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Spectral element discretization of the heat

equation with variable diffusion coefficient

Y. DAIkH, W. CHIKOUCHE

Abstract. We are interested in the discretization of the heat equation with a dif-
fusion coefficient depending on the space and time variables. The discretization
relies on a spectral element method with respect to the space variables and Eu-
ler’s implicit scheme with respect to the time variable. A detailed numerical
analysis leads to optimal a priori error estimates.

Keywords: heat equation; diffusion coefficient; spectral element methods; a priori
estimates

Classification: 35K05, 66N35, 35B45

1. Introduction

An impressive amount of work has been done concerning a priori and a poste-
riori analysis of parabolic type problems for finite element methods, see [6] and [1]
for instance. An extension in spectral element method of some results obtained
by Bergam et al. in [1] has been performed recently by N. Chorfi et al. in [4].
They were interested in a posteriori analysis of the spectral element discretiza-
tion of the one-dimensional heat equation with constant diffusion coefficient. The
spectral element method consists on approaching the solution of a partial dif-
ferential equation by polynomial functions of high degree on each element of a
decomposition.

In this paper, we are interested in the discretization of the heat equation with
a diffusion coefficient depending on the space and time variables by an implicit
Euler’s scheme with respect to the time variable and spectral element method with
respect to the space variables in a two- or three-dimensional bounded domain. For
the space discretization, we consider a partition of the domain into rectangles in
dimension 2 or rectangular parallelepipeds in dimension 3 which is conforming
and without overlap. The discrete spaces are constructed from tensorized spaces
of polynomials of the same high degree on each subdomain. The full discrete
problem is then obtained by Galerkin method with numerical integration.

An outline of the paper is as follows.

e In Section 2, we present the linear heat equation and we study the con-
tinuous problem and its stability.
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186 Daikh Y., Chikouche W.

e In Section 3, we describe its time semi-discretization and the correspond-
ing stability property.

e Section 4 is devoted to the description of the space discretization of the
problem by using spectral element method.
The well-posedness of the corresponding problem in each section is proved.

e Optimal error estimates are proved in Section 5.

2. Position of the problem

Let © be a connected and bounded open set in R? (d = 1,2, or 3) with
a Lipschitz-continuous boundary. Also let T be a fixed positive integer. We
consider the heat equation

Opu — div(AVu) = f in Qx]0,T7,
(1) u=20 on 900x]0,T,

Ultzo = Up in Q,

where ) is a given continuous function on Q x [0, 7] satisfying for some positive
constants Apin and Apax,

(2) Vo e AVt € [0,T], Amin < A1) < Amax-

The data are the distribution f and the function wg; the unknown is the function u.

As usual, we denote by LP(£2), 1 < p < oo, the Lebesgue spaces and by H*(Q),
s > 0, the standard Sobolev spaces. The usual norm and seminorm of H*(2) are
denoted by || - ||s.o and | - |s.q respectively. The space Hg () stands for the closure
in H!(£) of the space of infinitely differentiable functions with a compact support
in Q, and H~!(Q) stands for its dual space. For simplicity, we denote by (-,-)
the scalar product on L?(€2) and by [| - [o,o the associated norm. By extension,
the duality pairing between H~1(Q2) and H}(Q), is also denoted by (-,-). We
define C°(0,T; L*(Q)), as the space of continuous functions in time, with values
in L?(Q2), and also L?(0,T; H}(S2)), respectively L?(0,T; H'(Q2)), as the space
of square-integrable functions with values in H}(Q), respectively in H ~1(().

The problem (1) admits the equivalent variational formulation.

Find u in L2(0,T; H}(Q)) such that d;u € L?(0,T; H~()) satisfying
(3) ult—o = ugp in £,
and such that, for a.e. ¢ in 0,77,
(4) Yo € Hy(R), (Qeu(t),v) + (AH)Vu(t), Vo) = (f(t),v).

