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Abstract

In this paper we solve the problem of finding integrals of equations de-
termining the Killing tensors on an n-dimensional differentiable manifold
M endowed with an equiaffine SL(n,R)-structure and discuss possible
applications of obtained results in Riemannian geometry.
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1 Introduction

1.1. The “structural point of view” of affine differential geometry was intro-
duced by K. Nomizu in 1982 in a lecture at Miinster University with the title
“What is Affine Differential Geometry?” (see [12]). In the opinion of K. Nomizu,
the geometry of a manifold M endowed with an equiaffine structure is called
affine differential geometry.

In recent years, there has been a new ware of papers devoted to affine dif-
ferential geometry. Today the number of publications (including monographs)
on affine differential geometry reached a considerable level. The main part of
these publications is devoted to geometry of hypersurfaces (see [15, 16] for the
history and references).
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1.2. In the present paper we solve the problem of finding integrals of equa-
tions determining the Killing tensors (see [8] for the definitions, properties and
applications) on an n-dimensional differentiable manifold M endowed with an
equiaffine structure. The paper is a direct continuation of [18]. The same nota-
tions are used here.

The first of two present theorems proved in our paper is an affine analog
of the statement published in the paper [17], which appeared in the process of
solving problems in General relativity.

2 Definitions and results

2.1. In order to clarify the approach to problem of finding integrals of equations
determining the Killing tensors on an n-dimensional differentiable manifold M
we shall start with a brief introduction to the subject which emphasizes the
notion of an equiaffine SL(n,R)-structure.

Let M be a connected differentiable manifold of dimension n (n > 2), and
let L(M) be the corresponding bundle of linear frames with structural group
GL(n,IR). We define SL(n,R)-structure on M as a principal SL(n,R)- sub-
bundle of L(M). It is well known that an SL(n, R)-structure is simply a volume
element on M, i.e. an n-form 7 that does not vanishing anywhere (see [6, Chap-
ter I, §2]).

We recall the famous problem of the existence of a uniquely determined
linear connection V reducible to G for each given G-structure on M (see [1, p.
213]). For example, if M is a manifold with a pseudo-Riemannian metric g of
an arbitrary index k, then the bundle L(M) admits a unique linear connection
V without torsion that is reducible to O(m, k)-structure. Such a connection is
called the Levi-Civita connection. It is characterized by the following condition
Vg =0.

A linear connection V having zero torsion and reducible to SL(n,R) is said
to be equiaffine and can be characterized by the following equivalent conditions
(see [15, p. 99], [16, pp. 57-58]):

(1) Vp=0;

(2) the Ricci tensor Ric of V is symmetric; that means Ric(X,Y") = Ric(Y, X)
for any vector fields X, Y € C>°TM.

An equiaffine SL(n,R)-structure or an equiaffine structure on an n-dimen-
sional differentiable manifold M is a pair (1, V), where V is a linear connection
with zero torsion and 7 is a volume element which is parallel relative to V (see
[13, p. 43]).

The curvature tensor R of an equiaffine connection V admits a point-wise
SL(n,R)-invariant decomposition of the form

R = (n—1)"'[idy ® Ric-Ric ®@ idps] + W

where W is the Weyl projective curvature tensor (see [16, p. 73-74], [2, §40]).
Then two classes of equiaffine structures can be distinguished in accordance
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with this decomposition: the Ricci-flat equiaffine SL(n, R)-structures for which
Ric = 0, and the equiprojective SL(n,R)-structures for which

R = (n—1)"'[idps ® Ric-Ric ® idpy].

Remark 1 Recall that a linear connection V with zero torsion is called Ricci-
flat if the Ricci tensor Ric = 0 (see [9]). On the anther hand, a connection
V is called equiprojective if the Weyl projective curvature tensor W = 0 (see
[15, §18]). In the literature equiprojective connections sometimes are called
projectively flat (see, for example, [16, p. 73]).

An autodiffeomorphism of the manifold M is an automorphism of SL(n, R)-
structure if and only if it preserves the volume element 7. Let X be a vector
field on M. The function div X defined by the formula (div X)n = Lxn where
Lx is the Lie differentiation in the direction of the vector field X is called
the divergence of X with respect to the n- form 1 (see [7, Appendix no. 6]).
Obviously, X is an infinitesimal automorphism of an SL(n,R)-structure if and
only if div X = 0. Such a vector field X is said to be solenoidal.

