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Abstract. The aim of the paper is to establish strong laws of large numbers for sequences
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1. Introduction

Móricz [5] extended the classical strong law of large numbers (SLLN) of Kol-

mogorov to the blockwise m-dependence case. Gaposhkin [4] considered arbitrary

blocks and derived SLLN for blockwise independent random variables. Bo [1] stud-

ied the Marcinkiewicz-Zygmund law for sequences of blockwisem-dependent random

variables with respect to arbitrary blocks. Thanh [8] extended the result of Choi and

Sung [2] to the blockwise and pairwise m-dependence case and the result of Etemadi

[3] to the pairwise m-dependence case with respect to the blocks [2k, 2k+1), k ∈ N0.

Terán and Molchanov [7] introduced the concept of a convex combination space,

which is a metric space endowed with a convex combination operation. The class

of these metric spaces is not only larger than the class of Banach spaces but also

larger than the class of hyperspaces of compact subsets, as well as the class of upper

This research was supported in part by Foundation for Science and Technology Develop-
ment of Vietnams Ministry of Education and Training. No. B2016.DNA.26.
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semicontinuous functions (fuzzy sets) with compact support in a Banach space. Some

very basic sets, such as singletons and balls, may fail to be convex in the convex

combination space. Terán and Molchanov [7] also stated various basic properties of

the convex combination operation and used these properties to derive the SLLN for

pairwise i.i.d. random variables, which extended Theorem 1 of Etemadi [3]. Some

more limit theorems for random variables taking values in a convex combination

space can be found in Quang and Thuan [6], Thuan et al. [9].

Continuing in this direction, in this study we establish some results on SLLN for

sequences of blockwise and pairwisem-dependent random variables in a convex com-

bination space with respect to the blocks [2k, 2k+1) and with or without compactly

uniformly integrable condition. Our results are more general than some previously re-

ported ones. The paper is organized as follows. In Section 2, we state and summarize

basic results in a convex combination space X and some related concepts. In Sec-

tion 3, some results on SLLN for sequences of blockwise and pairwise m-dependent,

blockwise m-dependent, pairwise m-dependent independent identically distributed

random variables are established.

2. Preliminaries

Throughout this paper, (Ω,A, P ) is a complete probability space. For A ∈ A, the

notation I{A} (or IA) is the indicator function of A. At first, we present a short

introduction to the approach given by Terán and Molchanov [7]. Let (X, d) be a met-

ric space. Based on X, we introduce a convex combination operation which for all

n > 2, numbers λ1, . . . , λn > 0 satisfying
n
∑

i=1

λi = 1, and all u1, . . . , un ∈ X, produces

an element of X, which is denoted by [λi, ui]
n
i=1 or [λ1, u1; . . . ;λn, un]. Assume that

[1, u] = u for every u ∈ X and that the following axioms are satisfied:

(i) (Commutativity)

[λi, ui]
n
i=1 = [λσ(i), uσ(i)]

n
i=1 for every permutation σ of {1, . . . , n}.

(ii) (Associativity)

[λi, ui]
n+2
i=1 =

[

λ1, u1; . . . ;λn, un;λn+1 + λn+2,
[ λn+j

λn+1 + λn+2
, un+j

]2

j=1

]

.

(iii) (Continuity) If u, v ∈ X and λ(k) → λ ∈ (0, 1) as k → ∞, then

[λ(k), u; 1− λ(k), v] → [λ, u; 1− λ, v].
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(iv) (Negative curvature) If u1, u2, v1, v2 ∈ X and λ ∈ (0, 1), then

d([λ, u1; 1− λ, u2], [λ, v1; 1− λ, v2]) 6 λd(u1, v1) + (1− λ)d(u2, v2).

Based on the inductive method and (ii), this axiom can be extended to convex

combinations of n element as follows: if ui, vi ∈ X, λi ∈ (0; 1),
n
∑

i=1

λi = 1, then

d([λi, ui]
n
i=1, [λi, vi]

n
i=1) 6

n
∑

i=1

λid(ui, vi).

