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Abstract

The article is devoted to a generalization of Clifford and Grassmann al-
gebras for the case of vector spaces over the field of complex numbers. The
geometric interpretation of such generalizations are presented. Multieu-
clidean geometry is considered as well as the importance of it in physics.
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It is well known that Clifford and Grassmann algebras play an important role
in different branches of geometry (see [1]). In this article, using a non-quadratic
fundamental form we construct certain generalizations of such algebras over
complex numbers and bring the geometric interpretation of them.
Let us consider an n-dimensional vector space V over complex numbers C.

Let
Q(x) = xm1 + xm2 + · · ·+ xmk

be a homogenous form, 0 ≤ k ≤ n, e1, e2, . . . , en be some basis of V and x =
e1 +e2 + · · ·+ en. Using this form we construct the associative unitary algebra
B(V ,Q), the basis of which is formed by monomials

ea1a2...an ≡ ea11 · ea22 · . . . · eann , 0 ≤ aq ≤ m− 1, e01 · e02 · . . . · e0n ≡ 1,
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multiplication is given by commutation relations

ea · eb = αmeb · ea, a > b, ea · eb = αmeb · ea, a < b, (1)

where αm is m-th primitive root of unity—for example

αm = cos
2π

m
+ i sin

2π

m
,

and by identities

ema = Q(ea) i. e. e
m
1 = · · · = emk = 1, emk+1 = · · · = emn = 0. (2)

The dimension of the algebra B(V ,Q) is equal to mn. The algebra constructed
by this way will be called a generalized exterior algebra with fundamental form
Q (see [2]). It is evident that for k = n, m = 2 we get a Clifford algebra. For
arbitrary natural numbers m, the generalized exterior algebra will be called an
elementary algebra of orderm and it will be denoted byBm

n . For the case k = 0,
m = 2 we obtain a Grassmann algebra; for arbitrary natural numbers it will be
called a radical algebra of order m and it will be denoted by Xm

n (see [3]). The
following theorem expresses the basic property of generalized exterior algebras.

Theorem 1 For every vector

x = x1e1 + x2e2 + · · ·+ xnen ∈ V ⊂ B(V ,Q)

the following identity holds

xm ≡ (x1e1+x2e2+ · · ·+xnen)m = xm1 em1 +xm2 em2 + · · ·+xmn emn ≡ Q(x). (3)

Proof We prove this theorem by mathematical induction for dimension of
vector space V ⊂ B(V ,Q).
Let n = 2, x = x1e1 + x2e2 + · · · + xnen ∈ V 2 ⊂ B(V ,Q). Then we may

write:

(x1e1 + x2e2)
m = xm1 em1 + p1(αm)xm−1x2e

m−1
1 · e2

+ · · ·+ pr(αm)xm−r
1 x2e

m−r
1 · er2

+ · · ·+ pm−1(αm)x1x
m−1
2 e1 · em−1

2 + x2e
m
2 ,

where pr(αm) is some polynomial of αm. Let us prove pr(αm) = 0.
Using

(x1e1 + x2e2) · (y1e1 + y2e2) = (αmy1e1 + y2e2) · (αmx1e1 + x2e2),

we may write

(x1e1 + x2e2)
m = (x1e1 + x2e2) · (x1e1 + x2e2) · (x1e1 + x2e2)

m−2 =

= (αmx1e1 + x2e2) · (αmx1e1 + x2e2) · (x1e1 + x2e2)
m−2 =

= (αmx1e1 + x2e2) · (αmx1e1 + x2e2) · (x1e1 + x2e2) · (x1e1 + x2e2)
m−3 =

= (αmx1e1 + x2e2)
2 · (α2

mx1e1 + x2e2) · (x1e1 + x2e2)
m−3 = · · · =

= (αmx1e1 + x2e2)
m−1 · (αm−1

m x1e1 + x2e2) = (αmx1e1 + x2e2)
m,
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which means
(x1e1 + x2e2)

m = (αmx1e1 + x2e2)
m,

and
m∑
r=0

xm−r
1 xr2pr(αm)em−r

1 · er2 =
m∑
r=0

xm−r
1 xr2α

r
mpr(αm)em−r

1 · er2.