For an arbitrary vector field X on M with a linear connection V we can
introduce the tensor field Ax = Lx — V x regarded as a field of linear endomor-
phisms of the tangent bundle TM. If M is an n-dimensional with an equiaffine
SL(n,R)-structure then the formula trace Ay = —div X can be verified directly
(see [7, Appendix no. 6]).

We have the SL(n,R)-invariant decomposition

Ax = —n~Y(div X) id +Ax

at every point x € M.

Two classes of vector fields on M endowed with an equiaffine SL(n,R)-
structure can be distinguished in accordance with this decomposition: the
solenoidal vector fields and the concircular vector fields for which, by defini-
tion (see [14, p. 322], [9]), we have Ax = —n~!(div X)id ;.

The integrability conditions of the structure equation Ax = —n~1(div X)idys
of the concircular vector field X is the Ricci’s identity

Y(divX)Z — Z(div X)Y = nR(Y, Z)X

for any vector fields Y, Z € C°TM (see [2, §11]). This identity are equivalent
to the condition W(Y,Z)X = 0 for any vector fields YV, Z € C°TM. It fol-
lows that an equiaffine SL(n,IR)- structure on an n-dimensional manifold M is
equiprojective if and only if there exist n linearly independent concircular vector
fields X3, Xo,..., X, on M (see also [24]). This statement is an affine analog
of the well known fact for the Riemannian manifold M of constant sectional
curvature (see [3]).

Remark 2 A pseudo-Riemannian manifold (M, g) with a projectively flat Levi-
Civita connection V is a manifold of constant section curvature (see [15, §18]).
Therefore a manifold M endowed with an equiprojective SL(n, R)-structure is
an affine analog of a pseudo-Riemannian manifold of constant sectional curva-
ture.
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2.2. We consider an n-dimensional manifold M with an equiaffine SL(n, R)-
structure and denote by APM (1 < p < n — 1) the p" exterior power AP(T*M)
of the cotangent bundle T*M of M. Hence C*°APM, the space of all C°°-
sections of AP M, is the space of skew-symmetric covariant tensor fields of degree
p(1<p<n-1).

Let v: J C R — M be an arbitrary geodesic on M with affine parameter

t € J. In this case, we have Va4 (é—z = 0 for the tangent vector [fz_z of .
dt

Definition 1 (see [18]). A skew-symmetric tensor field w € C°APM (1 <p <
n — 1) on an n-dimensional manifold M with an equiaffine SL(n, R)-structure
is called Killing-Yano tensor of degree p if the tensor

z%w ;= trace o ®w
is parallel along an arbitrary geodesic v on M.

From this definition we conclude that

(V%w> (dt XQ,...,XP) -0

for any vector fields X,..., X, € C°TM. Since the geodesic v may be chosen
arbitrary, the above relation is possible if and only if Vw € C°APT! M, which is
equivalent to dw = (n+1)Vw for the exterior differential operator d: C°AP M —
C®APTIM.

Obviously, the set of Killing-Yano tensors of degree p (1 < p < n —1)
constitutes an IR-module of tensor fields on M, denoted by KP(M,R).

Let Xi,...,X, be p linearly independent concircular vector fields on M
(1 <p<n-—1). Then direct inspection shows that the tensor field w of degree
n — p dual to the tensor field alt{X; ® --- ® X,} relative to the n-form 7 is
a Killing-Yano tensor (see also [18]). Therefore on any n-manifold M with
equiprojective SL(n, R)-structure, there exist at least n![p!(n — p)!]=! linearly
independent Killing-Yano tensors (see [18]). Moreover the following theorem is
true.

Theorem 1 On an n-dimensional manifold M endowed with an equiprojective
SL(n,R)-structure (n,V), there exist a local coordinate system z',... 2" in
which an arbitrary Killing-Yano tensor w of degree p (1 < p <n — 1) has the
components

wiy..i, = PV (A 5 2™ + By, i) (2.1)
where Aioil___ip and Bj,..;, are arbitrary constants skew-symmetric w.r.t. all
their indices and v = (n + 1)~ In(n).

From the theorem we conclude that the maximum of linearly independent the
Killing—Yano tensors is by calculating the number K? of independent A’ig’il...ip

and Bj;, . ;, which exist after accounting for the symmetries on the indices. It
follows that K? = % is the maximum number linearly independent the

Killing—Yano tensors.
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Corollary 1 Let M be an n-dimensional manifold endowed with an equiprojec-
tive SL(n,R)-structure then

(n+1)!
(p+Dln—p)!

