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GENERALIZATIONS OF MILNE’S U(n+ 1)

q-CHU-VANDERMONDE SUMMATION

Jian-Ping Fang, Huai’an

(Received March 28, 2015)

Abstract. We derive two identities for multiple basic hyper-geometric series associated
with the unitary U(n+1) group. In order to get the two identities, we first present two known
q-exponential operator identities which were established in our earlier paper. From the two
identities and combining them with the two U(n + 1) q-Chu-Vandermonde summations
established by Milne, we arrive at our results. Using the identities obtained in this paper,
we give two interesting identities involving binomial coefficients. In addition, we also derive
two nontrivial summation equations from the two multiple extensions.

Keywords: U(n + 1) group; multiple basic hypergeometric series; basic hypergeometric
series

MSC 2010 : 33D80, 33D70, 33C80, 11B65, 15A09

1. Introduction and main results

The importance of the q-analogue of the basic hypergeometric series in U(n) was

first discussed by Andrews in [1]. Since the multiple basic hypergeometric series

associated with the unitary U(n+1) group was systematically studied by Milne [16],

it has been studied by many researchers, who have produced much literature about

it. For instance, the authors ([2], [6], [11], [12], [13], [15], [17], [18], [22], [21]) made

a systematic study on it. Wang [23] applied the q-Beta integral transformation to ob-

tain several generalizations of Milne’s U(n+1) q-binomial theorems. Zhang [24] gave

The author is supported by National Natural Sci. Foundation of China (No. 11471138).
The author is also supported by Jiangsu Overseas Research and Training Program for
University Prominent Young and Middle-Aged Teachers and Presidents, Universities Nat-
ural Science Foundation of Jiangsu (No. 14KJB110002) and SRF for ROCS, SEM. The
author is also partly supported by Universities Natural Science Foundation of Jiangsu
(No. 15KJB110002).
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several U(n + 1) generalizations of the Kalnins-Miller transformations by applying

q-exponential operators which were constructed by Rogers [19], [20], and developed

by Carlitz [4], Chen and Liu [5], Liu [14] and Bowman [3]. Mainly inspired by [15],

[23], [24], we will focus on the generalizations of the following Milne’s U(n + 1) q-

Chu-Vandermonde formulas which were presented as Theorem 5.12 and Theorem 5.36

(cf. [15]):

Let b, c and x1, . . . , xn be indeterminate, and let Ni be nonnegative integers

for i = 1, 2, . . . , n; e2(y1, . . . , yn) is the second elementary symmetric function of

{y1, . . . , yn}, and we suppose that none of the denominators vanishes:

n
∏

i=1

( xi

xn

c
b
; q)Ni

( xi

xn
c; q)Ni

=
∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

(1)

×

n
∏

i=1

( xi

xn

)yi
(cqNn

b

)Yn
n
∏

r,s=1

(xr

xs
q−Ns ; q)yr

(xr

xs
q; q)yr

×

n
∏

i=1

( xi

xn

c; q
)−1

yi

(b; q)Yn
qy2+2y3+...+(n−1)yn−e2(y1,...,yn)

}

and

n
∏

i=1

(xn

xi

cqNn−Ni

b
; q
)

Ni

=
∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

(2)

×

n
∏

i=1

(xn

xi

)yi
(cqNn

b

)Yn
n
∏

r,s=1

(xr

xs
q−Ns ; q)yr

(xr

xs
q; q)yr

×

n
∏

i=1

(xn

xi
cqNn−NiqYn−yi ; q)Ni

(xn

xi
cqNn−NiqYn−yi ; q)yi

× (b; q)Yn
qy2+2y3+...+(n−1)yn+e2(y1,...,yn)

}

.

We adopt the notation used in [10]. Throughout the paper unless otherwise stated

we assume that 0 < |q| < 1. For any complex parameter a, the q-shifted factorials

are defined as

(3) (a; q)0 = 1, (a; q)n =
n−1
∏

k=0

(1− aqk), n = 1, 2, . . . , (a; q)∞ =
∞
∏

k=0

(1 − aqk).

For brevity, we also use the notation

(4) (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n . . . (am; q)n, Nn =

n
∑

i=1

Ni,Yn =

n
∑

i=1

yi.
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The q-binomial coefficient is defined as

(5)

[

n

k

]

=
(q; q)n

(q; q)k(q; q)n−k

.