It is well known [5, Chapter 3, §4] that, for any f in L2(0,T; H~1(Q2)) and ug in
L?(€2), problem (3)—(4) admits a unique solution u in L?(0,T; H}(2)) such that
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Oyu € L*(0,T; H=1(Q)), and this implies that u € C°(0,T; L?(£2)). Moreover, let
us introduce the norm
1
2

(5) [o])(t) = (Ilv(t)lé,g n / |A%<s>w<s>|3,g>

By taking v equal to u(t) in (4) and integrating on the interval ]0,¢[, we easily
derive the following estimate [1]: for all ¢ € [0, T

D=

1
(6) ()0 < (TuolB o+ 510

3. The time semi-discrete problem

In order to describe the time discretization of equation (1), we introduce a par-
tition of the interval [0,7] into subintervals [tx—1,tx], 1 < k < K, such that
0=t <t1 < - <tg =T. We denote by 7, := t — ty—1, by 7 the
K—tuple(ry,...,7x) and by |7| the maximum of the 75, 1 < k < K. We also
define the regularity parameter

Tk

0, = max .
2<k<K Tp_1

With each family (v¥)o<k<r, we agree to associate the function v, on [0, T'] which
is affine on each interval [t;_1,%x], 1 <k < K, and equal to v* at t5, 0 < k < K.
Equivalently, this function can be written, for 1 < k < K, as

tp —t

(1) Vt € [tho1,tr), v (t) = vF — - (vF — Py,

For simplicity, we introduce the notation \* = A(#) and f*¥ = f(t), which
obviously requires the continuity of f with respect to t. The semi-discrete problem
issued from Euler’s implicit scheme is now written as

uk — k1

——— —div\*VuF) = fF in Q, 1<k <K,
Tk

ub =0 on 00, 1<k<K,

u® = ug in Q.

Equivalently, it admits the variational formulation.
Find (u¥)o<k<r in L2(Q) x HE(Q)E satisfying

(8) u® =g in Q,
and such that, for 1 < k < K,

9) Yo € HY(Q), a"(u” v) = LF@),
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where the bilinear forms a*, 1 < k < K, are defined by
a(u,v) = (u,v) + (N Vu, Vo),
and the linear forms L*, 1 < k < K, are defined as
LF(v) = (uF1 0) + 7. (f%, v).

The existence and uniqueness of a solution (u*)o<k<r for any data f in
C%0,7; H1(Q)) and ug in L?(£2) is now a simple consequence of the Lax-Milgram
lemma.

Moreover, by using the notation )\mm = inf g
in (9), we easily derive the following estimate

Az, t1,) and taking v = uF

1 2 _
(10) [u® 3.0 + 7| (AF)2 V[ o < 2o+ Ak 1F*12 1 0

min

We now define the norm on whole sequences v/, 0 < ¢ < k by

1

k 2
(1) m#mk=(WN@Q+§ZnWVﬁV“M@)-

{=1

Proposition 3.1. For any data f in C°(0,T; H=(Q)) and ug in L*(Q2), problem
(8)—(9) has a unique solution (u*¥)o<k<r, which satisfies for all k, 1 < k < K,

(12) (WO < (hMbQ+§: |uﬂ%9)2

in

Moreover, this solution is such that, for all k, 1 < k < K,

)4

k =12 5
ut —u
1 -7
( 3) (ZTZH T HI,Q)
=1
1

2
< \/_< maxHuOHOQ + ZTZ (1 + )\renax)|fé”2_179)

min

PROOF: By summing up estimate (10) on k, we derive (12), which is the semi-
discrete analogue of (6). On the other hand, we derive from (9)

Hue WS

o U0 -0V

Ty Hfl,ﬂ vEHL(Q) |’U|1,Q )

which gives

===

<1741~ Amax) 2 [|(A) 2 V|| .
- o < 170 1n0 + Q) * 1) 2 V|
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Multiplying the square of this inequality by 7, summing on ¢ and using (12) leads
o (13). 0

The norm [[(u)]]x involved in this estimate is not equal to the norm [[u,]](tx)
(see (7) for the definition of the function u,). However, when ug is supposed to
be in H*(f2), they are equivalent, as proven in the next lemma [1].

