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KYBERNETIKA — VOLUME 52 (2016), NUMBER 3, PAGES 478-495

MODEL FOLLOWING CONTROL SYSTEM
WITH TIME DELAYS

DazHONG WANG, SHUJING WU, WEI ZHANG, GUOQIANG WANG, FEI WU AND
SHIGENORI OKUBO

Design of model following control system (MFCS) for nonlinear system with time delays
and disturbances is discussed. In this paper, the method of MFCS will be extended to non-
linear system with time delays. We set the nonlinear part f(v(t)) of the controlled object as
[lf(v(@)|| < a+B|lv(t)]|", and show the bounded of internal states by separating the nonlinear
part into v > 0. Some preliminary numerical simulations are provided to demonstrate the
effectiveness of the proposed method.

Keywords: time delays, model following control system (MFCS), internal stable, nonlinear
system

Classification: 93C10

1. INTRODUCTION

For nonlinear systems with time delays, especially in recent years, control using model
following control system (MFCS) has attracted wide attention. Because of its inherent
capability for modelling and controlling highly uncertain, nonlinear and complex sys-
tems. MFCS design is the method developed based on the idea proposed by Wu, Wang
and Okubo [20, 21} 24]. As is well known, time delays are inherent features of many
physical processes, e.g., Chaos system [4, [I6], engine system [6] and electrical heater
[5] and, biological system [8], environmental system [9], network system [22] 25], etc.
Many of these processes are also significantly nonlinear, which motivates the research
into the control of nonlinear systems with time delays [2, [6]. Time delay systems are also
called systems with aftereffect or dead time, hereditary systems, equations with deviat-
ing argument or differential-difference equations. They belong to the class of functional
differential equations which are infinite dimensional and dependent on the past history
of the dynamics [25]. Design of MFCS for uncertain linear systems have been proposed
in [9 011 12] 03], 23]. In [24] the model following control problem has been formulated
as an eigenstructure assignment problem, tunable CGT design scheme substantially en-
hances the capability of the controller to optimise model-matching errors. The paper
proposes a new algorithm based on model following control to recover the uncompen-
sated slave disturbance on time delayed motion control systems having contact with
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environment [14]. A robust fuzzy MFCS is proposed for the control of robot manipu-
lators. The application field to n-link robot manipulators with torque disturbance and
measurement noise is addressed. The control objective is obtained by tailoring a nomi-
nal adaptation process of parameters to implement appropriate function approximation
and facilitating a self-tuning mechanism on the consequent membership functions to
overcome the equivalent uncertainty [18]. These methods are developed to make the
ultimate bounded of the tracking error arbitrarily small or guarantee that tracking error
decreases asymptotically to zero.

In this paper, we set the nonlinear part f(v(t)) of the controlled object as || f(v(t))|| <
a+f|lv(t)]]7, and show the bounded of inner states by separating the nonlinear part into
~ > 0. The design of the control system is performed using an easy algebraic algorithm
of matrices whose elements are polynomials of the operator. The bounded property
of internal states for the control system is given and the utility of this control design
is guaranteed. It is confirmed on the basis of example that the output of the control
system asymptotically follows the reference model in the case of the existence of the
disturbances.

This paper is organized as follows. In the next section, the controlled object and the
reference model are described. Design of MFCS for nonlinear system with time delays is
then described in Section 3. In Section 4, we prove the bounded property of the internal
states. Simulations are reported (An illustrative example) in Section 5. Finally, the
conclusions are summarized in Section 6.