(v) (Convexification) For each u ∈ X, there exists lim
n→∞

[n−1, u]ni=1, which will be

denoted byKXu (orKu if no confusion can arise), andK is called the convexification

operator.

Then the metric space X endowed with a convex combination operation is re-

ferred to as the convex combination space. The above axioms imply the following

properties:

(2.1) For every u11, . . . , umn ∈ X and α1, . . . , αm, β1, . . . , βn > 0 with
m
∑

i=1

αi =
n
∑

j=1

βj = 1, we have

[αi, [βj , uij ]
n
j=1]

m
i=1 = [αiβj, uij ]

i=m,j=n
i=1,j=1 .

(2.2) The convex combination operation is jointly continuous in its 2n arguments.

(2.3) The convexification operator K is linear, i.e. K([λj , uj]
n
j=1) = [λj ,Kuj]

n
j=1.

(2.4) If u ∈ X and λ1, . . . , λn > 0 with
n
∑

j=1

λj = 1, then K([λj , u]
n
j=1) = Ku =

[λj ,Ku]nj=1. Hence, K is an idempotent operator in X.

(2.5) For every λ1, λ2, λ3 > 0 with λ1 + λ2 + λ3 = 1 and u, v ∈ X,

[λ1, u;λ2,Kv;λ3,Kv] = [λ1u; (λ2 + λ3),Kv].

(2.6) The mapping K is non-expansive with respect to the metric d, which means

that d(Ku,Kv) 6 d(u, v).

Let {λk : k > 1} ⊂ (0; 1), λk → 0 as k → ∞, and u, v ∈ X. By (iv) and prop-

erty (2.4), we have

d([λk,Ku; 1− λk,Kv],Kv) = d([λk,Ku; 1− λk,Kv], [λk,Kv; 1− λk,Kv])

6 λkd(Ku,Kv) → 0 as k → ∞.

It follows that [λk,Ku; 1 − λk,Kv] → Kv as k → ∞, and this remark makes it

possible to extend weights λi from (0; 1) to [0; 1] for elements in K(X), which means

that we can define [λi, ui]i∈I = [λi, ui]i∈J with J = {i ∈ I : λi > 0}, where λi ∈

[0, 1], ui ∈ K(X) and
∑

i∈J

λi =
∑

i∈I

λi = 1.
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A mapping X : Ω → X is called an X-valued random variable if X−1(B) ∈ A for

all B ∈ B(X), where B(X) is the Borel σ-algebra on X. The distribution PX of an

X-valued random variable X is defined by PX(B) = P{X−1(B)} for all B ∈ B(X),

and two X-valued random variables X,Y are said to be identically distributed if

PX = PY .

The collection of X-valued random variables {Xi : i ∈ I} is said to be independent

(pairwise independent) if the collection of σ-algebras {σ(Xi) : i ∈ I} is independent

(pairwise independent, respectively), where σ(X) = {X−1(B) : B ∈ B(X)}.

Let m be a fixed nonnegative integer. We say that a finite collection {Xi : 1 6 i 6

n} of X-valued random variables is m-dependent if either n 6 m+ 1, or n > m+ 1

and the random variables {X1, . . . , Xi} are independent of the random variables

{Xj, . . . , Xn} whenever j − i > m. A finite collection of X-valued random variables

{Xi : 1 6 i 6 n} is said to be pairwise m-dependent if either n 6 m+1, or n > m+1

and Xi and Xj are independent whenever j − i > m. A sequence {Xn : n > 1} of

X-valued random variables is said to be pairwise m-dependent if Xi and Xj are

independent whenever j − i > m. A sequence {Xn : n > 1} of X-valued random

variables is said to be blockwise m-dependent (blockwise and pairwise m-dependent)

if for each k ∈ N0, the collection {Xn : 2k 6 n < 2k+1} is m-dependent (pairwise

m-dependent, respectively).

From now on, we assume that (X, d) is a separable and complete metric space.