Lemma 3.2. Assume that the function X\ is continuously differentiable in time,
with maximum value of 9;\ on Q x [0, T] denoted by fimax. There exists a positive
real number ayg, equal t0 Amin/2/imax, Such that the following equivalence property
holds for |7| < ag and for any family (v*)o<e<rc in HY(Q)K+!

3 3 3 1 2
(14)  QIEOR < [P ) < J (0 + 5o [ + [ Vel .
PRrROOF: Owing to the definitions (5) and (11) of the norms, we have to compare

the quantities

lo -

ng/ A2 (5)Vor(s)|2 o ds  and Y =7[|(A") 2 Vv
te—1 ’

Thanks to the definition of pmax, we have the standard estimate
Vs € [to—1,te], Y€ Q, |Aays)— )\e(a:)| < Ty Hmax,

so that, when |7| < ay,

< Az, s)

1 _ Q
(15) Vs € [te—1,ts], Vx e Q, = N2

<

N =
l\DIOJ

It can also be noted that, thanks to the definition of v,, and for a.e. x in €2,
te -
(16) / |V, (z,s)|*ds = §(|Vve(sc)|2 + Vo' (@)|? + Voi(x) - Vvefl(a:)).
te—1

By combining (15) and (16), we obtain
Te 1 2 1 —12 1 1 _
X, > E(H(V)zvvéum +[AOETLE L+ (A ET, () BVt 1)).
So using the inequality ab > —iaQ — b? yields

Xe2 ZJ0ve|2, = Ly
whence the first inequality in (14) holds.

Similarly, by combining (15) and (16) and using the inequality ab < +a?+ $b2,
we have

Xe 37’@ ‘

027 o+ )2 V0 g 0)-
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When ¢ = 1, we keep this inequality without modification. When ¢ > 1, we use
an analogue of (15) to obtain

37‘@

X< T ype2,, 4 2

T S

By summing up the previous lines on ¢, we derive the second inequality in (14). O

In order to state the a priori error estimate (see [1]), we observe that the family
(e®)o<k<i, with e® = u(ty) — u”, satisfies e® = 0 and also, by integrating 9,u
between tj_1 and ¢, and using equation (9) and equation (4) at time ¢ = 1,

Yo € Hy (), (¥, v) + me(\*Ver, Vo) = (eF 71 v) + 71.(€¥, v),

where the consistency error € is given by
k Lo
(e, ) :(— / (D) (s) ds — (atu)(tk),v).
Tk St

So, applying (12) to this new problem, we derive the estimate. Indeed, if the
solution u is such that d7u belongs to L?(0,T; H~1()), thus for 1 <k < K,

2
[tutte) —u)e < — (o 7o) 107l 2 0 14 -1 ey

Thanks to Lemma 3.2, this also induces a similar bound for the norm [[u—u-]](tx).

4. The time and space discrete problem

From now on, we assume that {2 admits a partition without overlap into a finite
number of subdomains

Q=U8Q, and Q,NQ. =0, 1<r<r <R,

which satisfy the further conditions:

(i) each Q,, 1 < r < R, is a rectangle in dimension d = 2 or a rectangular
parallelepiped in dimension d = 3;

(ii) the intersection of two subdomains €, and Q,/, 1 < r < 7' < R, if not
empty, is either a vertex or a whole edge or a whole face of both 2,
and Q.