2. EXPRESSIONS OF THE PROBLEMS

The controlled object is described below, which is a nonlinear system with time delays:

k k
B(t) = > Aw(t—hi)+ Y Bu(t —hi) + By f(u(t) +d(t), (1)
=0 =0
k
y(t) = Y Cia(t—hy) +do(t), (2)
=0

k
ot) = Y Crat - hy), (3)
1=0

where 4; € R™", B; € R™*!, By € R™!, C; € R™", Cy, € R™™ are the constant
matrices of appropriate dimensions; ¢ is the time z(t) € R", u(t) € R’ and y(t) € R’ are
the system state vector, the control input vector and the available states output vector of
the system , respectively; d(t) € R’ and dy(t) € R’ are the bounded linear disturbances;
v(t) € R and f(v(t)) € R are the grants output and the nonlinear part, respectively;
hi(0 = ho < hy < --- < hg) are the time delays.

The reference model is given below, which is assumed controllable and observable
[21]:

() = Am@m () + B (b), (4)
ym(t) = szﬂl(t)a (5)
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where, z,,(t)€ R"™, r,,(t) € R and y,,(t) € R' are the reference model state vector,
the reference model input vector and the reference model output vector of the system,
respectively and A,, € R"m*"m B, € R**I (C,, € R'*"n are the constant matrices.
The output error is given as [21]

e(t) = y(t) — ym(t). (6)
The aim of the design of the control system is to obtain a control law which makes
the output error is zero and keeps the internal states is bounded.
3. DESIGN OF MODEL FOLLOWING CONTROL SYSTEM FOR NONLINEAR
SYSTEM WITH TIME DELAYS

Let p = d/dt7 g = [00701702a"' O'k] , 0 = e_phi7(i =0,1,-- 7k> and O'i.’I}(t) =
x(t—h;), (i=0,1,--- k). Using o, (1) ~ (3) are rewritten as [27]

#(t) = A(o)x(t) + Blo)u(t) + By f(v(t)) + d(?), (7)
y(t) = Co)z(t) + do(t), (8)
v(t) = Cp(a)x(t), (9)

where A(o) = Z?:()Aiaia B(o) = Zf:oBiUia C(o) = ZfZOCZ-Ui, and Cf(o) =
Zf:o Cy,0;. From (7) ~ (9), we have

y(t) = C(o)[pI — A(0)) ' B(o)u(t) + C(o)[pl — A(o)] ™!

By f(u(t)) + C(o)[pI — A(0)] ™ d(t) + do (1), (10)

Ym(t) = Cm[pI — Am]ileTM(t)a (11)
( ) = Cy(0)[pl — A(0)] "' B(o)u(t) + Cy(o)[pI — A(o)] ™

By f(v(t)) + Cy(0)[pl — A(o)]Hd(1), (12)

where

C(o)lpI — A(0)] ™' B(0) = N(0,p)/D(0,p), C(o)[pl — A(0)]"' By = Ny(o,p)/D(0,p),
Om[pI_Am]ilB(g) = nL( )/D ( )7 D(07p) = |pI—A(U)|’ Dm(p) = ‘pI—A’m|

It follows that

D(o,p)y(t) = N(a,p)u(t) + Ny (o,p)f(v(t)) + w(t), (13)

Dm(p)ym(t) = Nm(p)rm(t)' (14)
The disturbance w(t) is thus obtained [21]:

w(t) = C(o)adjpl — A(o)]d(t) + D(o, p)do(t). (15)

Then, it follows that
N(o,p) = C(o)adj[pI — A(0)]B(0), (16)
Ny(o,p) = Clo)adjpl — A(0)]By, (17)
N (p) = Cradj[pl — Ap| By (18)
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Furthermore, we have

N(o,p) = diag(p" )N,(c) + N(,p), (19)
N,(0) = N.(0) + N,., (20)
Ny (o,p) = diag(p" )Ny, (o) + N¢ (o, p), (21)
Non(p) = diag(p™:) N, + N (p), (22)

where 8,,N(o,p) < i, Or, Nt (0,0) < 0f,, Ori Non (D) < Thm;» Or, (+) is the minimum degree
of (-). N.(0) is a fixed matrix of [ x I, and |N,| # 0. Without loss of generality, we
assume that [10],
Da(p)d(t) = 0, Da(p)do(t) = 0. (23)
Here, D4(p) is a scalar characteristic polynomial monic of the disturbance. From (15),
we have [20]
Dap)u(t) = 0. (24)