We fix u0 ∈ K(X) and consider u0 to be a special element of X. A random variable

X : Ω → X is said to be integrable if Ed(u0, X) < ∞. Note that this definition

does not depend on the selection of the element u0. The space of all integrable X-

valued random variables will be denoted by L1
X
, and the metric on L1

X
is defined by

∆(X,Y ) = Ed(X,Y ).

If X is a simple function that takes a distinct value xi ∈ X for each non-null

set Ωi, i = 1, . . . , n, the expectation of X is defined by EX = [P (Ωi),Kxi]
n
i=1. By

continuity of all Borel functions X ∈ L1
X
, then for X ∈ L1

X
, the expectation of X is

defined as the limit of the expectations sequence of simple random variables. Note

that if X,Y ∈ L1
X
then d(EX,EY ) 6 Ed(X,Y ).

An example for a convex combination space is the space of nonempty compact

subsets. Let X be a convex combination space and k(X) the set of nonempty compact

subsets of X. A set A ⊂ X is called convex if [λi, ui]
n
i=1 ∈ A for all ui ∈ A and

n
∑

i=1

λi = 1. We denote as coA the convex hull of A ⊂ X, and coA is the closed

convex hull of A. Let dH be the Hausdorff metric on k(X), that is dH(A,B) =

max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a)
}

forA,B ∈ k(X). It follows from Theorem 6.2 [7]

that the space k(X) with the convex combination [λi, Ai]
n
i=1 = {[λi, ui]

n
i=1 : ui ∈ Ai

for all i} and the metric dH is a separable complete convex combination space. We
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also have Kk(X)A = coKXA = co{KXu : u ∈ A}. Further examples for convex

combination spaces can be found in [7].

Now we introduce the concept of compact uniform integrability in Cesàro sense

for a sequence of random variables taking values in a metric space, which is naturally

extended from a Banach space to a metric space. A sequence {Xn : n > 1} of X-

valued (k(X)-valued) random variables is said to be compactly uniformly integrable

in Cesàro sense (Cesàro CUI for short) if for every ε > 0, there exists a compact

subset Kε of X (k(X), respectively) such that

sup
n>1

n−1
n
∑

i=1

E(d(u0, Xi)I{Xi /∈ Kε}) 6 ε.

(resp. sup
n>1

n−1
n
∑

i=1

E(dH({u0}, Xi)I{Xi /∈ Kε}) 6 ε).

By using a method similar to that used in the proof of Proposition 2.1 of [9], it

is easy to show that the concept of Cesàro CUI does not depend on the selected

element u0. A sequence {Xn : n > 1} of real-valued random variables is said to be

stochastically dominated by a real-valued random variableX if there exists a constant

C (0 < C < ∞) such that

P (|Xn| > t) 6 CP (|X | > t), n > 1, t > 0.

We complete this summary by a lemma which will be used in the proof of Propo-

sition 3.1 in the next section.

Lemma 2.1 ([6], Lemma 3.3). Let {ai, bi : 1 6 i 6 n} ⊂ [0, 1] be a collection of

nonnegative constants with
n
∑

i=1

ai =
n
∑

i=1

bi = 1. Then

d([ai,Kxi]
n
i=1, [bi,Kxi]

n
i=1) 6

n
∑

i=1

|ai − bi|d(u0, xi),

where x1, . . . , xn ∈ X are arbitrary.
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3. SLLN for sequences of blockwise and pairwise m-dependent

X-valued random variables

Let u0 be a fixed element of K(X), which is mentioned in Section 2. We denote

‖x‖u0
:= d(x, u0) for all x ∈ X. In the first theorem, we will establish a result

on the SLLN for sequences of blockwise m-dependent and Cesàro CUI X-valued

random variables in a convex combination space. To do that, we need the following

proposition.

Proposition 3.1. Let K be a compact subset of X. If {Xn : n > 1} is a sequence

of blockwise and pairwisem-dependent X-valued random variables satisfying P (Xn ∈

K) = 1 for all n, then

(1) d([n−1, Xi]
n
i=1, [n

−1, EXi]
n
i=1) → 0 a.s. as n → ∞.

