RE) S 1.

Let 1 < N € N. A family H of measurable sets U C R? is locally N-finite, if

> xv@ <N

UeH

for almost every x € R%. Note that a family H of sets U C R? is locally 1-finite if
and only if the sets U € H are pairwise disjoint. Now let us introduce the set of

exponent functions

A7 = {p(-) € P(R?): there exists K > 0 for all families Z7 of pairwise disjoint
~v-rectangles such that for all f € L) (R, | T+ fll o) < K|l fllp}

where

Trf = ) ﬁ/ﬁlf(y)ldy-mw = > An(f) X

ez~ IveIl~

The following theorem can be found in Diening et al. [11], page 115, for cubes.
Using Lemmas 4.2—4.5 we can prove Theorem 4.1 in the same way for y-rectangles.

Theorem 4.1. Let p(-) € P(R?), 1/p(-) € LH(R?). Then p(-) € A" and

1Tz fllpcy < CN IS lloc

for any locally N-finite family I of ~-rectangles and all f € Ly(.(R%).

The following theorem states that in the case p(-) € A7, the maximal operator
M7 is of weak type (p(-),p(-)).
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Theorem 4.2. Let p(-) € A7. Then
SUp [[7xgarvo pori o) < Cllf ey

for all f € Ly (RY).

Proof. Since MY f < CMf, f e Ly (RY), it is enough to prove the inequality
for the maximal operator M". Let I) be y-rectangles with sides |I] ;| = vi(|I] 1),
i=1,...,d, and let = be the center of I}. Let

1
MY f(z) :—sup{m/ |f(y)| dy: xEI;’}, z € R?
T I

be the centered maximal operator, where the supremum is taken over all y-rectangles
having center x.

Suppose that z € I), where I} is a 7-rectangle with center z and sides ~;(a),
i =1,...,d. Let 1 <1 € N be an exponent for which =1 < 2 < ¢ and let
a* = max{y; '(¢v;(a)): i =1,...,d}. Consider the y-rectangle (IJ)* having center
r and sides y;(a*), i = 1,...,d. Then v;(a*) > &'5,(a) > 2yi(a), i = 1,...,d. We
claim that I7 C (I7)*. Indeed, suppose that y € I7, ie., |z; — yi| < 7i(a)/2,
i =1,...,d. By the definition of a* and due to = € I}

1 1
|zi — vi] < Jas — 23] + |20 — wi < 52%‘(@ < 5%‘(61*)7

thus y € (I7)*. Let 1 <r; €N,i=1,...,d be exponents for which cﬁfl <& g cr'is
r:=max{r;: i=1,...,d}. Then

€i(a) < vila) < wi(€a) = 97 (Eie) < €Ma< e, i=1,.d.

We get that a* < £"a, therefore v;(a*) < 7i(§"a) < ¢ ;vi(a), i =1,...,d. Thus

2] Moo  Oiadod® _fro o
|12 H?:1 vi(a) H?:1 7i(a) i=1 !

Here the constant C' is independent of the rectangles, it depends only on d and 7.
Therefore we get

I"Y I

=)~
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Taking the supremum over all y-rectangles containing x, we obtain
MIf<Mf<CMIf, [ €LY*(RY),
so it is enough to prove the theorem for the maximal operator M.
Let f € Ly (RY), |Ifllp) < 1 and let 7 > 0 be arbitrary. Denote Q. :=

{M)f>7}. Then Q. is an open set. Let K C Q,, K compact. Then for all
x € K, there exists v-rectangle I} with center z, such that

1
Al;/f:: W/I-y |f|dA>T

Using Theorem 3.1, from the set {I]): = € K} we can choose families A1, Ao, ... Ay
M

such that K C U U Iand Iy ; N I ; = 0,1 # 7, Ipi, Iy € A, k=1,...,M.
k=1T€Ay

Then for almost every z € R?

M M M
XK (T) < Z Z X1z (%) < Z Z A fxr(z) = ZTAJ(J?)-
k=1

k=1T]eAy k=1IJeAy

That is,

M
Ixx NIy < <Y NTa -
p(-)

k=1

M
> Tauf
k=1

Since p(-) € A7, there exists a constant C' > 0 for which ||Ta, fll,) < C| fllpcy, ie.,
M
I locy < D2 Cl oy = CMIS -
k=1
Let K; C Q,, K; compact, K; C K1, j € N, such that |J K; = Q,. Then due to

JEN
the monotone convergence theorem

Imxarz >3 lloey = I7xec llpey = Hm limx llpey < CMIfllpe),

which proves the theorem. ([l

Since p(-) € P(R?) and 1/p(-) € LH(RY) implies p(-) € AY (see Theorem 4.1), we
can formulate the next theorem.
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Theorem 4.3. Let p(-) € P(R%), 1/p(-) € LH(R?). Then
SUP [[7xgarvo pori o) < CllF ey

for all f € L, (R%).

