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Interaction between cellularity of Alexandroff

spaces and entropy of generalized shift maps

Fatemah Ayatollah Zadeh Shirazi, Sahar

Karimzadeh Dolatabad, Sara Shamloo

Abstract. In the following text for a discrete finite nonempty set K and a self-map
ϕ : X → X we investigate interaction between different entropies of generalized
shift σϕ : KX

→ KX , (xα)α∈X 7→ (xϕ(α))α∈X and cellularities of some Alexan-
droff topologies on X.

Keywords: Alexandroff topology; cellularity; functional Alexandroff topological
space; infinite anti-orbit number; infinite orbit number
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Introduction

In this paper, we investigate interaction between cellularity of Alexandroff
spaces and entropy of generalized shift maps. Briefly, we deal with several con-
cepts including two subclasses of Alexandroff topological spaces, infinite orbit
number and infinite anti-orbit number of a self-map, the set-theoretical and the
contravariant set-theoretical entropies, the algebraic and the topological entropies,
and in particular their interaction regarding generalized shifts’ subject.

Binding several concepts, using an idea and investigating new theorems are
common and well-known methods in all areas of mathematics. In the following
text, infinite orbit number and infinite anti-orbit number of a self-map help us
to bind the concepts of “cellularity” and “entropy”, e.g. we prove that if K is
a finite discrete space with at least two elements, X is an arbitrary space with
at least two elements, and λ : X → X does not have any periodic point, then
considering KX under product topology, the topological entropy of generalized
shift σλ : KX → KX is equal to c∗(X, τλ) log |K|, where c∗(X, τλ) just depends
on the cellularity of Alexandroff space (X, τλ).

Our first two sections are devoted to preliminaries, short historical points in
some cases and useful remarks, all of them in a shortened form, i.e., in the first
section we have background on Alexandroff topologies, orbit numbers and ge-
neralized shifts divided in three subsections, and in the second section we have
background on different entropies (set-theoretical, contravariant set-theoretical,
topological, algebraic) and the connection between them regarding generalized
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shifts. Sections 3 and 4 contain the main body of the paper and Section 5 presents
main results.

We recall that the cellularity of a topological space (X, τ) [11] is defined by

c(X, τ) := sup{card(A) : A is a collection of disjoint nonempty open subsets of X}.

Moreover, denote

c∗(X, τ) :=

{

c(X, τ) if c(X, τ) is finite,

∞ otherwise.

In the following text N = {1, 2, . . .} denotes the collection of all natural numbers
and Z = {0,±1,±2, . . .} denotes the collection of all integers.

1. Background on Alexandroff topologies, orbit numbers and genera-

lized shifts

In this section we have preliminaries on Alexandroff topologies (we deal with
two classes of Alexandroff topologies), orbit numbers (infinite orbit number and
anti orbit number), and generalized shifts.

1.1 Preliminaries on Alexandroff topologies. We call the topological space
(X, τ) Alexandroff if for every nonempty family {Uα : α ∈ Γ} of open subsets of X ,
⋂

{Uα : α ∈ Γ} is open (so X is an Alexandroff space and τ is an Alexandroff
topology). In particular, in Alexandroff topological space (X, τ) every x ∈ X has
the smallest open neighborhood, we denote this neighborhood by V (x, τ).

As it has been mentioned in [4], for an arbitrary map f : X → P(X)\{∅}, the
family {f(x) : x ∈ X} is a basis for an Alexandroff topology on X such that f(x)
is the smallest open neighborhood of x (x ∈ X) if and only if for all x, y ∈ X we
have:

• x ∈ f(x);
• if y ∈ f(x), then f(y) ⊆ f(x).

Now for a self-map λ : X → X , consider f, g : X → P(X) \ {∅} with f(x) =
⋃

{λ−n(x) : n ≥ 0} and g(x) = {λn(x) : n ≥ 0} . Then {f(x) : x ∈ X} and
{g(x) : x ∈ X} are the topological basis on X . Functional Alexandroff topology

on X induced by λ is the topology generated by {f(x) : x ∈ X}, we denote this
topology on X by τλ which has been introduced for the first time in [4] on the
basis of a talk in a Conference on 2009 by the first author [2] (for more details
on functional Alexandroff spaces see [5]). Also, another Alexandroff topology on
X is the topology generated by {g(x) : x ∈ X}, we denote this topology on X by
τλ and call it the Alexandroff topology on X induced by λ. In [15] a semigroup
S of self-maps on X has been considered and the orbit of x(∈ X) under S is the
smallest open neighborhood of x, we adopt this topology by considering S as a
special case {λn : n ≥ 0}. Let us mention that these two topologies have appeared
independently.
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Remark 1.1. Alexandroff topological space (X, τ) is functional Alexandroff if
and only if [4, Theorem 3.5]:

• for all x, y ∈ X we have:

V (x, τλ) ⊆ V (y, τλ) ∨ V (y, τλ) ⊆ V (x, τλ) ∨ V (x, τλ) ∩ V (y, τλ) = ∅;

• for x ∈ X , if there exists y ∈ X such that V (x, τ) is a proper subset of
V (y, τ), then for all z ∈ X \ {x} we have V (x, τ) 6= V (z, τ);

• for all x, y ∈ X , {z ∈ X : V (x, τ) ⊆ V (z, τ) ⊆ V (y, τ)} is finite.