P r o o f. For ε > 0, by the compactness of K, there exists {c1, c2, . . . , cp} ⊂ K

such that

K ⊂

p
⋃

t=1

B(ct, ε), where B(ct, ε) = {x ∈ X : d(x, ct) < ε}.

For n > 1, we define the X-valued random variables as follows:

Yn(ω) =



















c0 := u0 if Xn(ω) /∈ K,

c1 if Xn(ω) ∈ B(c1, ε) ∩ K,

ct if Xn(ω) ∈ B(ct, ε) ∩
{ t−1

⋃

k=1

B(ck, ε)
}c

∩ K, t = 2, . . . , p.

It is obvious that the sequence {Yn : n > 1} is also blockwise and pairwise m-

dependent. By the triangular inequality, we have

d([n−1, Xi]
n
i=1, [n

−1, EXi]
n
i=1) 6 d([n−1, Xi]

n
i=1, [n

−1, Yi]
n
i=1)

+ d([n−1, Yi]
n
i=1, [n

−1,KYi]
n
i=1)

+ d([n−1,KYi]
n
i=1, [n

−1, EYi]
n
i=1)

+ d([n−1, EYi]
n
i=1, [n

−1, EXi]
n
i=1)

:= (A1) + (A2) + (A3) + (A4).

For (A1), by the construction of Yn, we have

(A1) = d([n−1, Xi]
n
i=1, [n

−1, Yi]
n
i=1) 6

1

n

n
∑

i=1

d(Xi, Yi) 6 ε a.s.
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For (A2), we put

Qt
n(ω) = card{i : 1 6 i 6 n, Yi(ω) = ct} =

n
∑

i=1

I{Yi = ct}(ω),

Tn(ω) = {t : 0 6 t 6 p,Qt
n(ω) > 0}, n > 1.

By properties (2.1) and (2.4), we have

[n−1, Yi]
n
i=1 = [n−1Qt

n, [(Q
t
n)

−1, ct]
Qt

n

i=1]t∈Tn

and

[n−1,KYi]
n
i=1 =

[

n−1Qt
n, [(Q

t
n)

−1,Kct]
Qt

n

i=1

]

t∈Tn

= [n−1Qt
n,Kct]t∈Tn

.

Therefore,

(A2) = d([n−1, Yi]
n
i=1, [n

−1,KYi]
n
i=1) 6

∑

t∈Tn

Qt
n

n
d([(Qt

n)
−1, ct]

Qt

n

i=1,Kct).

We will prove that (A2) 6 ε for all ω ∈ Ω when n is sufficiently large.

Indeed, we consider each t = 0, 1, . . . , p. By the definition of K, we have

lim
n→∞

d([n−1, ct]
n
i=1,Kct) = 0.

Thus, there exists n1(ε) ∈ N such that

d([n−1, ct]
n
i=1,Kct) <

ε

p+ 1
for all n > n1(ε) and for all t = 0, 1, . . . , p.

We put

Mt(ε) = max
16k<n1(ε)

d([k−1, ct]
k
i=1,Kct), M(ε) = max

06t6p
Mt(ε)

and choose the smallest integer number n(ε) such that n(ε) > ε−1(p+1)M(ε)n1(ε).

Now, for all n > n(ε):

If Qt
n(ω) > n1(ε), then

Qt
n(ω)

n
d([(Qt

n(ω))
−1, ct]

Qt

n
(ω)

i=1 ,Kct) <
ε

p+ 1
(since n−1Qt

n(ω) 6 1).

If 0 < Qt
n(ω) < n1(ε), then

Qt
n(ω)

n
d([(Qt

n(ω))
−1, ct]

Qt

n
(ω)

i=1 ,Kct) 6
n1(ε)

n(ε)
M(ε) 6

ε

p+ 1
.
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Hence, for n > n(ε) and for all ω ∈ Ω,

Qt
n(ω)

n
d([(Qt

n(ω))
−1, ct]

Qt

n
(ω)

i=1 ,Kct) 6
ε

p+ 1
.