Therefore
pr(αm) = αrmpr(αm) or (1− αrm)pr(αm) = 0,

which implies that pr(αm) = 0 because of 1− αrm �= 0. We have got

(x1e1 + x2e2)
m = xm1 em1 + xm2 em2 ≡ Q(x).

Let us suppose that the theorem holds for n = l:

(x1e1 + x2e2 + · · ·+ xlel)
m ≡ Q(x),

and prove the theorem for n = l+1. Since elements x = x1e1+x2e2+ · · ·+xlel
and el+1 fulfill commutation relations (1) in the form

el+1 · x = αmx · el+1 and x · el+1 = αm · x,

we obtain

(x1e1 + x2e2 + · · ·+ xlel + xl+1el+1)
m ≡ (x+ xl+1el+1)

m

= xm + xml+1e
m
l+1 ≡ Q(x+ xl+1el+1).

The theorem has been proved. �

Now, let us investigate the algebra Bm
2 more detail. According to [3], this

algebra may be represented as a noncommutative composition of two cyclic
algebras Cm(e1) and Cm(e2), for example. Thus any element x ∈ Bm

2 may be
expressed by

x = y0 + y1e2 + y2e
2
2 + · · ·+ ym−1e

m−1
2 , (4)

where yl = zl0 + zl1e1 + · · ·+ zlm−1e
m−1
1 are cyclic coordinates of the element

x ∈ Bm
2 and zlr ∈ C. In this case, using commutation relations (1) we may

define the multiplication of elements of algebra Bm
2 which are written in the

form (4) by the following commutation identities

erm · yl = yl(α
r
m) · e2, (5)

where yl(αm) = zl0 + αrmzl1e1 + α2r
m zl2e

2
1 + · · · + α

(m−1)r
m zlm−1e

m−1
1 . Non-

commutative composition of algebras Cm(e1) and Cm(e2) will be denoted by
Cm(e1) �Cm(e2), i. e.

Bm
2 ≡ Cm(e1) �Cm(e2). (6)

Now let us give some definitions.
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Definition 1

a) Let x = x0 + x1e+ x2e
2 + · · ·+ xm−1e

m−1 be an arbitrary element of the
cyclic algebra Cm(e) with a generator e fulfilling identity em = 1. Then
the element

x(αm) = x0 + αmx1e+ α2
mx2e

2 + · · ·+ αm−1
m xm−1e

m−1

will be called a resolvent of the element x ∈ Cm(e). An operator
α̂m : Cm(e) �→ Cm(e) such that α̂m(x) = x(αm) will be called a resolvent
operator. In this case, the element

α̂rm(x) = x(αrm) = x0 + αrmx1e+ α2r
mx2e

2 + · · ·+ α(m−1)r
m x(m−1)re

m−1

will be called a resolvent of the order r.

b) The value

Δ(a) =

∣∣∣∣∣∣∣∣∣∣∣

a0 am−1 am−2 . . . a1
a1 a0 am−1 . . . a2

a2 a1 a0 . . . a3
. . . . . . . . . . . . . . .

am−1 am−2 am−3 . . . a0

∣∣∣∣∣∣∣∣∣∣∣
will be called a determinant of the element a = a0 + a1e + a2e

2 + · · · +
am−1e

m−1 ∈ Cm(e).

c) The value sp(a) = a0 + a1 + a2 + · · ·+ am−1 will be called a trace of the
element a ∈ Cm(e).

d) The value

ΔR(b) =

∣∣∣∣∣∣∣∣∣∣∣

b0 bm−1(αm) bm−2(α
2
m) . . . b1(α

m−1
m )

b1 b0(αm) bm−1(α
2
m) . . . b2(α

m−1
m )

b2 b1(αm) b0(α
2
m) . . . b3(α

m−1
m )

. . . . . . . . . . . . . . .

bm−1 bm−2(αm) bm−3(α
2
m) . . . b0(α

m−1
m )

∣∣∣∣∣∣∣∣∣∣∣
will be called a right cyclic determinant of the element

b = b0 + b1e2 + b2e
2
2 + · · ·+ bm−1e

m−1
2 ∈ Bm

2 ≡ Cm(e1) �Cm(e2),

where bl ∈ Cm(e1).

By direct calculations it may be easy proved that the notions defined above
have properties that are presented in the following theorems (see [3]).