Choose a stable polynomial T'(p) which satisfies the following conditions: (I) The
degree of T(p) is p > ng +2n — ny, — 1 —n;; (IT) The coefficient of the maximum degree
term of T'(p) is the same as the one of D(p). Consider the following equation [21]:

T'(p) Dy (p) = Da(p)D(o,p)R(0,p) + S(0,p), (25)
where 9T (p) = p, OD,,(p) = N, 0D4(p) = ng, 0D(o,p) = n, R(c,p) = p+nm—ng—n,

95(o,p) < ng +n —1. T(p), Di(p), Da(p), D(o,p), R(o,p) and S(o,p) be monic
polynomials. Then the following form is obtained:

T(p) D (p)e(t)

Da(p)D(o,p)R(o,p)y(t) + S(o,p)y(t) — T(p) N (p)rm(t)
(Da(®)R(o.P)N (0. p) = QEIN:(0) Jult) + Da(p) Rlo, P)Ny (7 )
() + Qp)Nr(a)u(t) + S(o,p)y(t) = T(p)Nim(p)rm(t).  (26)
Here, Q(p) = diag(p?™™=—"+1)+Q(p) is a polynomial and stable matrix, and 9,, Q(p) <

p =+ 1y —n + n;, The next control law u(t) can be obtained by making the right-hand
side of (26) equals to zero. Thus,

u(t) = =Ny Ny (o)u(t) - _162‘1( )(Da(p)D(, p)N (0 p)
~Q(p)Nr(0))u(t) = N7'Q™ (p)Da(p)D(0, p) Ny (0, p) f (v(t))
-N 162 (p)S(o,p)y ()+um(t)7 (27)
um(t) = N1 Q7 ()T (9) N (p)rm (1), (28)

where u,, () is the external signal. To avoid using derivatives of signals in control input
u(t), the degree of the polynomial must be satisfied: n,, — nm, > n —n; and n; > ny,.
Therefore, u(t) of (27) is obtained from e(t) — 0(t — o0). The MFCS can be realized if
the system internal states are bounded.
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4. BOUNDED PROPERTY OF INTERNAL STATES

The state space expression of u(t) is given by:

u(t) = —Eo(o)u(t) — Hi(0)&1(t) — Ea(0)y(t) — Ha(0)& (1)
—B3(0) f(0(t)) — Hs(0)8s(t) + wn(2), (20)

U () = Barm(t) + Hiba (). (30)

In addition, the following conditions must be satisfied [21]:

§1(t) = Fi&i(t) + Gru(?), (31)
§2 (t) = F262(t) + Gay(t), (32)
5_3(t) = F383(t) + Gaf(v(t)), (33)
a(t) = Fala(t) + Garp(2). (34)
The connections between the polynomial matrices and the system matrices are given by:
Ey(0) = NN, (o), (35)
Hl(ff)[pf Fl] 'Gy=N'Q! ( )( a(p)R(o,p)N(o,p) — Q(p)N:(0)), (36)
Es(0) + Ha(0)[pl — Fo] "Gy = “(p)S(o,p) (37)
Es(o) + Hs(o)[pl — F3]~ 1G3 ~'(p)Da(p)R(0, p)Ny (0, p) (38)
Ey + Hylpl — F4] "Gy = 1@ ( ) (P) N (p), (39)
where |pI — F;| = |Q(p)|(i = 1,2,3). Let
Z)y=[2T@) @) g &) u@) . (40)
Removing the u(t) from (7) ~ (9), (29) ~ (33), we have
Ez(t) = As(0)z2(t) + Bs(0) f(v(t)) + ds(1), (41)
y(t) = Cso(0)z(t) + dso(2), (42)
v(t) = Cul0)2(), (43)
where
Cso(0) = [C(0),0,0,0,0], Cs(0) = [Cf(a)’ 0,0,0,0], Bs(o) = [Bf7 0,0,G3, —FE3(0)],