This implies that

(A2) 6
∑

t∈Tn

Qt
n

n
d
(

[(Qt
n)

−1, ct]
Qt

n

i=1,Kct
)

6

p
∑

t=0

ε

p+ 1
= ε

for values of n that are sufficiently large.

For (A3), we have KYi = [I{Yi = ct},Kct]
p
t=0, EYi = [P{Yi = ct},Kct]

p
t=0. Then,

by properties (2.1) and (2.5), and Lemma 2.1

(A3) = d([n−1, [I{Yi = ct},Kct]
p
t=0]

n
i=1, [n

−1, [P{Yi = ct},Kct]
p
t=0]

n
i=1)

= d([n−1I{Yi = ct},Kct]
t=p,i=n
t=0,i=1 , [n

−1P{Yi = ct},Kct]
t=p,i=n
t=0,i=1 )

= d

([

1

n

n
∑

i=1

I{Yi = ct},Kct

]p

t=0

,

[

1

n

n
∑

i=1

P{Yi = ct},Kct

]p

t=0

)

6

p
∑

t=0

∣

∣

∣

∣

1

n

n
∑

i=1

(I{Yi = ct} − P{Yi = ct})

∣

∣

∣

∣

‖ct‖u0

=

p
∑

t=1

∣

∣

∣

∣

1

n

n
∑

i=1

(I{Yi = ct} − P{Yi = ct})

∣

∣

∣

∣

‖ct‖u0
.

Using the fact that {I{Yi = ct}−P{Yi = ct} : n > 1} is the sequence of blockwise and

pairwise m-dependent real-valued random variables that is stochastically dominated

by random variable X = 2 and applying Theorem 1 of [8], we have

1

n

n
∑

i=1

(I{Yi = ct} − P{Yi = ct}) → 0 a.s. as n → ∞.

Thus (A3) → 0 a.s. as n → ∞.

For (A4), by the definition of Yn, we have

(A4) = d([n−1, EYi]
n
i=1, [n

−1, EXi]
n
i=1)

6
1

n

n
∑

i=1

d(EYi, EXi) 6
1

n

n
∑

i=1

Ed(Yi, Xi) < ε.

Combining the above parts, we obtain

lim sup
n→∞

d([n−1, Xi]
n
i=1, [n

−1, EXi]
n
i=1) 6 3ε a.s.

By the arbitrariness of ε > 0, we derive conclusion (1). �
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Applying the above proposition, we obtain the SLLN for sequences of blockwise

m-dependent and Cesàro CUI X-valued random variables.

Theorem 3.2. Let {Xn : n > 1} be a sequence of blockwise m-dependent X-

valued random variables which is Cesàro CUI. If

(2)

∞
∑

n=1

E‖Xn‖
2
u0

n2
< ∞,

then (1) holds.

P r o o f. For ε > 0 arbitrarily small, by Cesàro CUI hypothesis there exists

a compact subset Kε of X such that

1

n

n
∑

i=1

E(‖Xi‖u0
I{Xi /∈ Kε}) 6 ε for all n.

For n > 1, we define the X-valued random variables as follows:

Zn(ω) =

{

Xn(ω) if Xn(ω) ∈ Kε,

u0 if Xn(ω) /∈ Kε.

By the triangular inequality, we have

d([n−1, Xi]
n
i=1, [n

−1, EXi]
n
i=1) 6 d([n−1, Xi]

n
i=1, [n

−1, Zi]
n
i=1)

+ d([n−1, Zi]
n
i=1, [n

−1, EZi]
n
i=1)

+ d([n−1, EZi]
n
i=1, [n

−1, EXi]
n
i=1)

:= (B1) + (B2) + (B3).