We introduce the space Py (£2,) of restrictions to €2, of polynomials with d
variables and degree < N with respect to each variable. Relying on this definition,
we introduce the discrete spaces, for an integer N > 2,

Yy = {’LU € L2(Q) | Wr :w|Qr GPN(QT)a r= 17'-'aR}7
X% = Yn N Hg(Q).
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Setting £ = —1 and & = 1, we introduce the N — 1 nodes §;, 1 < j < N —1,
and the N 4 1 weights p;, 0 < j < N, of the Gauss-Lobatto quadrature formula

on A :=[~1,1]. We recall that the following equality holds
1 N
(17) Vo € Faya(8). [ pn(Ode =Y (€
1 X
7=0

We also recall [2, form. (13.20)] the following property, which is useful in what
follows

2

(18) Von € Pa(A), lonlFzay < D ox(&)ps < BllenllFaa
7=0

Denoting by F,. the affine mapping that sends A? onto €2,., we introduce the local
discrete products, defined on continuous functions u and v on €2, by

measth) 2 Z;V:o wo Fr(&,&)v o Fr(&i, &)pin;
if d=2,
meas(, N N N
% Zi:() Zj:() Zp:O u o Fr(€i7 gjv gp)v o F7'(€i7 §j7 gp)pipjpp
if d=3.

(uv ’U)}A\/ -

The global product is then defined on continuous functions v and v on by

R

((w,0)n =D (ulo,,vlo,)x

r=1

We denote by iy the interpolation operator at the nodes &;, 0 < 7 < N. We
need the local Lagrange interpolation operators Z};: for each function ¢ contin-
uous on Q,, Ik belongs to Px(Q,) and is equal to ¢ at all nodes F,.(&;,&;),
0 <4,j < N in dimension 2 and at F,(&,&;,€p), 0 <4,j,p < N in dimension 3.
Finally, for each function ¢ continuous on Q, Zy¢ denotes the function equal to
Iyponeach Q. 1<r<R.

The fully discrete problem is now constructed from (8)—(9) by using the Galer-
kin method combined with numerical integration. It reads as follows:

find (UI;V)OSkSK in Yy x (X?V)K, satisfying
(19) uly = Inug in Q,
and such that, for 1 < k < K,
(20) Yoy € XR(Q),  af(uk, o) = Ly (o),
where the bilinear forms a%;(-,-), 1 < k < K, are defined by

ak (un,vn) = ((un,on)) N + Te(\ Vun, Vo)) n

191
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and the linear forms L%, are defined by

L (n) = (uf ' on)) v + 7 (5, on)) v

It follows from (18) combined with Cauchy-Schwarz inequalities, that the forms
a% and L%, are continuous on X% x X{; and X, respectively, and a¥; are coercive
with norms bounded independently of V.

In all that follows, ¢ stands for a generic constant which can vary from one line
to the next one but is always independent of N. The proof of the next proposition
is standard.

Proposition 4.1. For any data f continuous on 2 x [0,T] and a continuous
up on €, problem (19)—(20) has a unique solution (uk )o<k<x in Yy x (X)X
Moreover this solution satisfies for a constant ¢ independent of N

1

)\max k :
(”INUO”OQ+<1+)\ )Z)\e HINfeHOQ> .

min

W=

A

max )
)\min

ProOF: Taking vy equal to u¥; in (20), we have thanks to Cauchy-Schwarz in-
equality

1) [[(ufo)]le < e(1+

(k) + (N Ve, Vb)) < (il ul )R - (ke ub) &

+ (T 5 I )3 - (w3

Using (18), Poincaré-Friedrichs inequality and the inequality ab < %aQ + %bQ, for
each € > 0, we obtain

1
Slukllo o + (N Vuke, Vi)
1 cm 2 € 1 2
—|| oo+ 5 12 o + 57| N2 Vuklg o

min

Summing up on k, and using (19), we get
1 2 k
(22) 5\]u’;v||0,Q + 3 (A Vuly, Vuly)) v

1 2 c &
QIIINUOHO,M—ZV IZn £l 0 + 5 ZT@H (A2l |fo o

On the other hand, thanks to (2) and (18), we have

)\max
[ 2Vl [lg o < Amax(Vuly, Vufy))n < - (AN'Vuly, Vub)n, 1<E<k,
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0, (22) implies that

1 k
Slikllon + 22 vulog
=1

< (1 5 (Il + €3 s

+EZTZH(V)%VU§V||§79).