Note that for a self-map λ : X → X and x ∈ X we have V (x, τλ) =
⋃

{λ−n(x) :
n ≥ 0} and V (x, τλ) = {λn(x) : n ≥ 0}. Let us denote the collection of all
Alexandroff spaces by A, also consider A1 := {(X, τ) ∈ A : ∃λ (τ = τλ)} and
A2 := {(X, τ) ∈ A : ∃λ (τ = τλ)}. Then we have the following diagram:

A

Example 1

A1

Example 2 Example 4

Example 3

A2

where:

Example 1. Let X1 = {1, 2, 3, 4} with topology T1 generated by the basis
{{2}, {4}, {1, 2}, {2, 3, 4}}, then (X1, T1) is obviously an Alexandroff space, also
it is neither a functional Alexandroff space (use V (1, T1) = {1, 2}, V (3, T1) =
{2, 3, 4} and Remark 1.1) nor a member of A2 (if T1 = τλ for some λ : X1 → X1,
then {2, 3, 4} = V (3, T1) = V (3, τλ) = {λn(3) : n ≥ 0} and there exist p 6= q
with λp(3) = 2, λq(3) = 4, if p > q, then 2 = λp(3) = λp−q(λq(3)) = λp−q(4) ∈
V (4, τλ) = V (4, T1) = {4} which is a contradiction, the assumption p < q leads
to contradiction too).

Example 2. Let X2 = {1, 2, 3} and consider the constant map c : X2 → X2

with c(x) = 1 (for all x ∈ X2). Then V (1, τc) = {1, 2, 3}, V (2, τc) = {2},
V (3, τc) = {3}. In addition (X2, τc) /∈ A2, otherwise there exists λ : X2 → X2

with τc = τλ, so 2, 3 ∈ V (1, τc) = V (1, τλ) = {λn(1) : n ≥ 0} and there exists
p 6= q such that λp(1) = 2, λq(1) = 3 we may suppose p > q, thus 2 = λp(1) =
λp−q(λq(1)) = λp−q(3) ∈ V (3, τλ) = V (3, τc) = {3} which is a contradiction.

Example 3. Let X3 = {1, 2, 3} and consider µ : X3 → X3 with µ(1) = 2,
µ(2) = 3, µ(3) = 2, then V (1, τµ) = {1, 2, 3}, V (2, τµ) = V (3, τµ) = {2, 3}. Using
Remark 1.1, (X3, τµ) /∈ A1.

Example 4. Consider the nonempty set X4 and the identity map idX4 : X4 →
X4 (idX4(x) = x), then both topologies τidX4

and τ idX4
are discrete.
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1.2 What are a(λ) and o(λ)? For the map λ : X → X if (xn : n ≥ 0) is a one-
to-one sequence such that xn = λ(xn+1) for all n ≥ 0, then we call (xn : n ≥ 0)
a strict anti-orbit with the initial point x0 (see, e.g. [9, Definition 1.2] and [13,
Definition 1.1] too). If (λn(x) : n ≥ 0) is a one-to-one sequence, then we call
(λn(x) : n ≥ 0) a strict orbit with the initial point x.

For the map λ : X → X define infinite anti-orbit number of λ and infinite orbit
number of λ with:

a(λ) := sup({0} ∪ {n ∈ N : there exist n disjoint strict λ-anti-orbits in X})

and

o(λ) = sup({0} ∪ {n ∈ N : there exist n disjoint strict λ-orbits in X}).

We call x ∈ X a periodic point (of λ) if there exists n > 0 with λn(x) = x,
also x ∈ X is a fixed point (of λ) if λ(x) = x. We call x ∈ X a quasi-periodic

point (of λ) if there exist n > m ≥ 0 with λn(x) = λm(x). Denote the set of all
non-quasi-periodic points of λ with W (X, λ) (see [1] and [3]). It is evident that
all fixed points of λ are periodic, and all periodic points of λ are quasi-periodic.

1.3 What is a generalized shift? One sided shift σ : {1, . . . , k}N→{1, . . . , k}N,
(xn)n≥1 7→ (xn+1)n≥1 and two sided shift σ : {1, . . . , k}Z → {1, . . . , k}Z, (xn)n∈Z

7→ (xn+1)n∈Z are among the most well-known topics in ergodic theory, dynamical
systems, etc. (see e.g., [16] and [14]). For a self-map λ : X → X , one may
consider a generalized shift map σλ : KX → KX with σλ((zt)t∈X) = (zλ(t))t∈X

[6]. If K has topological structure, then σλ : KX → KX is continuous (where KX

is considered with the product topology). If K is a group, then σλ : KX → KX

is a group endomorphism. Both of these aspects of generalized shifts have been
studied in several texts (e.g. topological (resp. dynamical systems) approach in
[3], [7] and algebraic approach in [1], [12]).