For (B1), we have

d([n−1, Xi]
n
i=1, [n

−1, Zi]
n
i=1)

6
1

n

n
∑

i=1

d(Xi, Zi) =
1

n

n
∑

i=1

‖Xi‖u0
I{Xi /∈ Kε}

=
1

n

n
∑

i=1

(‖Xi‖u0
I{Xi /∈ Kε} − E(‖Xi‖u0

I{Xi /∈ Kε}))

+
1

n

n
∑

i=1

E(‖Xi‖u0
I{Xi /∈ Kε})

6
1

n

n
∑

i=1

(‖Xi‖u0
I{Xi /∈ Kε} − E(‖Xi‖u0

I{Xi /∈ Kε})) + ε.
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It is clear that {‖Xn‖u0
I{Xn /∈ Kε}−E(‖Xn‖u0

I{Xn /∈ Kε}) : n > 1} is a sequence

of blockwise m-dependent real-valued random variables. Moreover,

∞
∑

n=1

E(‖Xn‖u0
I{Xn /∈ Kε} − E(‖Xn‖u0

I{Xn /∈ Kε}))
2

n2

6

∞
∑

n=1

E‖Xn‖
2
u0

n2
< ∞ (by (2)).

Then by Theorem 1 of [5], we have

lim
n→∞

1

n

n
∑

i=1

(‖Xi‖u0
I{Xi /∈ Kε} − E(‖Xi‖u0

I{Xi /∈ Kε})) = 0 a.s.

Hence,

lim sup
n→∞

d
(

[n−1, Xi]
n
i=1, [n

−1, Zi]
n
i=1

)

6 ε a.s.

For (B2), it is clear that {Zn : n > 1} is a sequence of blockwise and pairwise m-

dependent X-valued random variables and Zn ∈ Kε ∪ {u0} for all n. By applying

Proposition 3.1, we have (B2) → 0 a.s. as n → ∞.

For (B3), we have

d
(

[n−1, EZi]
n
i=1, [n

−1, EXi]
n
i=1

)

6
1

n

n
∑

i=1

d(EZi, EXi)

6
1

n

n
∑

i=1

Ed(Zi, Xi) =
1

n

n
∑

i=1

E(‖Xi‖u0
I{Xi /∈ Kε}) 6 ε.

Combining the above parts, we obtain

lim sup
n→∞

d([n−1, Xi]
n
i=1, [n

−1, EXi]
n
i=1) 6 2ε a.s.

The proof is completed. �

For sequences of blockwise and pairwise m-dependent and Cesàro CUI X-valued

random variables, we obtain the following result.
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Theorem 3.3. Let {Xn : n > 1} be a sequence of blockwise and pairwise m-

dependent X-valued random variables which are Cesàro CUI. Suppose that {‖Xn‖u0
:

n > 1} is stochastically dominated by a real-valued random variable X . If

(3) E(|X |(log+ |X |)2) < ∞,

then (1) holds.

P r o o f. We will use the same method and notation as in the proof of Theo-

rem 3.2. We also have (B2) → 0 a.s. as n → ∞ and (B3) 6 ε. Now we consider (B1).

Note that {‖Xn‖u0
I{Xn /∈ Kε} : n > 1} is a sequence of blockwise and pairwise

m-dependent random variables and for all n, t > 0,

P (‖Xn‖u0
I{Xn /∈ Kε} > t) 6 P (‖Xn‖u0

> t) 6 CP (|X | > t).

Then by Theorem 1 of [8], we have

lim
n→∞

1

n

n
∑

i=1

(‖Xi‖u0
I{Xi /∈ Kε} − E(‖Xi‖u0

I{Xi /∈ Kε})) = 0 a.s.

Hence,

lim sup
n→∞

d([n−1, Xi]
n
i=1, [n

−1, Zi]
n
i=1) 6 ε a.s.

The proof is completed. �

R em a r k 3.4. In general, the compactly uniform integrability is stronger than

the uniform integrability. But, they are equivalent for the real case. Furthermore,

if {‖Xn‖u0
: n > 1} is stochastically dominated by a real-valued random variable X

and E|X | < ∞, then {‖Xn‖u0
: n > 1} is uniformly integrable. Therefore, in the

above theorem, if X = R we obtain Theorem 1 of [8] with r = 1.

In the next part, we will establish the SLLN for sequences of blockwise m-

dependent and identically distributed X-valued random variables. First, we will

prove the following lemma.