The q-differential operator Dq and the q-shifted operator η, acting on the vari-

able a, are defined as (cf. [5], [6], [7], [8], [9], [14], [19], [20], [24])

(6) Dq{f(a)} =
f(a)− f(aq)

a
and η{f(a)} = f(aq).

The basic hypergeometric series sΦt is given as

(7) sΦt

(

a1, a2, . . . , as

b1, b2, . . . , bt
; q, x

)

=

∞
∑

k=0

(a1, a2, . . . , as; q)k
(q, b1, . . . , bt; q)k

[

(−1)kq(
k

2)
]1+t−s

xk,

where s, t = 0, 1, 2, . . . The main results of this paper are stated as follows:

Theorem 1.1. Let b, c, d, e, x, y and x1, . . . , xn, a1, . . . , a2t be indeterminate, let

Ni be nonnegative integers for i = 1, 2, . . . , n with n > 1, and suppose that none of

the denominators in (8) vanishes. For |e| < min{|x|, |y|}, |a2j | < 1, j = 1, 2, . . . , t,

e2(y1, . . . , yn) being the second elementary symmetric function of {y1, . . . , yn}, we

have

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

n
∏

i=1

( xi

xn

cx; q
)−1

yi

(8)

×
n
∏

i=1

( xi

xn

)yi

(qNn)Ynqy2+2y3+...+(n−1)yn−e2(y1,...,yn)

×

(

x
b
, x
d
, x
a1

, . . . , x
a2t−1

; q
)

Yn
(

x
e
, x
a2

, x
a4

, . . . , x
a2t

; q
)

Yn

(cbda1a3 . . . a2t−1

ea2a4 . . . a2t

)Yn

}

=

n
∏

i=1

(

xi

xn
cy; q

)

Ni
(

xi

xn
cx; q

)

Ni

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

×

n
∏

i=1

( xi

xn

cy; q
)−1

yi

(

cbqNn
)Yn

qy2+2y3+...+(n−1)yn−e2(y1,...,yn)
(y

b
; q
)

Yn

×
∑

06j6Yn

(

q−Yn , x
b
, d
e
; q
)

j
qj

(

q, x
e
, y
b
; q
)

j

∑

06jt6...6j0

t
∏

i=1

(

q−ji−1 , a2i−1

a2i
, x
a2i−3

; q
)

ji
qji

(

q, x
a2i

, q1−ji−1a2i−2

a2i−3

; q
)

ji

}

,

where a−1 = d, a0 = e, j0 = j, and t is a nonnegative integer.
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Theorem 1.2. Let b, c, d, e, x, y and x1, . . . , xn, a1, . . . , a2t be indeterminate, let

Ni be nonnegative integers for i = 1, 2, . . . , n with n > 1, and suppose that none of

the denominators in (9) vanishes. For |e| < min{|x|, |y|}, |a2j | < 1, j = 1, 2, . . . , t,

e2(y1, . . . , yn) being the second elementary symmetric function of {y1, . . . , yn}, we

have

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

i=1

(xn

xi

)yi(

qNn
)Yn

n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

(9)

×

n
∏

i=1

(

xn

xi
cxqNn−NiqYn−yi ; q

)

Ni
(

xn

xi
cxqNn−NiqYn−yi ; q

)

yi

qy2+2y3+...+(n−1)yn+e2(y1,...,yn)

×

(

x
b
, x
d
, x
a1
, . . . , x

a2t−1
; q
)

Yn
(

x
e
, x
a2

, x
a4

, . . . , x
a2t

; q
)

Yn

(cbda1a3 . . . a2t−1

ea2a4 . . . a2t

)Yn

}

=
∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

i=1

(xn

xi

)yi(

bcqNn
)Yn

n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

×

n
∏

i=1

(

xn

xi
cyqNn−NiqYn−yi ; q

)

Ni
(

xn

xi
cyqNn−NiqYn−yi ; q

)

yi

qy2+2y3+...+(n−1)yn+e2(y1,...,yn)
(y

b
; q
)

Yn

∑

06j6Yn

(

q−Yn , x
b
, d
e
; q
)

j
qj

(

q, x
e
, y

b
; q
)

j

∑

06jt6...6j0=j

t
∏

i=1

(

q−ji−1 , a2i−1

a2i
, x
a2i−3

; q
)

ji
qji

(

q, x
a2i

, q1−ji−1a2i−2

a2i−3

; q
)

ji

}

,

where a−1 = d, a0 = e, and t is a nonnegative integer.