[
dsO( ) dO(t)v 0,0,0, 0]T7 ds (t) = [d(t)a 0, G2d0 (t)v 0, um (t) - Ey (U)do(t)]T

and
I 0 0 0 O
0 I 0 0O
E=|10 0 I 0 O (44)
0 00 I O
000 0O
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A(o) 0 0 0 B(o)
0 R 0 0 Gy

AS(O') = GQO(O') 0 F2 0 0 . (45)
0 0 0 Iy 0

—Ey,C(0) —Hi(0) —Hi(o) —Hs(o) —I— Ey(o)

The bounded property of internal states is turned out to be that z(¢) is bounded.
The nonlinear function f(v(t)) is available and satisfies the following constraint:

F @) < a+Bll@], (46)

where a > 0, 8 >0, v >0, || - || is the Euclidean norm. The system (41) ~ (43) internal
states are bounded if we can prove z(¢) is bounded. The characteristic polynomial of
As(0) is calculated next.

From (44) and (45), |pE — As(0)| can be shown as follows (see Appendix A)

IpE — Ay(0)| = [N:| 7T (p) Dy (9)!|Q(p)[* Vi (0, p). (47)

Here V (o, p) is the zeros polynomial of C(o)[pI — A(o)]"1B(c) (left coprime decompo-
sition),
C(o)pl — A(0)]"'B(o) = W~(0,p)U(a,p) = N(0.p)/D(0,p),
V(o,p)| = Vi(o,p) = [W(o,p)||N(e,p)/D(o,p)| = D(0,p)|N(0,p)|/D'(c,p)

and deg|N(o,p)| = 22:1 ;. It follows that
Vi(o,p) = [N(o,p)| D'~ (0, p). (48)

One can conclude that A,(o) is a stable system matrix due to the fact that T'(p),
D, (p), |Q(p)| and Vi(o,p) are stable polynomials. From (41) and (43), we have

v(t) = Cs(0)[pE — As(0)] ™' Bs(0) f(v(t))
+Cs(0)[pE — As(0)] " Hds(t) = H(p) f(v(1) + du(2). (49)
Here H(p) is the transfer function from f(v(t)) to v(t), and d,(t) = Cs(o)[pE —
Ag(0)])7tds(2).
Lemma 1. d,(t) = Cs(0)[pE — As(0)] 7 ds(t) is bounded.
Proof. See Appendix B. O

It follows from (44) ~ (45), that

H(p) = Cs(o)[pE — As(0)] ' Bs(0)
= Ci(o){I +[pI — A(0)] ' B(o)[I + Eo(0) + Hi(o)[pl — F1] ™"
-G1| 7' [Ea(0) + Ha(0)[pI — F3] ' Go]C(0)} " H{[pI — A(0)] "' By
—[pI — A(0)] ' B(a)[I + Eo(0) + Hi(o)[pl — Fi]'G1] ™!
[E3(0) + Hs(0)[pI — F3]~'Gs]}. (50)
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Substituting (35) ~ (38) into (50), we have

H@p) = Cro)I+ bl - Al0)] BT + NN, (o) — Ny 'N,(0)
+N,'Q () Da(p)R(0, p)N (0, )] ' N, Q™ (p)S (0, p)C (o)}
{lpI = A(0)] ' By — [pI — A(0)] 7' B(o)[N, ' Q™ (p) Dalp
“R(o,p)N(o,p)] "' N Q7 () Da(p) R(o, p) Ny (o, )} (51)
Then, from N(o,p) = D(o,p)C(c)[pI — A(c)]"'B(c) and N¢(o,p) = D(o,p)C(c)pl —
A(0)]7'By(0), we can get