Lemma 3.5. Let {X,Xn : n > 1} be a sequence of blockwise m-dependent and

identically distributed real-valued random variables. If E|X | < ∞, then

(4)
1

n

n
∑

i=1

Xi → EX a.s. as n → ∞.

P r o o f. Since {X+
n : n > 1} and {X−

n : n > 1} satisfy the hypotheses of the

lemma and Xn = X+
n −X−

n , without loss of generality we can assume that Xn > 0.
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Set Yn = XnI{Xn 6 n}, n > 1. Let F (x) be the distribution function of X . We

have

∞
∑

n=1

EY 2
n

n2
=

∞
∑

n=1

1

n2

∫ n

0

x2 dF (x) =

∞
∑

n=1

1

n2

n−1
∑

k=0

∫ k+1

k

x2 dF (x)

=
∞
∑

k=0

∫ k+1

k

x2 dF (x)
∞
∑

n=k+1

1

n2
.

On the other hand, we have

∞
∑

n=k+1

1

n2
6

2

k + 1
, k ∈ N0.

Indeed, if k = 0, then
∞
∑

n=1

1

n2
6 1 +

∞
∑

n=2

1

n(n− 1)
= 2.

If k > 1, then
∞
∑

n=k+1

1

n2
6

∞
∑

n=k+1

1

n(n− 1)
=

1

k
6

2

k + 1
.

Hence,

∞
∑

n=1

EY 2
n

n2
6 2

∞
∑

k=0

1

k + 1

∫ k+1

k

x2 dF (x) 6 2

∞
∑

k=0

∫ k+1

k

xdF (x) = 2EX < ∞.

This implies that
∞
∑

n=1

E(Yn − EYn)
2

n2
6

∞
∑

n=1

EY 2
n

n2
< ∞.

Since {Yn : n > 1} is a sequence of blockwise m-dependent random variables,

{Yn − EYn : n > 1} is so as well. By Theorem 1 of [5], we have

1

n

n
∑

i=1

(Yi − EYi) → 0 a.s. as n → ∞.

On the other hand,

∞
∑

n=1

P (Xn 6= Yn) =

∞
∑

n=1

P (Xn > n) =

∞
∑

n=1

∫ ∞

n

dF (x)

=

∞
∑

n=1

∞
∑

i=n

∫ i+1

i

dF (x) =

∞
∑

i=1

i

∫ i+1

i

dF (x)

6

∞
∑

i=1

∫ i+1

i

xdF (x) 6 EX < ∞.
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It follows from EYn ↑ EX as n → ∞ and the Borel-Cantelli lemma that

1

n

n
∑

i=1

Xi → EX a.s. as n → ∞.

The lemma is proved. �

Now we will establish the SLLN for sequences of blockwise m-dependent and

identically distributed X-valued random variables.

Theorem 3.6. Let {X,Xn : n > 1} be a sequence of blockwise m-dependent and

identically distributed X-valued random variables. If

(5) E‖X‖u0
< ∞,

then

(6) [n−1, Xi]
n
i=1 → EX a.s. as n → ∞.

P r o o f. First, assume that X is a simple function taking distinct values

x1, x2, . . . , xp on non-null sets Ω1,Ω2, . . . ,Ωp. For each t = 1, . . . , p, we put

U t
n(ω) = card{i : 1 6 i 6 n,Xi(ω) = xt} =

n
∑

i=1

I{Xi = xt}(ω).

By Lemma 3.5, we have n−1U t
n → P (Ωt) > 0 a.s. as n → ∞. Hence, U t

n → ∞

a.s. as n → ∞ and when n is large enough, U t
n > 0 a.s. For n large enough, by

property (2.1) we have

[n−1, Xi]
n
i=1 = [n−1U t

n, [(U
t
n)

−1, xt]
Ut

n

i=1]
p
t=1 a.s.

On the other hand,

[n−1U t
n, [(U

t
n)

−1, xt]
Ut

n

i=1]
p
t=1 → [P (Ωt),Kxt]

p
t=1 = EX a.s. as n → ∞.

So the conclusion (6) holds for simple random variables.