2. Background on entropies and the connections between them

2.1 Preliminaries on the set-theoretical entropies. For a self-map λ : X →
X and the finite subset A of X , the following limit exists:

entset(λ, A) := lim
n→∞

|A ∪ λ(A) ∪ · · · ∪ λn−1(A)|

n
.

We call entset(λ) := sup{entset(λ, A) : A is a finite subset of X} the set-theoretical
entropy of λ (for more details on set-theoretical entropy see [3]).

Also if λ : X → X is finite fiber (i.e., for all x ∈ X , λ−1(x) is finite) and
surjective, then for the finite subset A of X let [8, Proposition 3.2.34]:

entcset(λ, A) := lim
n→∞

|A ∪ λ−1(A) ∪ · · · ∪ λ−n+1(A)|

n
.
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We call entcset(λ) := sup{entcset(λ, A) : A is a finite subset of X} the contravari-
ant set-theoretical entropy of λ. Moreover for a finite fiber self-map λ : X → X ,
let sc(λ) :=

⋃

{λn(X) : n ≥ 1} be the surjective core of λ, then λ ↾sc(λ): sc(λ) →
sc(λ) is surjective, and we define the contravariant set-theoretical entropy of λ
as entcset(λ) := entcset(λ ↾sc(λ)) (for more details on contravariant set-theoretical
entropy see [8]).

Remark 2.1. For a self-map λ : X → X we have entset(λ) = o(λ) [3, Proposi-
tion 2.16], moreover for the finite fiber λ : X → X we have entcset(λ) = a(λ) [8,
Theorem 3.2.39].

2.2 Preliminaries on the topological entropy. In the nonvoid compact to-
pological space Z, if U and V are two finite open covers of Z, then U ∨ V :=
{U ∩ V : U ∈ U , V ∈ V} is a finite open cover of Z too. Moreover suppose N(U)
denotes the minimum cardinality of subcovers of U . Then for the continuous map
T : Z → Z the following limit exists:

enttop(T,U) := lim
n→∞

log(N(U ∨ T−1(U) ∨ · · · ∨ T−(n−1)(U)))

n

where for k ≥ 1 let T−k(U) := {T−k(U) : U ∈ U}. We call enttop(T ) :=
sup{enttop(T,U) : U is a finite open cover of Z} the topological entropy of T
(for more details on topological entropy see [16]).

2.3 Preliminaries on the algebraic entropy. Suppose (G, +) is a group, K
is a finite subgroup of G, and ϕ : G → G is an endomorphism. Then the following
limit exists:

entalg(ϕ, K) := lim
n→∞

log |K + ϕ(K) + · · · + ϕn−1(K)|

n
.

We call entalg(ϕ) := sup{entalg(ϕ, F ) : F is a finite subgroup of G} the algebraic
entropy of ϕ (for more details on algebraic entropy see [10], [8]).

2.4 The connection of the entropies of the generalized shifts to the set-

theoretical entropies. Now we want to describe the interaction between the
above mentioned entropies in generalized shift’s approach.

Remark 2.2. Suppose K is a finite discrete space with at least two elements and
X is nonempty, consider KX under the product topology. Then σλ : KX → KX

is continuous and enttop(σλ) = o(λ) log |K| [3, Theorem 4.7], i.e. (by Remark 2.1):

enttop(σλ) = entset(λ) log |K|.

For a finite abelian nontrivial group K with an identity e and a self-map λ :
X → X , the algebraic entropy of generalized shift σλ : KX → KX , (zt)t∈X 7→
(zλ(t))t∈X , has been computed in [12], also the algebraic entropy of σλ↾⊕

X K
:

⊕

X K →
⊕

X K, where
⊕

X K = {(zt)t∈X : there exist t1, . . . , tn ∈ X such that
for all t 6= t1, . . . , tn we have zt = e} and λ : X → X is a finite fiber computed in
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[1, Theorem 4.14]. The following remark deals with an arbitrary nontrivial finite
group K.

Remark 2.3. If K is a nontrivial finite group with at least two elements and X is
a nonempty set, λ : X → X is a finite fiber map, then for endomorphism σλ↾⊕

X K
:

⊕

X K →
⊕

X K we have entalg(σλ↾⊕

X K
) = a(λ) log |K| (see [8, Theorem 7.3.3]),

i.e. (by Remark 2.1):

entalg(σλ↾⊕

X K
) = entcset(λ) log |K|.

3. Interaction between infinite anti-orbit number of λ : X → X and

cellularity of the functional Alexandroff space (X, τλ)

In this section we prove a(λ) = c∗(X, τλ) for a surjective map without any
periodic points λ : X → X .

Lemma 3.1. Consider a self-map λ : X → X . For a strict λ-anti-orbit sequence

(xn : n ≥ 0), the following statements are valid.