H(p) = Cy(o)lI + X (o,p)p(o,p)| "' [ = X(o,p)llp] — A(0)] ™' By, (52)

where p(o,p) is a scalar polynomial, and

p(o,p) = S(o,p)/D(o,p)R(c,p)Da(p), (53)

X(o,p) = [pI —A(0)] ' B(o){C(0)[pI — A(0)] "' B(o)}'C(0). (54)
Therefore

X?*(o,p) = X(0,p), (55)

[+ X(0,p)p(o,p)] "' [I = X(0,p)] = I — X (0, p). (56)

From (52) ~ (56), we have

Cy(o)[I + X (o,p)lpI — A(0)] ™" By
Cy(0)[pI = A(0)] ™' By — Cy(o)lpI — A(0)] ' B(o)
{C(o)lpI — A(0)] 7' B(0)} ' C(o)[pI — A(0)] ™' By

Leso) 0] [P PO ] o7

H(p) =

Since (Cy(0), Ay(0), By) is the minimal realization of H(p), where A,(0) is a stable
system matrix, the state-space realization of the system (41) ~ (43) is given by

Zy (t) = A, (J)Zv (t) + vi(v(t))v (58)
o) = Co(@)zu(t) +du(t). (59)

H(p) = ’p =C, (J) [pE - AU(U)}_IBU(U)' (60)

The following lemma gives an important inequality. To save space, we omit its proof
here.
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Lemma 2. If 0 <~y <1, for any vectors z € R™ and y € R", then

lz +ylI” < (lll + [lylD™ < [l2|I” + [yl

Let
U(t) - dv(t) = ﬁ(t)v Zv(t) = (b(t)¢(t)’ (I)(t) = A'U(O')(I)(t)'

It follows from (58) that

D(t)p(t) = By f(0(t) + du(1)),

485

(63)

where ®~1(¢) = ®(—t), namely ®(¢)®(—t) = I, [|®(¢)|| < Cre~*!. One can easily verify

that
o(t) = / O(—7)B, f(0(T) + dy(7))dT + C.
0
From (62) and (64), we can get that
2y (t) = ®(t) /0 O(—7)B, f(0(7) + dy(t)) AT + D(t)2,(0).
Furthermore, we have by (59), (62) and (65),
B(t) = Co(0)B(t) + CU(J)@(t)/O B(—7) By f(0(r) + du(7)) dr.
Let Cy(0) = 35 Cyjo;. It follows from (66) that

k
5(0) = Y- Cof(t = hy)2,(0)}

k

t*hj
+ Z Cy; / O(t —h; —7)B, f(0(1) + dy(7)) dr.
=0 0
By using Lemma 2 and (46), we derive
(@) + du ()] < a+ Bl[o(t) + du (DI < o+ Bl|[o()]|" + Blldu ()]
It follows that

k
1B < D 1ICu; IR = k)12 (0)]]

=0

k t—h;
+ Y 11Cul / @t — by — )| Bullllf (0(7) + do(7))|| dT.
Jj=0 0
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Let ||®(t)]] < pre™*mint. Then ||®(t — h; — 7)|| < pre™ min=" =) Hence, we have

k k
18()]] < Y 1Cusllpre itz (0)Je™ mint 4 [ Cy[premints
j=0 j=0

t
' /0 e DBy |(a+ Blo(n)|]” + Bl|du (7)) dr. (70)

k o
Let pg = Y7o ||Cujllprehi, Ky = pa||2,(0)||,aa = pa||By|la, and B2 = pa||B,]|5.
We have

t
L e
0

t t
+52/ e)\nlinT |17(T)||7 dT+B2/ eAmanTHdv(T)”’Y dr. (71)
0 0
Since ag + F2||dy(7)]| < K2, we can easily verify that
t t
||5(t)||e*=mt < Ky + Kg/ erminT dr 4 52/ erminT||5(7)||Y dr. (72)
0 0
Throughout this paper, we will use the following Lemma 3.