Remark. Throughout the paper, convergence of the series is no issue at all

because they are terminating series.

2. Lemmas and proofs

In this section, we will apply the q-exponential operator

(10) W (b; cθ) := 1Φ0

(

b

−
; q,−cθ

)

=
∞
∑

n=0

(b; q)n(−cθ)n

(q; q)n

which is constructed by us (cf. [7], [8], [9]) to obtain the results. For convenience, we

will use W (b; cθ)a to denote the operator (10) acting on the variable a in this paper.

In order to complete our proof, we need to use the following known identity which

was established in our earlier papers [8], [9]:
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Lemma 2.1 ([9], Theorem 1.1 or [8], Lemma 2.1). If |cst/ω| < 1, s/ω = q−n,

and n is a nonnegative integer, then

(11) W (b; cθ)a

{ (as, at; q)∞
(aω; q)∞

}

=
(as, at, bct; q)∞
(aω, ct; q)∞

3Φ2

(

b, s
ω
, q

at
q

ct
, q

aω

; q, q

)

.

Taking n = 0 in the above lemma, then replacing s by t, we have

Lemma 2.2. If |cs| < 1, then

(12) W (b; cθ)a{(as; q)∞} =
(as, bcs; q)∞
(cs; q)∞

.

P r o o f. We will start our proof by the following steps.

P r o o f of Theorem 1.1. Replacing (b, c) by (bx, cx) and (by, cy) in (1), then

comparing the two identities obtained, we get

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

r,s=1

(xr

xs
q−Ns ; q)yr

(xr

xs
q; q)yr

n
∏

i=1

( xi

xn

cx; q
)−1

yi

(13)

×

n
∏

i=1

( xi

xn

)yi
(cqNn

b

)Yn

(bx; q)Yn
qy2+2y3+...+(n−1)yn−e2(y1,...,yn)

}

=

n
∏

i=1

(

xi

xn
cy; q

)

Ni
(

xi

xn
cx; q

)

Ni

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

×

n
∏

i=1

( xi

xn

cy; q
)−1

yi

n
∏

i=1

( xi

xn

)yi
(cqNn

b

)Yn

× (by; q)Yn
qy2+2y3+...+(n−1)yn−e2(y1,...,yn)

}

.

Letting b → 1/b, we rewrite (13) as

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

(14)

×

n
∏

i=1

( xi

xn

cx; q
)−1

yi

n
∏

i=1

( xi

xn

)yi

×
(

−cxqNn
)Yn

qy2+2y3+...+(n−1)yn−e2(y1,...,yn)q(
Yn
2 )

(

q1−Yn
b

x
; q
)

∞

}
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=
n
∏

i=1

(

xi

xn
cy; q

)

Ni
(

xi

xn
cx; q

)

Ni

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

×
n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

n
∏

i=1

( xi

xn

cy; q
)−1

yi

(

−cyqNn
)Yn

× qy2+2y3+...+(n−1)yn−e2(y1,...,yn)q(
Yn
2 )

(

q1−Yn b
y
, q b

x
; q
)

∞
(

q b
y
; q
)

∞

}

.

Applying the operatorW (d; eθ)b to both sides of (14) and using (11) and (12), we

have

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

(15)

×

n
∏

i=1

( xi

xn

cx; q
)−1

yi

n
∏

i=1

( xi

xn

)yi

×
(

cbdqNn
)Yn

qy2+2y3+...+(n−1)yn−e2(y1,...,yn)

(

x
b
, x
de
; q
)

Yn
(

x
e
; q
)

Yn

}

=
n
∏

i=1

(

xi

xn
cy; q

)

Ni
(

xi

xn
cx; q

)

Ni

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

×
n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

n
∏

i=1

( xi

xn

cy; q
)−1

yi

(

cbqNn
)Yn

× qy2+2y3+...+(n−1)yn−e2(y1,...,yn)
(y

b
; q
)

Yn

3Φ2

(

q−Yn , d, x
b

y

b
, x

e

; q, q

)}

.