(1) For all m ≥ 0 we have λm(xm) = x0 and {xn : n ≥ m} ⊆ V (xm, τλ), thus

V (xn, τλ) ⊆ V (xm, τλ) for all n ≥ m.

(2) For p ≥ 0, if xp is periodic, then x0 is periodic and xp ∈ {λn(x0) : n ≥ 0}.
(3) There exists q ≥ 0 such that for all n ≥ q, xn is not periodic.

Proof: (1) By definition of λ-anti-orbit it is clear that for all k ≥ m we have
xm = λm−k(xk), thus xk ∈ λ−(m−k)(xm) ⊆

⋃

{λ−n(xm) : n ≥ 0} = V (xm, τλ), so

(*) {xn : n ≥ m} ⊆ V (xm, τλ).

On the other hand for all n ≥ m, by (*) we have xn ∈ V (xm, τλ), which leads to
V (xn, τλ) ⊆ V (xm, τλ).

(2) Consider p ≥ 0 and m ≥ 1 with λm(xp) = xp. If m < p, then xp =
λm(xp) = xp−m which is a contradiction since (xn : n ≥ 0) is one-to-one and
p − m < p. Thus m ≥ p and

xp = λm(xp) = λm−p(λp(xp)) = λm−p(x0) ∈ {λn(x0) : n ≥ 0},

moreover λm(x0) = λm(λp(xp)) = λp(λm(xp)) = λp(xp) = x0 and x0 is periodic.
(3) If x0 is not periodic, then by item (2) for all n ≥ 0, xn is not periodic

and we are done. Otherwise x0 is periodic and there exists m ≥ 1 such that
λm(x0) = x0. Let K := {n ≥ 0 : xn ∈ {x0, λ(x0), . . . , λ

m(x0)}, then K is finite
since (xn : n ≥ 0) is one-to-one. The set K is a nonempty finite subset of N∪ {0}
(note: 0 ∈ K). Suppose r = maxK, then for all n ≥ r + 1 we have n /∈ K and
(by λm(x0) = x0 we have {x0, λ(x0), . . . , λ

m(x0)} = {λs(x0) : s ≥ 0}):

xn /∈ {x0, λ(x0), . . . , λ
m(x0)} = {λs(x0) : s ≥ 0},

by (2), xn is not periodic. �
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Lemma 3.2. Consider a self-map λ : X → X and two disjoint strict λ-anti-orbits

(xn : n ≥ 0), (yn : n ≥ 0). Then there exist m, k ≥ 0 such that V (xm, τλ) and

V (yk, τλ) are disjoint.

Proof: By Lemma 3.1(3) we may choose q ≥ 0 such that for all n ≥ q, xn

and yn are not periodic. If V (xq, τλ) and V (yq, τλ) are disjoint, we are done,
otherwise by Remark 1.1 V (xq, τλ) ⊆ V (yq, τλ) or V (yq, τλ) ⊆ V (xq , τλ). Suppose
V (xq, τλ) ⊆ V (yq, τλ). Thus

xq ∈ V (xq , τλ) ⊆ V (yq, τλ) =
⋃

{λ−n(yq) : n ≥ 0},

and there exists r ≥ 0 with xq ∈ λ−r(yq). We claim that V (xq, τλ)∩V (yq+r , τλ) =
∅, otherwise by Remark 1.1 we have the following cases:

• Case I: V (yq+r, τλ) ⊆ V (xq, τλ). In this case yq+r ∈ V (xq , τλ), thus there
exists s ≥ 0 with λs(yq+r) = xq . Now we have:

λs(yq) = λs(λr(yq+r)) = λr(λs(yq+r)) = λr(xq) = yq .

Since yq is not periodic, we have s = 0. Therefore xq = λ0(yq+r) = yq+r, which
is a contradiction by disjointness of two sequences (xn : n ≥ 0) and (yn : n ≥ 0).

• Case II: V (xq , τλ) ⊆ V (yq+r, τλ). In this case xq ∈ V (yq+r, τλ), thus there
exists s ≥ 0 with λs(xq) = yq+r. We have the following two subcases:

Subcase II-a. Let s ≤ r. Using λs(xq) = yq+r, for all t ∈ {0, . . . , r} we have
yq+t = λr−t(yq+r) = λr−t+s(xq). So

{yq, yq+1, . . . , yq+r} = {yq+t : 0 ≤ t ≤ r}

= {λr−t+s(xq) : 0 ≤ t ≤ r}

= {λs+t(xq) : 0 ≤ t ≤ r}.

The set {yq, yq+1, . . . , yq+r} has exactly r + 1 elements since (yn : n ≥ 0) is a
one-to-one sequence. Therefore {λs+t(xq) : 0 ≤ t ≤ r} has exactly r + 1 elements
too. Moreover we have:

λs+r(xq) = λr(λs(xq)) = λr(yq+r) = yq = λr(xq) = λs+(r−s)(xq)

since r, r−s ∈ {0, . . . , r}, λs+r(xq) = λs+(r−s)(xq) ∈ {λs+t(xq) : 0 ≤ t ≤ r} which
has exactly r + 1 elements. Thus r = r − s and s = 0, therefore xq = yq+r, which
is a contradiction by disjointness of two sequences (xn : n ≥ 0) and (yn : n ≥ 0).