Lemma 3. For Ky > 0,0 > 0,y > 0, the appropriate positive K3 > 0,03 > 0, and
any z > 0, we have the following inequality

Ky + foa” < (K34 fsz)". (73)

Proof. See Appendix C. ]

It follows from Lemma 3 that
t
[o(t)]])e=" < Ky +/ (K2 + Ba|[o(7)|[")er" dr
0
t
< K +/ (K3 + 53||17(t)||)76/\"""7 dr = U(t). (74)
0

Hence, we have U(t) = (K3 + B3|[o(t)|)7e it < (K3 + Bze MmntU(t))Yermint and
[[o(t)]| < U(t)e~*mint. Let us define

V(t) = K3 + Bz M=ntU(t). (75)

We can conclude that e*min*V (t) = Kzemint + 33U (t). Applying the above equation, we
obtain

/\min(i)\mi"tV(t) + BAmi“tV(t) = Kg)\mine)\mint + ,BgU(t) < Kg)\mine/\mint + B3V (t)e)\mir‘t.
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Namely, ApinV () + V (t) < K3Amin + 33V (t). Then, we have
V(t) < _)\minv(t) + 63‘/’7(.6) + KSAmin S —k1V(t) + k‘2a (76)

where k; and ks is positive.
Let V(t) = e *fp(t). The time derivatives of V(t) along the trajectories is V(t) =
—kre7Rtp(t) + eTFtp(t) < —kie 1t p(t) + ko, where e F1tg(t) < ko, namely,
b(t) < kge M1t (77)

Integrating both sides of (77) on the interval [0, t), we have fot o(t)dt < fot koe kit dt,
and consequently,

o(t) < ’,j—( 1)+ 6(0). (78)

Substituting (78) into V (t) = e *1t¢(t) yields
—klt@ kit _ —kqt @ _ —kit
V() < e R (R 1) b hig) < 2 ehity 1o0). ()
1 1
Let ¢ = 0. Then V(0) < ¢(0). Hence, we have
ket k2 —k1t
V(t) <V(0)e ™" + kf(l —e MY
1
k

< {Ka + BollUO)]Fe™ + 21— e7), (80)

Substituting (75) into (80), we have

k
Kz + Bze*mntU(t) < {Ks + Bs||U(0)[| e ™" + k—z(l —e Mt
1

k
< {K3 + Bal[o(0)[[}e ™" + /?j(l —e M), (81)
Furthermore, we have
— 1 k2 —kqt — —kqt
[o@)]| < = (= = K3)(1 —e7™%) +[|v(0)]le
B3 k1
1 ko _
< @(E—Kz)ﬂlv(@)\l < 00. (82)

This implies that, 9(t) is bounded. From (59) and (62), we can conclude that v(¢), z,(t)
and z(t) are also bounded. In general, the above main results are summarized in the
next Theorem 1.
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Theorem 1. Let z(t) € R", v(t) € R4, f(v(t)) € R, do(t) € R', d(t) € R" be
unknown bounded disturbances, A(o) € R™*™ is stable matrices. The nonlinear MFCS
with time delays is well designed, if the following conditions are held:

E5(t) = A(0)=(t) + B(o) f(u(t)) + d(t),
o(t) = C(0)2(t) + do(t).
(W) [IF@W)]] < a+ B, (a>0,8>0,0<~<1)

(2) |N| #0.

5. AN ILLUSTRATIVE EXAMPLE

In this section, a numerical example is provided to demonstrate the efectiveness of the
proposed method. Consider the following nonlinear system with time delays.

ot) = [_01 _13]:c(t)+{8 ?]x(thl)wL[

+{?}u(t_hw[ﬂf(v<t>)+[d?t)},

_ O

] u(?)

o(t) = [0 1]a@®)+[5 0]az(t—h),
yit) = [5 1]z(@)+[5 0 ]a(t—hs)+do(t),
o) = .