Finally, we choose ¢ = % to obtain (21). O

5. Error estimate

We now wish to establish the error estimate between the solution (u*)o<k<x
of problem (8)—(9) and the solution (u%;)o<x<x of problem (19)—(20).
Let H}\}O denote the orthogonal projection operator from H}(Q) onto X, for

the scalar product associated with the norm |- |; . For 0 < /¢ <k, H}\}Oue will be
denoted by p?v.

Proposition 5.1. Assume that f and ug are continuous on  x [0,T] and Q
respectively. Then the following estimate holds for the error between the solution
(u*)o<k<r of problem (8)—(9) and the solution (uX;)o<kx<x of problem (19)—(20)

wue—u%nnzzc(muf—p%unk

AIIl
(23) (14 3227 (lhwo = P oo + lluo = Zuoflo
Amax\ ¥ o :
max a,l a,2 f
+(1+—A ) 2:( ) ENJ*EN1*<EMH)>a
min =1 mln

uf—uf! p?\lfl_l’ﬁvi—ll
gt g U ) (PR o))
N exe, lon 1,0 ’
B2 gy AVULVON) — (MVP o, Vo)
NE vexy, lun 1,0 ’

(feavN) — ((feavN))N )

onEXY, lun 1,0
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PRrROOF: We have

[[(u® = ui)e < [[(u” = Py 2)]] + [y =21l

so we have to estimate the term [[(u% — p&_,)]]x- It follows from (9) and (20)
that
((uk = PR—1, o8N + (A V (Ul = PR 1), Von))w
((uécv t— p?viflp oN))N + TkM]IiI(UN)v
where MY is the linear form on X{; defined by
(uk — yhl R
Tk Tk

+ (A\PVUR, Voy) = (WY1, Von))n
+ ((fkavN))N - (fkavN)'

Due to the Riesz’s theorem, there exists a unique polynomial F ]]f, in X% such that

My (vn) =
(24)

Voy € X%, My (vn) = ((Fy, on))N-

Thus the family (uk; —pk | )o<k<x is a solution of the discrete problem (19)-(20)
with Zyug—p%_, instead of Zyug and F¥ instead of f¥. So we proceed as in the
proof of Proposition 4.1. Taking vy equal to u%, — p%, |, using Cauchy-Schwarz
inequality and the fact that the form MY is linear on the finite dimensional
space X, we get

((ufe = PR—1, uk = PR ))N + (A V (i — P 1), V(uk = pR—1))w
1 1
< ((“?\f ! _p?v 11)“1;\7 ! _pl;\f7_11))12\7 ((“]fv _prlqu _pljc\/q))if

((F]]fla'UN))N . |uk

k
+ T sup N —PN_1l0

ovexy N[
using (18), Poincaré-Friedrichs inequality and the inequality ab < 2=a? + £b?, for
each € > 0, summing up on k, we obtain

k
1
5““?\[ —plf\f—1H§79 + ZTZ )\ZV UN pN 1) v(“?\f —p§V—1)))N
=1

1 1<
< 3 1Zvuo =P allo o + 52 25— (@)

¢—1 “'min

1

+3 ZWH ()2 V(uly — leHoQ’
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0 _ (Fx.on))n
where ¢ = sup, exo onTen

as in the end of the proof of Proposition 4.1, we get

Consequently, following the same arguments

P

(1~
N
—
AS)
~
~—
>
~——
Wl

[uby=plv-1)lle < C<1+@) : (|‘INU0*]7(1)V_1||(2),Q+<1+>\max)

min )\min

~
Il

1

We conclude the proof thanks to (24). O

In order to estimate the term E;ﬁ,’le, we denote by w’ the quantity u'—u”