On our fixed manifold M with an equiaffine SL(n,R)-structure, we denote
by SPM the bundle of symmetric covariant tensor fields of degree p on M.
Hence C*°SP M, the space of all C'"*°-sections of SPM, is the space symmetric
covariant tensor fields of degree p.

dim K?(M,R) =

Definition 2 (see [18]). A symmetric tensor field ¢ € C*°SPM on an n-
dimensional manifold M with an equiaffine SL(n, R)-structure is called Killing

tensor of degree p if
dl d_v = const
P\ z) = .

along an arbitrary geodesic v on M.

Let ¢ (i—l» ceey (2—1) = const. along an arbitrary geodesic v on M and hence

v is a Killing tensor. Then the above relation is possible if and only if

5" p = {Vp}=0

cicl

where for the local components V; ;.. i of Vi we define the sum

D

D AVipiri,}

cicl

as the sum of the terms obtained by a cyclic permutation of indices %9, 71, .. ., %p.

Obviously, the set of Killing tensors constitutes an IR-module of tensor fields
on M, denoted by T?(M,IR).

Let M be an n-dimensional manifold endowed with an equiprojective
SL(n,R)-structure (n,V), and wi,...,w, be p linearly independent Killing-
Yano tensors of degree 1 on M. Then direct inspection shows that the tensor
field ¢ := sym{w; ® --- ® w,} is a Killing tensor of degree p. Therefore on
any n-manifold M with equiprojective SL(n,IR)-structure, there exist at least
(n +p— 1)![p!(n — 1)!]7! linearly independent Killing tensors (see also [23]).
Moreover the following theorem is true.

Theorem 2 On an n-dimensional manifold M endowed with an equiprojectiv
SL(n,R)-structure (n,V), there exist a local coordinate system x',... 2™ in
which the components @;, . ;, of an arbitrary Killing tensor ¢ of degree p can

be expressed in the form of an pt" degree polynomial in the x*’s

p
,.f2pw§,.,.j1 J
Sﬁzl...zp =€ All...'l,pjl..._]qm N e (22)
q=0
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where the coefficients Ail...ipjl...jq are constant and symmetric in the set of
indices i1, ...,%, and the set of indices ji,...,Jq. In addition to these properties
the coefficients A;, i j,..j, have the following symmetries

D A4 iyirdp iy =0 (2.3)

cicl

fors=1,....p—1 and
Z{Ail...ipjl} =0. (2.4)

cicl

From the theorem we conclude that the maximum number of linearly in-
dependent the Killing tensors is obtained by calculating the number 7% of in-
dependent Ail_,,ipjl,,_jq (g = 0,1,...,n) which exist after accounting for the
symmetries on the indices the dependence relations (2.3) and (2.4). By [4] it
follows that

qo_ P+ 1)*(p+2)%. . (m+p—1)*(m+p)
" (p+1)ip!

is the maximum number linearly independent the Killing—Yano tensors. Then
we have the following proposition.

Corollary 2 Let M be an n-dimensional manifold endowed with an equiprojec-
tive SL(n, R)-structure then

plp+1)*(p+2)>...(m+p—1)*(m+p)
pl(p+ 1)!

dim T?(M,R) =

3 Proofs of theorems

3.1. We let f: M — M denote the mapping of an f-dimensional manifold M
endowed with an equiaffine SL(7, R)-structure onto another an n-dimensional
manifold M endowed with an equiaffine SL(n,R)-structure, and let f. be the
differential of this mapping. For any covariant tensor field w on M, we can
then define the covariant tensor field f*w on M, where f* is the transformation
transposed to the transformation f,.

If dimM =dim M =n and f: M — M is a projective diffeomorphism, i.e.,
a mapping that transforms an arbitrary geodesic in M into a geodesic in M,
then we have the following lemma.

Lemma 1 Let f: M — M be a projective diffeomorphism of n-dimensional
manifolds endowed with the equiaffine SL(n,R)-structures (,V) and (n,V)
respectively. Then for an arbitrary Killing-Yano tensor w of degree p (1 <
p < n —1) on the manifold M the tensor field @ = e~ ®TV¥(f*w) with ¢ =

(n+1)"YIn(n/n) will be the Killing- Yano tensor of degree p on the manifold M.
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Proof It is known that the diffeomorphism f: M — M can be realized
following the principle of equality of the local coordinates z' = z!,..., 7" = 2"
at the corresponding points Z and 2 = f(Z) of these manifolds. In this case, we
have the equalities (see [15, §18], [9, 10, 26])

Ly = T + i} + ;05 (3.1)

for the objects Ffj and f‘i—“j of the a equiaffine connections V and V in the
coordinate system z',..., 2" that is common w.r.t. the mapping f: M — M,
and for the gradient 1; = (n + 1)719; In[n/7].