From o, the control system can be expressed as

#H) = {—01 —3-11-0'1:|x(t)+|:1-|?0'2:|u(t)
SHICORPAL

o(t) = [ boy 1 ]a(),

y(t) = [ 5+503 1 ]x(t)+do(t).

In this case, we choose the initial values for
zot)=[01 05]7(t<0), €@)=[00 00]"(t<0)(i=1,23),
Q)y=[00 00]"(t=0),  wue(t)=0.0,(t<0).

Let d(t) = 0.9 (5 <t < 15) and do(t) = 0.6 (30 < t < 43) be the bounded disturbances
of the system. The reference model is given as follows [10]:

O I PRORS ) PO

Ym(t) = [ 2 1 ]zm(t)'
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Here the initial values is z,,(0) = [ 0.0 0.0 }T, and the reference model input is
rm(t) = 4sin0.5t + 8. In this example, we choose T'(p) = p+ 5, Q@ = (p + 6)? and

D,(p) = p. The matrix F; and G; are given as follows:
0
B

0 1
Fi_{—36 —12}’ Gi_[

Based on (27) ~ (34) and Theorem 1, the control input wu(t) is given as

u(t) = —ogu(t)— [ —36—360y —T7—T02+ 503+ 50203 | &
—(T4+o1)y(t) — [ —222 3607 —54— 1201 | &
—(11 4 1003) f (v(t))
— [ =396 — 3600399 — 1001 — 8503 — 100105 | &3 + um (1),
um(t) = () +[ =26 =5 ] &

By using &(t) = [£i1(t), §ia(t)]7 (i = 1,2,3,4), we derive [I]

u(t) = —u(t—h2)+ 36811 + 36&11(t — ha) + T&12(¢)
+7&12(t — ha) — 5&12(t — h3) — 5&12(t — hy — h3)
—Ty(t) —y(t — hy) + 222&: (t) + 36&21 (t — hy)
+54€22(t) + 12822(t — h1) — 11f(v(t)) — 10f(v(t — hs3))
+396&31 (f) + 360831 (t — h3) + 99E32(t) + 1032(t — h1)
+85832(t — h3) + 10§32(t — b1 — h3) + um(t),

U (t) = 7T (t) — 26841 (t) — 542 (t).
4r m(t) Y(t)
o 3
z |
2.2
=3 R 0) 407
0 [ L l AL J

1 1 L
10 V20 30 40 50
Time(sec)

e(t)

Fig. 1. Responses of the system for nonlinear system with time
delays.
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The output responses for the above case are shown in Figure 1. From the simulation
results, it can be seen that the control systems are efficient for the disturbances, and the
output error converges to zero.

6. CONCLUSIONS

We have presented a new design of the MFCS with time delays. The illustrative example
and the simulation results show the benefits of this proposed design method. Topics for
future study including the nonlinear discrete control system with time delays.

Appendix A. |pE — A4(0)]

From (44) and (45), we have

pl — A(o) 0 0 0 —B(0)
0 p[ — F1 0 0 *Gl
|[pE — As(o)| = | —G2C(0) 0 pl — F 0 0
0 0 0 pl—-Fy 0

Es(0)C(o) Hi(oc) Hi(o) Hs(o) I+ Ey(o)
Recall (|Z| # 0):

X Y
W Z

I-X(I+YX)'Y =(I+XY)™ !,
I+ XY|=|I+YX]|

X, Y
w  Z,

|= 21X Yz W

=(-1) X, Y Y X,

‘ B ’ Zm W
We can conclude that

IpE — As(0)]|
= |pI — FillpI — E3|lpI — A(o)||] + Eo(o) + Hi(o)[p] — F1] 7' G|
M+ {Bs(0) + Ha(0)[pl — Fo] ' G2}C(0)[pl — F1] ' B(o){I + By (o)
+Hy(0)[pI — F1]7 G} Y

where |pI — Fi|[pl — F3| = Q(p), |pI — A(0)| = D(o, p)-
From (35)—(38), we have

|pE - As(0)| . R
= Q(p)D(a,p)|N, M |IN;: + Ny-(0) + Q~(p) Da(p)R(a,p)N (o, p)
—N,(0)+ Q' (p)S(a,p)N(a,p)/D(0,p)|.