Te
il £—1
PN_1—PN_ 1
== =1 N2 wt, so as a consequence of the exactness
property (17), the terms (H}\}glwe,vN)OQ and ((H}\}glwe,vN))N coincide and

thus, using Poincaré-Friedrichs inequality, we get

and we observe that

(25) Eyy < effw =13 o o

Now, in order to evaluate the term EX,’QZ, we define N as the integer part of %,
so as a consequence of the exactness property (17), we have for any vy € X%

(NVu’, Voy) — (NVph 1, Vo)) n
= (X(Vu' = Vpiy_y), Vo)

R
0 T Z( /Q (X'Vpy_y = I X'Vpl) (@) - Voy (x) do

r

+ (T AV — NV, VUN)Rz)-

Due to Cauchy-Schwarz inequality and by using the notation M =

max

sup . g A(®,te), the first term in the right hand side of (26) can be estimated
as

(A (V' = Vpiy 1), Von) < Aalt’ = P 1l1lon e

Similar arguments also lead to
R
Z/Q (X'Vply_y — TEA'VPS) (@) - Von () de
r=1 7'

R
S ()‘fnax(h/ _p§\771|1,9 + Z ’ue - p?\?‘l,ﬂr)

r=1
R

2 IV =X,

r=1

pf{,|1,QT)|UN|1,Q-

195
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Now, thanks to Cauchy-Schwarz inequality and (18), the last term in the right
hand side of (26) can be estimated as follows

R
> (TP = XVl 1, Von )y
r=1
R
< (eI’ =Pyt + Y| =2l )
r=1
R
3N = TN 1P ) Fo e
r=1
So that
3 < (N (1 s+ o, )
(27)

R
N - TN g )

r=1

; ‘ — 1r%0,,¢ 1,0 L — |
simce ‘pj\?‘l,ﬂ = ’HN w ‘1,9 = HHN HL(H&(Q),X%(Q))'U Lo = [u'l1a.
It remains to estimate the term E]fv’e. Since f is only in the space L?(),

we introduce the orthogonal projection operator IT% from L?(Q,.) onto Py (£,.).
Indeed, using (17) leads to, for any vy in X%,

/ () - ox (@) dz — (£ on)y
Q,

- /Q (F — Ty, ) (@) - on(@)de — (T f* — My fon)

so that, owing to (18) and Poincaré-Friedrichs inequality, we obtain

R
(28) Bl <ed (Il =T g, + 1 = T o, )-
r=1

Now, to make complete the evaluation of E;ﬁ,’}e, EZ,QZ and E]fv s> we need the
following results. First, we recall from [2, Theorem 7.1 and Theorem 14.2] the
approximation properties of the operators Iy and Z};, 1 < r < R: for any function
¢ in H3(Q.), s >0

(29) HSD_H}VQDHO’(L S CN_SH()DHS,Q,J
and for any function ¢ in H*(Q,),s > 4

(30) H@_I}\.I@HQQT < CN_SH‘:DHS,QT-
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The following result is derived from [3, Lemma VI.2.5] thanks to an interpo-
lation argument, for any real number s > 1, and any function ¢ in H}(f2) such
that each ¢|q,, 1 <r < R, belongs to H*(Q,)

R
(31) o =T3¢l o < N2>~ liellsan.-

r=1

Finally, in order to evaluate the term ||A* — T A\ x.q,, We introduce the Gauss-
Lobatto interpolation operator denoted by Iy: for any continuous function ¢ on
A%, I is the only polynomial in Py (A4) which satisfies (In¢)(&, &) = 0(&,&)),
0 < Z;] < N when d = 2; and (INSD)(gzagjagp) = @(giagjagp)a 0 < i7j7p < N when
d=3.
We have the identity
Iy = iR 0% if d=2,
i% 0if 0ty if d=3,
where i} (resp. i%, i%) denotes the Lagrange interpolation operator iy (at the

nodes &;, 0 < j < N) with respect to the variable = (resp. y, 2).
We need the following results, derived from a Gagliardo-Nirenberg inequality.