Let us consider the general case whenX is an integrable X-valued random variable.

For each ε > 0, by Proposition 4.1 (d) of [7], there exists a sequence {ϕk : k > 1}

of (Borel measurable) maps such that Ed(ϕk(X), X) → 0 as k → ∞. Therefore,

there exists k0 such that Ed(ϕk0
(X), X) 6 ε. Furthermore, by the assumption and
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Proposition 4.1 (a) of [7], {ϕk0
(X), ϕk0

(Xn) : n > 1} is a sequence of blockwise

m-dependent identically distributed and simple random variables. We have

(7) E‖ϕk0
(X)‖u0

6 E‖X‖u0
+ ε < ∞.

By the triangle inequality,

d([n−1, Xi]
n
i=1, EX) 6 d([n−1, Xi]

n
i=1, [n

−1, ϕk0
(Xi)]

n
i=1)

+ d([n−1, ϕk0
(Xi)]

n
i=1, Eϕk0

(X))

+ d(Eϕk0
(X), EX) := (C1) + (C2) + (C3).

For (C1) we have

d([n−1, Xi]
n
i=1, [n

−1, ϕk0
(Xi)]

n
i=1) 6

1

n

n
∑

i=1

d(Xi, ϕk0
(Xi)).

Note that {d(X,ϕk0
(X)), d(Xn, ϕk0

(Xn)) : n > 1} is a sequence of blockwise

m-dependent and identically distributed real-valued random variables. Thus by

Lemma 3.5 again, we have

1

n

n
∑

i=1

d(Xi, ϕk0
(Xi)) → Ed(X,ϕk0

(X)) 6 ε a.s. as n → ∞.

For (C2), it follows from the first case and (7) that

d([n−1, ϕk0
(Xi)]

n
i=1, Eϕk0

(X)) → 0 a.s. as n → ∞.

For (C3), we have

d(Eϕk0
(X), EX) 6 Ed(X,ϕk0

(X)) 6 ε.

Combining the above parts, we obtain

lim sup
n→∞

d([n−1, Xi]
n
i=1, EX) 6 2ε a.s.

By the arbitrariness of ε > 0, we derive the conclusion (6). �

By using Theorem 2 of [8] and a method similar to that used in the proof of

Theorem 3.6, we derive SLLN for sequences of pairwise m-dependent and identically

distributed X-valued random variables. Therefore, the proof will be omitted.
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Theorem 3.7. Let {X,Xn : n > 1} be a sequence of pairwise m-dependent and

identically distributed X-valued random variables. Then condition (5) implies (6).

R em a r k 3.8. Note that pairwise 0-dependence is equivalent to pairwise inde-

pendence. Therefore, Theorem 5.1 of [7] is a special case of Theorem 3.7.

As mentioned in Section 2, (k(X), dH) is a separable and complete convex com-

bination space. We denote the expectation of an integrable random variable X in

(k(X), dH) by Ek(X)X . Then, by applying the above theorems, we obtain the follow-

ing corollaries immediately:

Corollary 3.9. Let {X,Xn : n > 1} be a sequence of blockwise m-dependent (or

pairwise m-dependent) and identically distributed k(X)-valued random variables. If

E‖X‖{u0} < ∞, then

(8) [n−1, Xi]
n
i=1 → Ek(X)X a.s. as n → ∞.

Corollary 3.10. Let {Xn : n > 1} be a sequence of blockwise m-dependent

k(X)-valued random variables which are Cesàro CUI. If

(9)

∞
∑

n=1

E‖Xn‖
2
{u0}

n2
< ∞,

then

(10) dH([n−1, Xi]
n
i=1, [n

−1, Ek(X)Xi]
n
i=1) → 0 a.s. as n → ∞.

Corollary 3.11. Let {Xn : n > 1} be a sequence of blockwise and pairwise

m-dependent k(X)-valued random variables which are Cesàro CUI. Suppose that

{‖Xn‖{u0} : n > 1} is stochastically dominated by a real-valued random variable X .

If

(11) E(|X |(log+ |X |)2) < ∞,

then (10) holds.
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