Subcase II-b. Let s > r. We have:

yq+r = λs(xq) = λs−r(λr(xq)) = λs−r(yq) = λs−r(λr(yq+r)) = λs(y − q + r)

and yq+r is a periodic point of λ, which is a contradiction by the way we choose q.
Using the above two subcases we have V (xq, τλ) 6⊆ V (yq+r, τλ).
Considering cases I and II (and Remark 1.1) we have V (xq, τλ)∩V (yq+r , τλ) =

∅ which completes the proof. �
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Lemma 3.3. Consider a self-map λ : X → X and k ≥ 2 pairwise disjoint strict

λ-anti-orbits (x1
n : n ≥ 0), . . . , (xk

n : n ≥ 0). Then there exist m1, . . . , mk ≥ 0
such that V (xi

mi
, τλ) ∩ V (xj

mj
, τλ) = ∅ for distinct i, j ∈ {1, . . . , k}.

Proof: If k = 2, then the lemma is valid by Lemma 3.2. Suppose p ≥ 2 and the
lemma is valid whenever k ∈ {2, . . . , p}. If (x1

n : n ≥ 0), . . . , (xp+1
n : n ≥ 0) are p+1

disjoint strict λ-anti-orbits, then using our hypothesis there exist r1, . . . , rp ≥ 0
such that V (x1

r1
, τλ), . . . , V (xp

rp
, τλ) are pairwise disjoint. For i ∈ {3, . . . , p + 1}

two strict λ-anti-orbits (xi
n : n ≥ ri) and (xp+1

n : n ≥ 0) are disjoint, thus by

Lemma 3.2 there exist mi ≥ ri and ti ≥ 0 such that V (xi
mi

, τλ) ∩ V (xp+1
ti

, τλ) =
∅. Let mp+1 = max(t1, . . . , tp). For all i ∈ {1, . . . , p} since ti ≤ mp+1 by

Lemma 3.1(1) we have xmp+1 ∈ V (xp+1
ti

, τλ) hence V (xp+1
mp+1

, τλ) ⊆ V (xp+1
ti

, τλ)
and:

V (xi
mi

, τλ) ∩ V (xp+1
mp+1

, τλ) ⊆ V (xi
mi

, τλ) ∩ V (xp+1
ti

, τλ) = ∅.

On the other hand for distinct i, j ∈ {1, . . . , p} we have:

V (xi
mi

, τλ) ∩ V (xj
mj

, τλ) ⊆ V (xi
ri

, τλ) ∩ V (xj
rj

, τλ) = ∅ ,

since V (xi
mi

, τλ) ⊆ V (xi
ri

, τλ) and V (xj
mj

, τλ) ⊆ V (xj
rj

, τλ) by Lemma 3.1(1).

Thus V (x1
m1

, τλ), . . . , V (xp
mp

, τλ), V (xp+1
mp+1

, τλ) are pairwise disjoint and we are
done. �

For λ : X → X , we call a subset A of X λ-invariant if λ(A) ⊆ A.

Lemma 3.4. For λ : X → X and

Y := {x ∈ X : there exists a strict λ-anti-orbit with the initial point x},

we have:

(1) Y is λ-invariant.

(2) If K is a λ-invariant subset of X , then for all x ∈ K we have V (x, τλ↾K
)

= V (x, τλ) ∩ K (in the corresponding functional Alexandroff spaces

(K, τλ↾K
) and (X, τλ)). In other words the functional Alexandroff to-

pology on K induced by λ ↾K : K → K coincides with subspace topology

on K inherited from the functional Alexandroff topology on X induced

by λ : X → X , i.e. τλ↾K
= τλ ↾K .

Proof: (1) Suppose x ∈ Y . There exists a strict anti-orbit (xn : n ≥ 0) in X
with the initial point x0 = x. We have the following cases:

• First case: for all n ≥ 0, λ(x) 6= xn. Therefore for x−1 = λ(x), (xn : n ≥ −1)
is a one-to-one sequence, therefore it is a strict anti-orbit with the initial point
x−1, hence λ(x) = x−1 ∈ Y .

• Second case: There exists m ≥ 0 such that λ(x) = xm. Therefore (xn : n ≥
m) is a one-to-one sequence so it is a strict anti-orbit with the initial point xm

which shows λ(x) = xm ∈ Y .
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By the above two cases, Y is λ-invariant.
(2) Suppose K is a λ-invariant subset of X and x ∈ K, then we have:

V (x, τλ↾K
) =

⋃

{λ ↾K
−n(x) : n ≥ 0}

= {y ∈ K : ∃n ≥ 0 λ ↾K
n(y) = x}

= {y ∈ K : ∃n ≥ 0 λn(y) = x}

= {y ∈ X : ∃n ≥ 0 λn(y) = x} ∩ K

=
⋃

{λ−n(x) : n ≥ 0} ∩ K = V (x, τλ) ∩ K,

which leads to the desired result. �

Now we are ready to obtain the main result of this section in the following
theorem.