Lemma 5.2. For any function ¢ in H*(A?), the following estimates hold:

(52 lo—inelans < NI lpllone, for d=1 and 5>,
and

1—s 5
(33) lo = INQlloo,na < N "?|l@llspa, for d=2 and s> 1

For the proof see Lemmas 2.2.3 and 2.2.5 in [7]. Using the same arguments,
we can derive the analogue of this result in dimension 3.

Lemma 5.3. For any real number s > 2, and for any function ¢ in H*(A?%), the
following estimate holds
3_
6 = IN®lloc.as < eN27|lip|s,p5-

ProoOF: We note that we have the identity

o —Inp = (p—i}y oilp) + (¢ —ixp) — (id — i 0 i%) o (id — i%)e,

so we have to estimate each term in the right hand side of this equality. A Gagli-
ardo-Nirenberg inequality leads to, for any € > 0

lp = ik 0 i plloo.ns = Il — i 0 il Lo (aiLoe (a2))
1
2

l . .
<llp—i% oikell? o= ol s

275 (AL (A2))

197
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It follows from (33) that for s > I

lp — % 0 %epllocns < eNT*[lgl|? lell?

H3=5(AH ~375(A2)) H3Te(AH ™35 (A2))

The same arguments lead to the following estimate for s > %

- < e¢N2s
||(p 'LN(PHooAJ CIN 2 H(‘DHHE*E(AHE’E(A Hs—1+2¢(A)))

el

e (A HB (A H-1(A))

,’: NI ,’: N1

x [lell Bk

SN HB TS (AHS-1(A)) TV HEE(AHEE(A 125 (M)

For the last term, using (33) and (32) respectively for s > 2 and s > s’ + 3, we
obtain

[[(id — i% 0 %) o (id — iR )@l Lo (asL=(azy) < N7 [ (0 — in P Lo (asmre (a2))
35
S eN> "l gomsr (asme (a2))-

We conclude by using the embeddings H*(A%) C H"(A; HS~"(A)) and H*(A3) C
H"(A;HS""(A?)) for 0 <r < s. O

Theorem 5.4. Assume that the data f belong to C°([0,T], H°(Q2)) for a real
number o > £, X belongs to C°([0,T], H"(2)) for a real number v > 3¢=L v, is
continuous on Q and the solution (u*)o<x<x of problem (8)—(9) is such that the
restrictions u*|q,, 1 < r < R, belong to H*(Q,.) for a real number s > 1. Then
the following a priori error estimate holds

l & 1—s k 1 : 14
[[(u” = ufy)] Z N7 (b e, + (rlAmax) = D llullsg,

(=1
A 3
+N1_S(1+ mz.a‘x)
M\ B 17 Vi e
5.9 +<1+ ) ) (A : ) > (1l + Amaxels.2.)

(=1

>\max |
A ()
i ( i )\min mln

k k
Xy (NS‘V(ZZIVIIH%M)HU o+ N- : ))
(=1 r=1/¢=1

s

Note that this estimate is optimal in the sense that if A is constant, we find
the results obtained for the usual heat equation.
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PRrROOF: The bound for the terms in the right hand sides of (25), (27) and (28)
obviously follows from (29), (30), (31), Lemma 5.2 and Lemma 5.3.
Back to (23), by the definition of the norm [[-]]x, we observe that

k

[[(u® = piy -l < [l ) 21 = PRy L.

= 1

Using once more the approximation properties (30) and (31), we obtain

R
[ — e < Nl-é(ZnuknéQ 3 (¥ f)

r=1 =1
1—s )‘max % maX % % - ¢
(i 2 (3 o 1+ ) SESDSI
min m =1 mm r=1
k
—|—(N1_S+N1_s)(1—|— i\\m%x)z()\e ) max2|
min 7 7 min
Amax) o~/ ¢ \3 ¢ IR ¢
P ey 3o(L) AW(NQ (X0 HHum)leu
min 7,75 min r=1/¢=1
R
+N"Z||fllHa<m)) :
r=1

taking into account the relationship between N and N , we get the desired result.
O
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