Letting d → d/e, we rewrite (15) as

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

n
∏

i=1

( xi

xn

cx; q
)−1

yi

(16)

×

n
∏

i=1

( xi

xn

)yi
(cbqNn

e

)Yn

qy2+2y3+...+(n−1)yn−e2(y1,...,yn)

×
(−1)Yn

(

x
b
; q
)

Yn
(

x
e
; q)Yn

q−(
Yn
2 )

(dq1−Yn

x
; q
)

∞

}

=

n
∏

i=1

(

xi

xn
cy; q

)

Ni
(

xi

xn
cx; q

)

Ni

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs
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×
n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

n
∏

i=1

( xi

xn

cy; q
)−1

yi

×
(

cbqNn
)Yn

qy2+...+(n−1)yn−e2(y1,...,yn)

×
(y

b
; q
)

Yn

∑

06j6Yn

(

q−Yn , x
b
; q
)

j
qj

(

q, x
e
, y

b
; q)j

(

d
e
, dq

x
; q
)

∞
(

dqj

e
; q
)

∞

}

.

Applying the operator W (a1; a2θ)d to both sides of (16), applying (11) and (12),

then letting a1 → a1/a2, we have

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

(17)

×

n
∏

i=1

( xi

xn

cx; q
)−1

yi

n
∏

i=1

( xi

xn

)yi
(cbda1q

Nn

ea2

)Yn

× qy2+2y3+...+(n−1)yn−e2(y1,...,yn)

(

x
b
; q
)

Yn
(

x
e
; q
)

Yn

(

x
d
, x
a1

; q
)

Yn
(

x
a2

)

Yn

}

=

n
∏

i=1

(

xi

xn
cy; q

)

Ni
(

xi

xn
cx; q

)

Ni

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

r,s=1

(xr

xs
q−Ns ; q)yr

(xr

xs
q; q)yr

×
n
∏

i=1

( xi

xn

cy; q
)−1

yi

(

cbqNn
)Yn

qy2+...+(n−1)yn−e2(y1,...,yn)
(y

b
; q
)

Yn

×
∑

06j6Yn

(

q−Yn , x
b
, d
e
; q
)

j
qj

(

q, x
e
, y

b
; q)j

3Φ2

(

q−j , a1

a2

, x
d

x
a2
, e

d
q1−j

; q, q

)}

.

The equation (8) follows by induction. �

P r o o f of Theorem 1.2. Replacing (b, c) by (bx, cx) and (by, cy) in (2), then

comparing the two identities, we get

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

i=1

(xn

xi

)yi
(cqNn

b

)Yn

(18)

×
n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

n
∏

i=1

(

xn

xi
cxqNn−NiqYn−yi ; q

)

Ni
(

xn

xi
cxqNn−NiqYn−yi ; q

)

yi

× (bx; q)Yn
qy1+2y2+...+(n−1)yn+e2(y1,...,yn)

}
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=
∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

i=1

(xn

xi

)yi
(cqNn

b

)Yn

×

n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

n
∏

i=1

(

xn

xi
cyqNn−NiqYn−yi ; q

)

Ni
(

xn

xi
cyqNn−NiqYn−yi ; q

)

yi

× (by; q)Yn
qy1+2y2+...+(n−1)yn+e2(y1,...,yn)

}

.

Then similarly to the proof of Theorem 1.1, we complete the proof. �

Remark 2.1. Setting b → 1/b, and letting d = e = a1 = . . . = a2t = 0, then

setting x = 1, y = 1/b in (8) and (9) we come back to Milne’s formulas (1) and (2),

respectively.