Theorem 3.5. For λ : X → X and

Y := {x ∈ X : there exists a strict λ-anti-orbit with the initial point x},

in the functional Alexandroff topological spaces (X, τλ) and (Y, τλ↾Y
) we have:

(1) a(λ) = c∗(Y, τλ↾Y
).

(2) Consider the following statements:

(a) a(λ) = c∗(X, τλ);
(b) X = Y ;

(c) λ : X → X is surjective and Y contains all periodic points of λ.

Then we have (c)⇔(b)⇒(a). Moreover if c∗(X, τλ) is finite, then (a), (b),
and (c) are equivalent.

Proof: (1) For k ∈ {0, 1, 2, . . .} we show:

a(λ) ≥ k ⇒ c∗(Y, τλ↾Y
) ≥ k.

It is clear that c∗(Y, τλ↾Y
) ≥ 0. If a(λ) ≥ 1, then there exists a strict λ-anti-

orbit (xn : n ≥ 0) in X , thus x0 ∈ Y and Y 6= ∅, therefore c∗(Y, τλ↾Y
) ≥ 1.

If a(λ) ≥ k ≥ 2, then there exist k ≥ 2 disjoint strict λ-anti-orbits (x1
n : n ≥

0), . . . , (xk
n : n ≥ 0). It is clear that for all i ∈ {1, . . . , k} we have {xi

n : n ≥ 0} ⊆ Y ,
therefore (x1

n : n ≥ 0), . . . , (xk
n : n ≥ 0) are k disjoint strict λ ↾Y -anti-orbits (by

Lemma 3.4, Y is λ-invariant). By Lemma 3.3 there exist m1, . . . , mk ≥ 0 such that
V (x1

m1
, τλ↾Y

), . . . , V (xk
mk

, τλ↾Y
) are pairwise nonempty open subsets of (Y, τλ↾Y

).
Hence c∗(Y, τλ↾Y

) ≥ k which leads to c∗(Y, τλ↾Y
) ≥ a(λ).

Conversely, for k ∈ {0, 1, 2, . . .} we show:

c∗(Y, τλ↾Y
) ≥ k ⇒ a(λ) ≥ k.

It is clear that a(λ) ≥ 0. If c∗(Y, τλ↾Y
) ≥ k ≥ 1, then there exist k disjoint

nonempty open subsets U1, . . . , Uk of (Y, τλ↾Y
). For each i ∈ {1, . . . , k} choose

yi ∈ Ui. Since yi ∈ Y , there is a strict λ-anti-orbit (yi
n : n ≥ 0) in X with initial
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point yi
0 = yi. It is clear that {yi

n : n ≥ 0} ⊆ Y and (yi
n : n ≥ 0) is a strict

λ↾Y -anti-orbit in Y , so by Lemma 3.1(1) we have

{yi
n : n ≥ 0} ⊆ V (yi, τλ↾Y

) ⊆ Ui

for all i ∈ {1, . . . , k}. Since U1, . . . , Uk are pairwise disjoint, (y1
n : n ≥ 0), . . . , (yk

n :
n ≥ 0) are k pairwise disjoint strict λ-anti-orbits and a(λ) ≥ k. Thus a(λ) ≥
c∗(Y, τλ↾Y

) which completes the proof.
(2) For “(b)⇒(a)” use (1), also the implication “(b)⇒(c)” is obvious. In order

to show “(c)⇒(b)”, suppose x ∈ X , using the subjectivity of λ : X → X there
exists (xn : n ≥ 0) with x0 = x and λ(xn+1) = xn for all n ≥ 0. If (xn : n ≥ 0) is
one-to-one, then using the definition of Y we have x ∈ Y , otherwise there exists
n > m ≥ 0 with xn = xm, hence x = λn(xn) = λn(xm) = λn−m(λm(xm)) =
λn−m(x) and x is a periodic point of λ. In order to complete the proof of (2), we
prove the following two claims.

Claim 1. If c∗(X, τλ) = a(λ) is finite, then λ : X → X is surjective.

Proof of Claim 1: Suppose c∗(X, τλ) = a(λ) = k > 0 is finite, then there exist
disjoint strict λ-anti-orbits (x1

n : n ≥ 0), . . . , (xk
n : n ≥ 0), and by Lemma 3.3

there exist m1, . . . , mk ≥ 0 such that V (xi
mi

, τλ) ∩ V (xj
mj

, τλ) = ∅ for distinct

i, j ∈ {1, . . . , k}. Without loss of generality we may suppose m1 = m2 = · · · =
mk = 0, so

∀i 6= j (V (xi
0, τλ) ∩ V (xj

0, τλ) = ∅).

If λ : X → X is not surjective, then there exists x ∈ X \ λ(X), so {x} is an
isolated point of (X, τλ). We have the following cases.