Theorem 2

a) The resolvent operator is an multiinvolutory endomorphism of a cyclic
algebra. It means α̂m(x+y) = α̂m(x)+α̂m(y), α̂m(x·y) = α̂m(x)·α̂m(y)
and α̂mm(x) = id.
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b) The following identities hold

Δ(a) = a · a(αm) · a(α2
m) · . . . · a(αm−1

m )

= spa spa(αm) spa(α2
m) . . . spa(αm−1

m ). (7)

c) The determinant of an element a ∈ Cm(e) represents the determinant
of a system of linear scalar equations which is equivalent to the algebraic
equation a · x = c.

d) In cyclic algebras, the determinant is a multiplicative functions; it means
that for every a, b ∈ Cm(e) it holds

Δ(a · b) = Δ(a)Δ(b). (8)

e) The right cyclic determinant of an element a ∈ Bm
n represents the deter-

minant of a system of linear equations which is equivalent to the linear
algebraic equation a · x = c that is written in cyclic coordinates.

f) In algebras Bm
n , the right determinant is a multiplicative function; it

means that for every a, b ∈ Bm
n it holds

ΔR(a · b) = ΔR(a)ΔR(b). (9)

g) Let C(e1) � C(e2) ≡ Bm
2 . If a ∈ C(e1) then ΔR(a) = Δ(a) and if

b ∈ C(e2) then ΔR(b) = Δ(b), where Δ(a),Δ(b) are determinants in
cyclic algebras C(e1),C(e2).

Further, let us study an analytic continuation of entire functions of a complex
variable into a cyclic algebraCm(e); we obtain it by putting variable x ∈ Cm(e)
into a power series of the given function of complex variable. Especially, for an
exponential function of variable te ∈ Cm(e), t ∈ C we get:

exp(te) = Em0 (t) + eEm1 (t) + e2Em2 (t) + · · ·+ em−1Emm−1(t), (10)

where functions Emr (t) are defined by the following series

Emr (t) =

∞∑
q=0

xmq+r

(mq + r)!
.

Analogically, we obtain the expression for exponential function of variable
tep. For a full cyclic variable x = x0+x1e+x2e

2+· · ·+xm−1e
m−1 the following

identity holds

expx =
m−1∏
r=0

exp(xre
r). (11)

For exponential functions of cyclic variables we have the following theorem.
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Theorem 3 For every element x = x0 +x1e+x2e
2 + · · ·+xm−1e

m−1 it holds

Δ(expx) = 1. (12)

Proof For x = xre
r the identity (12) follows from the relation (7) and from the

fact 1+αm+α2
m+· · ·+αm−1

m = 0. Thus for x = x0+x1e+x2e
2+· · ·+xm−1e

m−1

the identity (12) follows from the relation (11), immediately. �

Using Theorems 2d and 3 we can for cyclic algebras introduce a geometric
structure where the fundamental form is represented by the determinant of a
variable element and motions are given by linear algebraic functions

x′ = (exp ξ) · x ≡ (exp(ξ1e+ ξ2e
2 + · · ·+ ξm−1e

m−1)) · x. (13)

The correctness of such definition of motions in the linear space of this cyclic
algebra follows from identities (8) and (12) because the determinant of an vari-
able element of cyclic algebra is invariant with respect to any transformation
which is given by the relation (13).
Any geometry defined on the linear space of a cyclic algebra Cm(e) by the

fundamental form Δ(x) and group of motions which are given by functions (13)
will be called a cyclic geometry of the order m. In such geometry, we define a
cyclic norm of the vector represented by x ∈ Cm(e) by the following relation:

|x|2 = Δ(x)Δ(x),

where Δ(x) is a form complex conjugate to Δ(x). It is clear to see that such
norm is invariant with respect to any motion. In a cyclic geometry it is possible
to define a measured angle of two vectors represented by elements x,y ∈ Cm(e)
bounded up by some motion; if y = (expξ) · x, then ξ can be considered as a
cyclic angle between given vectors. Thus, motions given by linear functions in
the form (13) get the meaning of cyclic rotations.
Structures of cyclic geometries defined on algebras Cm(e1) and Cm(e2)

generate a geometris structure on the algebra Bm
2 ≡ Cm(e1) � Cm(e2) with

the fundamental form ΔR(x) and motions which are defined by linear algebraic
functions of the following form

x′ = (exp ξ) · x · (exp η), (14)

where ξ and η are arbitrary cyclic variables with zero real part. This choice of
transformations in the meaning of motions is correct due to Theorems 2g and 3
since for determinant ΔR(x) it holds ΔR(x