Equalities (3.1) imply that the mapping f~!, which in inverse to the projec-
tive diffeomorphism f: M — M, is a projective mapping [10, p. 262].

We set wy,...;, be the local components of a Killing-Yano tensor w of degree
p (1 < p < n—1) arbitrary defined on the manifold M; by definition, these

components satisfy the equations
VioWwiy ..ip + Viywig..i, = 0. (3.2)

From equalities (3.2) we find directly that the components

Wiy..ip = 67(p+1)¢wil...ip (3.3)
of the tensor field @ = e~ PTDY¥(f*w) satisfy the equations
viowil...ip + vila)io...ip =0. (3.4)

Hence, the tensor field @ is a Killing-Yano tensor of degree p (1 < p < n —1)
on the manifold M. O

3.2. Let A" be an n-dimensional affine space with a volume element given
by the determinant: det(es,...,e,) = 1, where {e1,...,e,} is the standard
basis of the underlying vector space for A™. We denote by V the standard
linear connection in A™ relative to which the volume element “det” is parallel
(see [13], [16, p. 10]).

Let f: M — A™ be a projective diffeomorphism from a manifold M endowed
with equiaffine SL(n,IR)-structure onto an affine space A™ endowed with stan-
dard equiaffine SL(n,R)-structure. It is well known that manifolds endowed
with equiprojective SL(n,R)-structures and only these manifolds are projec-
tively diffeomorphic to an affine space A™ (see [15, §18], [9]) therefore in our
case the SL(n, R)- structure of the manifold M must be an equiprojective struc-
ture.

If A” is an affine space with the Cartesian system of coordinates z1,...,Z"
then the components @;, .. ;, of the Killing-Yano tensor w of degree p (1<p<
n — 1) in equation (3.4) must now satisfy

0jiiy i, + 0iWji, i, =0 (3.5)
where 0; = %. From (3.5) we conclude the following equations

Ok0jWii, .., + Ok0iji, i, = 0; (3.6)
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000, ..., + 0jOkWii, ..., = 0; (3.7)
0iOkWji, .., + 0:0;0ki,..i, = 0.
From (3.6), (3.7), (3.8) we find

8k6ja)i1i2...ip =0, (3.9)
. . o . 2 2 . . .
by using identities ajak gﬂ = afj ahgzk which are carried out for an arbitrary

smooth function h: A™ — IR. The integrals of equations (3.9) take the form
wil-uip = Aioi1-..ipi'i0 + Bil...ip (310)

for any skew-symmetric constants Aioil...ip and B;,. 4, (see also [23, 19]). Taking
the components (3.10) of the Killing-Yano tensor @ in A™ and using Lemma 1,
we can formulate Theorem 1.

3.3. Let M be a manifold of dimension n endowed with the equiaffine
SL(n,R)-structure (77, V) and M be a manifold of some dimension endowed
with the equiaffine SL(n,R)-structure (1, V). Let there is given a projective

diffeomorphism f: M — M, then we have the following lemma.

Lemma 2 Let f: M — M be a projective diffeomorphism of n-dimensional
manifolds endowed with the equiaffine SL(n,R)-structures (7,V) and (n,V)
respectively. Then for an arbitrary Killing tensor ¢ of degree p on the manifold
M the tensor field p = e~ 2P (f*p) with ) = (n+1)"11n(n/7) will be the Killing

tensor of degree p on the manifold M.

Proof We set ¢;,..;, to be components of the Killing tensor ¢ arbitrary
defined on the manifold M ; by definition, these components satisfy the following
equations >, {Vi,@i,..i,} = 0. Then we find directly that the components
Piy..iy = e‘zpwgoilmip of the tensor ¢ = 6_27’1’[}(,0 satisfy the equations

D AVioBiriy} =€ {Vigir. iy} = 0. (3.11)
cicl cicl

From (3.11) we conclude that the tensor field ¢ is a Killing tensor of degree p
on the manifold M. O

3.4. It follows from Nijenhuis (see [11]) that in an n-dimensional affine space
A" the components ¢;, _;, of the Killing tensor ¢ of degree p can be expressed
in the form of an p* degree polynomial in the Z'’s

p
S01'1...ip = 672;01& Z Ai1...ipj1...jq:fjl U (312)
q=0

The coefficients A;, . i j,...j, are constant and symmetric in the set of indices
i1,...,%p and the set of indices ji,...,j,. In addition to these properties the
coefficients Ail...ipjl...jq have the following symmetries

D {Air ity Yipoain =0

cicl
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fors=1,...,p—1 and

Z{Ail...ipjl} =0.

cicl

Taking the components (3.12) of the Killing tensor @ in A™ and using Lemma 2,
we can formulate Theorem 2.