(i) For all i ∈ {1, . . . , k}, x /∈ V (xi
0, τλ). In this case {V (xi

0, τλ) : i ∈
{1, . . . , k}}∪{{x}} is a collection of k+1 disjoint open subsets of (X, τλ),
thus c∗(X, τλ) ≥ k + 1 > a(λ), which is a contradiction.

(ii) There exists i ∈ {1, . . . , k}, with x ∈ V (xi
0, τλ). First of all note that

in this case there exists a unique i ∈ {1, . . . , k} with x ∈ V (xi
0, τλ), so

we may suppose x ∈ V (x1
0, τλ) and x /∈ V (xi

0, τλ) for all i > 1. Since
x ∈ V (x1

0, τλ), thus there exists p ≥ 0 with λp(x) = x1
0 and λs(x) 6= x1

0 for
all s < p (using x /∈ λ(X), we have x 6= λ(x1

1) = x1
0 = λp(x), thus p ≥ 1).

We have the following cases.
• x /∈ V (x1

p, τλ). In this case {V (xi
0, τλ) : i ∈ {2, . . . , k}}∪{V (x1

p, τλ)}∪
{{x}} is a collection of k + 1 disjoint open subsets of (X, τλ), thus
c∗(X, τλ) ≥ k + 1 > a(λ), which is a contradiction.

• x ∈ V (x1
p, τλ). In this case there exists q ≥ 0 with λq(x) = x1

p, thus

x1
0 = λp(x0

p) = λp(λq(x)) = λq(λp(x)) = λq(x1
0) (note that using

x /∈ λ(X), we have x 6= λ(x1
p+1) = x1

p = λq(x), thus q ≥ 1) so x1
0

is a periodic point of λ. So {λn(x) : n ≥ 0} = {λn(x) : 0 ≤ n ≤
p} ∪ {λn(x1

0) : n ≥ 0} = {λn(x) : 0 ≤ n ≤ p} ∪ {λn(x1
0) : 0 ≤ n ≤ q}

is finite, but (x1
n : n ≥ 0) is a one-to-one sequence, thus there exists
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t ≥ 0 with x1
t /∈ {λn(x) : n ≥ 0}, so x /∈ V (x1

t , τλ). Similarly to the
previous item {V (xi

0, τλ) : i ∈ {2, . . . , k}} ∪ {V (x1
t , τλ)} ∪ {{x}} is a

collection of k + 1 disjoint open subsets of (X, τλ), thus c∗(X, τλ) ≥
k + 1 > a(λ), which is a contradiction.

Cases (i) and (ii) complete the proof of Claim 1.

Claim 2. If c∗(X, τλ) = a(λ) is finite, then Y contains all periodic points of λ.

Proof of Claim 2. Suppose c∗(X, τλ) = a(λ) = k > 0 is finite, then similarly to
the proof of Claim 1, there exist disjoint strict λ-anti-orbits (x1

n : n ≥ 0), . . . , (xk
n :

n ≥ 0) with

∀i 6= j (V (xi
0, τλ) ∩ V (xj

0, τλ) = ∅).

If x ∈ X \ Y is a periodic point of λ, then {λn(x) : n ≥ 0} ⊆ V (x, τλ). Since
Y is λ-invariant (use Lemma 3.4) and x /∈ Y , hence V (x, τλ) ∩ Y = ∅, and for
i ∈ {1, . . . , k} we have xi

0 ∈ Y \ V (x, τλ), thus V (xi
0, τλ) 6⊆ V (x, τλ). Moreover

xi
0 ∈ Y \ V (x, τλ) ⊆ Y \ {λn(x) : n ≥ 0}, so x /∈ V (xi

0, τλ) which leads to
V (x, τλ) 6⊆ V (xi

0, τλ). Using Remark 1.1 we have V (x, τλ) ∩ V (xi
0, τλ) = ∅ for all

i ∈ {1, . . . , k}, thus {V (xi
0, τλ) : i ∈ {1, . . . , k}}∪{V (x, τλ)} is a collection of k+1

disjoint open subsets of (X, τλ), which is a contradiction and leads to the desired
result. �

4. Interaction between infinite orbit number of λ : X → X and cellu-

larity of (X, τλ)

In this section we prove o(λ) = c∗(X, τλ) for a self-map λ : X → X without
any periodic points.

Theorem 4.1. For λ : X → X , W (X, λ) is λ-invariant and

(1) o(λ) = c∗(W (X, λ), τλ↾W (X,λ)
).

(2) Consider the following statements:

(a) o(λ) = c∗(X, τλ);
(b) X = W (X, λ);
(c) the map λ : X → X does not have any periodic points.

Then we have (c)⇔(b)⇒(a). Moreover if c∗(X, τλ) is finite, then (a), (b),
and (c) are equivalent.

Proof: It is clear that W (X, λ) is λ-invariant.
(1) Let W := (W (X, λ), τλ↾W (X,λ)

). For k ∈ {0, 1, 2, . . .} we prove:

o(λ) ≥ k ⇒ c∗(W ) ≥ k.