We get easily the weak-type inequality for the maximal operator M) o,
Theorem 4.4. Let p(-) € P(R%), 1/p(-) € LH(R?). If p_ > s, then
Slipo ||TX{M315f>T}||p(-) < OISy

for all f € L,(R%).

Proof. First of all, if p(-) € P(RY), 1/p(-) € LH(R?), then for any s > 0 such
that sp_ > 1, we get

(4.2) Py = 11150
for all f € L,()(R%). Indeed,

71wy = (i3> 0: 2y (3) < 1)

_ mf{v >0: gp(_)(“;f) < 1} =11 lo-

The more general version of (4.2) can be found in Diening et all [11], page 74. Let
f € Ly (R?) and 7 > 0 be arbitrary. Then due to p_ > s, we get that (p(-)/s)_ > 1
and

_ s 1/s _ s 1/
17X ar20 pomy oty = N X arvs 109571 lney = 17X gavs g1y 7oy ) s

snl/s
< ONFFILS s = Cllf o),

which proves the theorem. ([
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5. STRONG-TYPE INEQUALITY FOR THE CONE-LIKE MAXIMAL OPERATOR

The proof of the next lemma for y-rectangles is analogous to that of Lemma 4.3.6.
in Diening et al. [11], page 110, for cubes.

Lemma 5.1. Let p(-) € P(R?), 1/p(-) € LH(R?). Then for any m > 0 there
exists 5 € (0,1) such that

o) (BM f(2)) < M7 (ppy () (@) + M (e + [ 7™)(2), @€ R

for all f € Lyy(RY) + Loo(RY), 1 fllz, )41 @) < 1.

Now we are ready to prove the strong-type inequality of the maximal operator
M7+ on the variable L,.,(R?) spaces.

Theorem 5.1. Let p(-) € P(R%), 1/p(-) € LH(R?). If p_ > 1, then

HM%(SprH <Ol fllpey

for all f € L,(R%).

Proof. It is enough to prove the theorem for the maximal operator M7 due
to MY0f < CMYf for all f € L,y(RY). Let ¢(-) := p(-)/p—. Since 1/p(-) €
LH(RY), thus 1/q(-) = p_/p(-) € LH(R?). It is true that ¢_ = (p(-)/p_)_ = 1. Let
[ € Ly(R%) be arbitrary with || f||,) < 1/2. We can see easily that ¢y, (rt) <
TPqg(x)(t) for all t > 0 and r € [0, 1]. Since ¢(-) < p(-) < oo, we get (see (2.2)):

f € LQ(')(Rd)+LOO(Rd) and HfHLq(.)(Rd)+LOO(Rd) < 2||f||p() < ]-

Consequently, we can apply Lemma 5.1 to obtain

e (S0 F(2)) < 5040 (BM7 (@) < 2M 00 (D)(&) + Thla), z € R,

where h(z) := M7 ((e+[|7™))(z). Let m > d. It is clear that ¢,,)(t) =
0,

(P ()P~ t=>0, 2 € R9, thus by Jensen’s inequality

Pp() (EM”f(w)) <

. M (e () (@) +

(M7 (@q(y () ()]

N = /N

<
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If we integrate both sides of this inequality over R?, we get

o (007560
%/[Rd (M7 (g0 (f))(@)]P~ do + % /Rd(h(x))p, da

1 1
S IM 7 (pq(y (FDIEZ + S lIRIIZZ-

oo ()

N

If || fllp¢y < 1, then g,y (f) < 1, and therefore

lear DI = [ a5 e = [ ey 7@ dr = a0(5) < 1.
Since p_ > 1, the maximal operator M7 is bounded on the space L, (R%), i.e.,

1M (g (FNlp— < Cillpg() (Nllp- < Cr

At the same time since, mp_ > d, we have (e + |-|)""P- € L1(R%), i.e., (e+]-[)™™ €
L, ([Rd), thus

1P15= = 1M ((e + [-D™™FZ < Calle + [-)™(FZ = Cs < oc.

We see that there exists a constant C' (we can assume that C' > 1) such that
0p() (B/2M7 f) < C, so by inequality (2.1)

B 1 p 20

Qp(~)(%M’Yf) < 69[)(~)(§M7f) S1= MY fllp) < B
Consequently, ||[M7f||,.y < K for ||f|[,.) < 1/2. The proof is completed by the
scaling argument. O

Using the fact that M2-°f = (M7°(|f|*))'/*, we get the following theorem.
Theorem 5.2. Let p(-) € P(R%), 1/p(-) € LH(R?). If p_ > s, then

||Mg’5f||p(~) < Cllfllpe
for all f € Ly (R).

Proof. It is enough to prove the theorem only for the maximal operator M.
Let f € Lp.)(R%) be arbitrary. Then due to p_ > s, (p(-)/s)_ > 1. Using (4.2) we
get

s s sy |11/¢ snl/:
I3 Fllpey = 1M UFI) 2 oy = 1AL 0 < CUEEILL /6 = CllE ey,
which proves the theorem. ([
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