4 Applications to Riemannian geometry

4.1. Let (M,g) be a pseudo-Riemannian manifold of dimensional n. Then
from the present theorems 1 and 2 we conclude that an arbitrary Killing vector
w has the following local covariant components w; = e?¥(A;zz* + B;) where
¥ = [2(n+ 1)]7'In|det g|, A’s and B’s are constants and A;; + Ag; = 0 (see
also [17]). It follows that the group of infinitesimal isometric transformations
has $n(n + 1) parameters (see also [2, §71]).

4.2. Following [25, 5], a skew-symmetric covariant tensor field ¢ of degree p
(1 <p<n-—1)is called a conformal Killing tensor if ¢ € ker D for

1 1
D=V-— d— Ad*
p+1 n—p+1g

where d* is the codifferential operator d*: C* AP M — C>®APM and

aeip

p
(g/\d 19 7011 Z a+1g707a d*ﬁ)“

Obviously, the set of conformal Killing tensors constitutes an vector space of
tensor fields on (M, g), denoted by CP(M,IR) (see [21]). If a conformal Killing
tensor 9 belongs to kerd*, then it is a Killing-Yano tensor. On the other hand,
if a conformal Killing tensor ¥ belongs to kerd, it is called a closed conformal
Killing tensor or a planar tensor (see [20, 21, 22]). We denote the vector space
of these tensors by PP(M,IR).

By [5] on an arbitrary n-dimensional pseudo-Riemannian manifold (M, g) of
constant nonzero sectional curvature C (C # 0) the vector space CP(M,IR) of
conformal Killing tensors is decomposed uniquely in the form

CP(M,R) = KP(M,R) & P"(M, R). (4.1)

From (4.1) we conclude that any conformal Killing tensor ¥ of degree p is de-
composed uniquely in the form ¢ = w + 6 where w is a Killing-Yano tensor of
degree p and 0 is a closed conformal Killing tensor of degree p.

Following theorem 1, on an n-dimensional pseudo-Riemannian manifold (M, g)
of constant nonzero sectional curvature C' (C' # 0) there is a local coordi-
nate system 2!,...,2" in which an arbitrary Killing-Yano tensor w of degree p
(2 < p <n—1) has the components

wiy..i, = PV (A, 5 2™ + By, i) (4.2)
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where 1 = [2(n + 1)] "' In|det g|, ¥p = 2% and Ajyi,..q,, Bi,..i, are arbitrary
skew-symmetric constants. On the other hand, by [19] on a pseudo-Riemannian
manifold (M, g) of constant nonzero curvature C' (C' # 0) the components Oi,..i,
of a closed conformal Killing tensor 6 of degree p (1 < p <n — 1) can be found

from the equations

1
Oirig..i, = —Evilwiz...ip (4.3)

where V; w;, ., = 6¢1wi2,,,ip _Wk...iprf’zil — -—wiQ,,,ka’pil is the expression for
the covariant derivative Vw of the Killing-Yano tensor of degree p—1. Moreover,
by virtue of (3.1) on a pseudo-Riemannian manifold (M, g) of constant curvature
C (C # 0) the Christoffel symbols Ffj have the following form I‘fj = 1/)1-6;? +1p; 0k

(see also [17]). Therefore, we can deduce from (4.2) and (4.3) that

P

1 1
Oiy...i,, = _Eepw(w[i1A|k|i2...ip]$k + Y, Biy..iy) + ]_)Ailiz...ip)~

Consequently we have

Theorem 3 On an n-dimensional pseudo-Riemannian manifold (M, g) of con-
stant nonzero sectional curvature C (C' # 0) there is a local coordinate sys-
tem x1,..., 2" in which an arbitrary conformal Killing tensor ¥ of degree p

(2 <p<n—1) has the components

9 = e(p+1)w(Aki1...ipxk +Bi—1..i,)

i1.ip

1 1
- EGW <1/J[i10|k|i2...ip]$k + Yy Diy. i) + ;)C’iliz...ip>

where 1 = [2(n + 1)]7*In|det g, ¥5 = 6871@ and Ay, ..i,» Bi..i,, Ci,..i, and

Dy, ..i, are arbitrary skew-symmetric constants.

Remark 3 For a conformal Killing vector field, see K. Yano and T. Nagano
[27].
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