′) = ΔR(x).
Now, let us show that the geometric structure of the algebra Bm

2 as defined
above may be extended to the case of arbitrary algebra Bm

n . It is important
to see that algebra Bm

3 is a commutative composition of an algebra B
m
2 (e1, e2)

and a cyclic algebra Cm(e1 · em−1
2 · e3) because the element e1 · em−1

2 · e3 com-
mutes with basis elements e1 and e2 of the algebra B

m
2 (e1, e2). Commutative

composition of algebras Bm
2 (e1, e2) and Cm(e1 · em−1

2 · e3) will be denoted by

Bm
3 ≡ Bm

2 (e1 · e2) ◦Cm(e1 · em−1
2 · e3).
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By an analogical way, the algebra Bm
4 is a commutative composition

Bm
4 ≡ Bm

2 (e1 · e2) ◦Bm
2 (e1 · em−1

2 · e3, e1 · em−1
2 · e4),

etc. By this way, we will obtain representations of arbitrary algebras Bm
n in the

following form of commutative compositions:

Bm
n =

{
Bm

2 (e1 · e2) ◦Bm
2 (ẽ3, ẽ4) ◦ · · · ◦Bm

2 (ẽ2r−1, ẽ2r), if n = 2r

Bm
2 (e1 · e2) ◦ · · · ◦Bm

2 (ẽ2r−1, ẽ2r) ◦Cm(ẽ2r+1), if n = 2r + 1
,

(15)
where ẽ3 = e1 · em−1

2 · e3, ẽ4 = e1 · em−1
2 · e4, ẽ5 = ẽ3 · ẽm−1

4 · e5, ẽ6 =
ẽ3 · ẽm−1

4 · e6, etc. The relation (15) generalizes a well known representation
of Clifford algebras in the form of commutative compositions of algebras of
complex quaternions and algebras of dual complex numbers.
Now, let us investigate a linear space

E = Bm
2 (e1, e2)⊕Bm

2 (ẽ3, ẽ4)⊕ · · · ⊕Bm
2 (ẽ2r−1, ẽ2r)

on which a form of order m is defined by

gm(x) = ΔR(x1) + ΔR(x2) + · · ·+ΔR(xr), (16)

where x = x1 +x2 + · · ·+xr, xl ∈ Bm
2 (ẽ2l−1, ẽ2l). This form is invariant with

respect to the transformations of the following form

x′ = (exp ξl) · x · (exp(−ξl)), (17)

where ξl ∈ Bm
2 (ẽ2l−1, ẽ2l) are cyclis variables with zero scalar part since

gm(x′) = gm(x1 + · · ·+ (exp ξl) · xl · (exp(−ξl)) + · · ·+ xr)

= ΔR(x1) + · · ·+ΔR(exp ξl)ΔR(xl) ·ΔR(exp(−ξl)) + · · ·+ΔR(xr) = gm(x).

The group of transformations, which are generated by linear algebraic func-
tion of the type (17), defines a geometric structure on a linear space E with
fundamental form (16). For m = 2 this group is identical to the group of spinors
of a complex Euclidean space (see [5]). Therefore we can call the geometry of
a space E with the fundamental form (16) a multieuclidean geometry of the
order m.
A multieuclidean geometry have been here introduced by an analogy with

the geometry of a complex Euclidean space, the geometry of which is given by
a group of spinors. In this sense, the multieuclidean geometry represents some
abstract geometric construction. However, such geometry may be for m ≥ 3
used for a description of spaces of symmetry of hadrons, the basis elements of
which may be identified with different generations of quarks, because the system
of hadrons admits the presence of several quarks of one generation (see [4]).
Let us conclude, that geometric structures with the fundamental form of

an arbitrary order m may be (locally) defined also on smooth manifolds M in
the case when on a tangent bundle there is given a linear algebra structure
the restriction of which on any tangent space TX , X ∈ M gives the algebra
B(TX ,Q).
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