It is clear that c∗(W ) ≥ 0. If o(λ) ≥ k ≥ 1, then there exist x1, . . . , xk ∈ X
such that (λn(x1) : n ≥ 0), . . . , (λn(xk) : n ≥ 0) are pairwise disjoint one-to-one
sequences in X . Thus x1, . . . , xk ∈ W (X, λ) and {λn(x1) : n ≥ 0}, . . . , {λn(xk) :
n ≥ 0} ∈ τλ↾W (X,λ)

are pairwise disjoint which leads to c∗(W ) ≥ k. Hence

c∗(W ) ≥ o(λ).
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Conversely for k ∈ {0, 1, 2, . . .} we prove:

c∗(W ) ≥ k ⇒ o(λ) ≥ k.

It is clear that o(λ) ≥ 0. If c∗(W ) ≥ k ≥ 1, then there exist k disjoint nonempty
open subsets of W we denote by U1, . . . , Uk. For each i ∈ {1, . . . , k} choose
yi ∈ Ui. Since yi ∈ W (X, λ), (λn(yi) : n ≥ 0) is a one-to-one sequence (and a
subset of W (X, λ)). It is clear that {λn(yi) : n ≥ 0} = V (yi, τλ↾W (X,λ)

) ⊆ Ui, thus

(λn(y1) : n ≥ 0), . . . , (λn(yk) : n ≥ 0) are k disjoint strict λ-orbits and o(λ) ≥ k.
Hence o(λ) ≥ c∗(W ), which leads to the desired result.

(2) Considering (1), (c)⇔(b)⇒(a) is obvious. In order to complete the proof
suppose c∗(X, τλ) = o(λ) = k ≥ 1 is finite, we prove λ has no periodic points.
There exist x1, . . . , xk ∈ X such that (λn(xi) : n ≥ 0) are k disjoint one-to-one
sequences, thus V (xi, τλ) = {λn(xi) : n ≥ 0} are disjoint open subsets of (X, τλ).
If x ∈ X is a periodic point of λ, there exists p ≥ 1 with λp(x) = x, hence
V (x, τλ) = {λi(x) : 0 ≤ i ≤ p}. Moreover for all i ∈ {1, . . . , k} and n ≥ 0, λn(xi)
are not periodic, thus {λn(xi) : n ≥ 0, 1 ≤ i ≤ k} ∩ {λi(x) : 0 ≤ i ≤ p} = ∅.
Therefore {V (xi, τλ) : 1 ≤ i ≤ k} ∪ {V (x, τλ)} is a collection of k + 1 disjoint
nonempty open subsets of (X, τλ), which is a contradiction and leads to the
desired result. �

Here we mention that in Theorem 4.1(2) (resp. Theorem 3.5(2)) one can easily
find examples with o(λ) = c∗(X, τλ) = ∞ (resp. a(λ) = c∗(X, τλ) = ∞) where
both (c) and (b) fail.

5. Main results

Now we are ready to establish our main results.

Theorem 5.1. Consider λ : X → X .

1. Interaction of c∗(X, τλ) and the set-theoretical entropy of λ. We have

entset(λ) = c∗(W (X, λ), τλ↾W (X,λ)
). In particular if λ does not have any periodic

points, then entset(λ) = c∗(X, τλ).
2 Interaction of c∗(X, τλ) and the contravariant set-theoretical entropy

of λ. For Y = {x ∈ X : there exists a strict λ-anti-orbit with the initial point x},
entcset(λ) = c∗(Y, τλ↾Y

). In particular if λ : X → X is surjective and Y contains

all periodic points of λ, then Y = X and entcset(λ) = c∗(X, τλ).

Proof: Use Remark 2.1, Theorem 3.5 and Theorem 4.1. �

The following corollary completes our investigations.

Corollary 5.2. Consider λ : X → X .

1. Interaction of c∗(X, τλ) and the topological entropy of σλ. If K is

finite and discrete with at least two elements and X is arbitrary with at least two

elements, and KX is endowed with the product topology, then for σλ : KX → KX

we have:

enttop(σλ) = c∗(W (X, λ), τλ↾W (X,λ)
) log |K|.
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In particular if λ does not have any periodic points, then enttop(σλ) =
c∗(X, τλ) log |K|.
2. Interaction of c∗(X, τλ) and the algebraic entropy of σλ. If K is a

nontrivial finite group with at least two elements, X is nonempty and λ : X → X
is a finite fiber map, then for σλ ↾⊕

X
K :

⊕

X K →
⊕

X K we have

entalg(σλ ↾⊕

X
K) = c∗(Y, τλ↾Y

) log |K|,

where Y = {x ∈ X : there exists a strict λ-anti-orbit with the initial point x}. In

particular if λ : X → X is surjective and Y contains all periodic points of λ, then

Y = X and

entalg(σλ ↾⊕

X K) = c∗(X, τλ) log |K|.

Proof: Use Remark 2.3, Remark 2.2, and Theorem 5.1. �
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