From N, (o) = N,(¢) + N,., we have
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|pE - As(o)‘ R
= QE)*D(o,p)IN:|7' Q" (p) Da(p)R(e,p)N(0,p) + Q™' (p)S(o, P)N(0,p) / D(0, p)
= |N|7HQ(p)|*D(0, p)|Q~" (p)N (0, p)[Da(p)D(0, p) + S(o,p)]/D(o,p),
where T'(p) Dy, (p) = Da(p)D(0, p)R(0, p) + S(o, p).
Then
IpE — Ay(0)| = |Q(p)|* D(o.p)|N |, ' N(a, p) D}, (p)T" (p)/ D' (0, p)
Using Vi (o,p) = |N(o,p)|/D(0,p)" !, we can get that

IpE — As(0)| = |N.| 7 T(p)' Dun (p)'|Q(p)*Vis (0, ).

Appendix B. Proof of Lemma 1

Using the (47), we have

deglpE — As(0))
= U(deg(T(p)) + degDm(p)) + 2deg|Q(p)| + degV (o, p)
!
=1p+nm) +2> (p+nm —n+m)+ degVi(o,p).
i=1
From (48), we obtain degVs(o,p) = Zlizl n; — (I — 1)n. Then

deg|lpE — A,(0) |
l l
=Up+nm)+2> (p+nmm—n+n)+y ni—(1—1n
i=1 i=1
l

l
Dot nm—ntn)+nt2) (p+nm —n+m)
i=1 1=1

1
3Z(p+nm—n+m)+n.
i=1

Hence, we get rankE = rank|pE — Ag(o)| = 3Ei:1(p + Ny, — n 4 1;) + n. Therefore,
[pE — Ag(0)] 7! is proper, namely, no Impulse mode, [pE — A4(c)| of the (47) is stable
polynomial,

adj[pE — As(0)]

dv(t):CS(J) |pE—AS(O')| S(t)

This implies the desired result. g



492 D. WANG, S. WU, W.ZHANG, G. WANG, F. WU AND S. OKUBO

Appendix C. Proof of Lemma 3

It is easy to see that r > 1, next we give a proof of 0 < r < 1. Let f(z) =
(K3 + B32)Y — (K2 4 (227), we have

f (x) = vB3(K3 + B32)7"F — Baya? !
= y{B32' 77 — Bo(K3z + Bax) T} /2 TV (K + Bax)t Y

1

’ 1-—
Let f (z) = 0. Then, we have z* = Lwl, x* is minimum point of f(z), and
Bs Y —B3B,
B3 > B2, we have
N AT =
K - K -
f($*) — — Sﬁ?) — (K2 + M) > 0.
(B3 = B30, )7 B3 — B30,y
Then
e e =5 \y—1
K337 Kz(ﬁ ﬁ?ﬂ M) = BaK3By (B3 = B3By )T > 0.
Let

A=BT7, B=FKy(BF7 — BsB57)7, C = BBl (BT — BaBT 7)1

Thus, the inequality can represented as AK) — B— K3C > 0. If K3 can seek to get, then

the problem is solved. Let g(K3) = AK, — B — K3C. From g (K3) = % -C =0,
3

we have K3 = (A%)ﬁ It follows that g(K3) = C(% - 1)(1%)ﬁ — B > 0. We can

conclude that

11—~y
~y

vy AT (—)) > BCTS,

namely,

1 2y—~2

. — _
AT D) > K

a-m- (-2
That is to say, O3 > K, a2 522 'Y/’Y (T) =

. Thus, we have

a- w)"’
r K, T B
B3 > max{ Gy,

It follows that

This completes the proof of Lemma 3. g
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