3. Some special cases

Setting t = 0, replacing (b, d, e) by (1/b, 1/d, 1/e), then letting e = bdy in (8), we

get

Corollary 3.1 ([24], Theorem 3.4). Let b, c, d, x, y and x1, . . . , xn be indetermi-

nate, let Ni be nonnegative integers for i = 1, 2, . . . , n with n > 1, and suppose that

none of the denominators in (19) vanishes. For e2(y1, . . . , yn), the second elementary

symmetric function of {y1, . . . , yn}, we have

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

(19)

×

n
∏

i=1

( xi

xn

cx; q
)−1

yi

n
∏

i=1

( xi

xn

)yi(

cyqNn
)Yn

× qy2+2y3+...+(n−1)yn−e2(y1,...,yn)
(bx, dx; q)Yn

(bdxy; q)Yn

}

=

n
∏

i=1

(

xi

xn
cy; q

)

Ni
(

xi

xn
cx; q

)

Ni

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

×

n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

n
∏

i=1

( xi

xn

cy; q
)−1

yi

(

cxqNn
)Yn

× qy2+2y3+...+(n−1)yn−e2(y1,...,yn) (by, dy; q)Yn

(bdxy; q)Yn

}

.
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Setting t = 0, replacing (b, d, e) by (1/b, 1/d, 1/e), then letting e = bdy in (9), we

find

Corollary 3.2 ([24], Theorem 3.16). Let b, c, d, x, y and x1, . . . , xn be indeter-

minate, let Ni be nonnegative integers for i = 1, 2, . . . , n with n > 1, and suppose

that none of the denominators in (20) vanishes. For e2(y1, . . . , yn), the second ele-

mentarily symmetric function of {y1, . . . , yn}, we have

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

i=1

(xn

xi

)yi(

cyqNn
)Yn

(20)

×

n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

n
∏

i=1

(

xn

xi
cxqNn−NiqYn−yi ; q

)

Ni
(

xn

xi
cxqNn−NiqYn−yi ; q

)

yi

× qy2+2y3+...+(n−1)yn+e2(y1,...,yn)
(bx, dx; q)Yn

(bdxy; q)Yn

}

=
∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

i=1

(xn

xi

)yi(

cxqNn
)Yn

×
n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

n
∏

i=1

(

xn

xi
cyqNn−NiqYn−yi ; q

)

Ni
(

xn

xi
cyqNn−NiqYn−yi ; q

)

yi

× qy2+2y3+...+(n−1)yn+e2(y1,...,yn)
(by, dy; q)Yn

(bdxy; q)Yn

}

.

Remark 3.1. Obviously Corollary 3.1 is a limit case of the transformation of

Theorem 3.1 in [6] and Corollary 3.2 is a limit case of Theorem 3.13 in [2].

Letting n = 1 in (8) or (9) and then replacing (b, d, e, ai) by (1/b, 1/d, 1/e, 1/ai),

i = 1, 2, . . . , 2t, we have

Corollary 3.3. If |e| < min{|x|, |y|}, |a2j | < 1, j = 1, 2, . . . , t, and t is a nonne-

gative integer, then

t+3Φt+2

(

q−N1 , bx, dx, a1x, . . . , a2t−1x

cx, ex, a2x, . . . , a2tx
; q,

cea2 . . . a2tq
N1

bda1 . . . a2t−1

)

(21)

=
(cy; q)N1

(cx; q)N1

N1
∑

y1=0

(q−N1 , by; q)y1

(q, cy; q)y1

(cqN1

b

)y1

y1
∑

j=0

(

q−y1 , e
d
, bx; q

)

j

(q, ex, by; q)j
qj

×
∑

06jt6...6j16j0=j

t
∏

i=1

(

q−ji−1 , a2i

a2i−1
, a2i−3x; q

)

ji
(

q, a2i−3

a2i−2

q1−ji−1 , a2ix; q
)

ji

qji ,

where d = a−1, e = a0.
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Letting cx = ex = a2x = . . . = a2tx, a2i/a2i−1 = q, x = y, a−3 = b, a−2 = c,

i = −1, 0, 1, . . . , t in (21), we find

Corollary 3.4. If |cx| < 1, t is a nonnegative integer, then

N1
∑

k=0

[

N1

k

]

(1 − bx)t+2

(1− bxqk)t+2
(−1)kq(

k

2)+k(t+2)(22)

=

N1
∑

y1=0

[

N1

y

]

1

1− bx

1− bxqy1

(−1)y1q(
y1
2 )+y1

×

y1
∑

j=0

[

y1
j

]

(q; q)j
(bxq; q)j

(−1)jq(
j

2)−y1j+j
∑

06jt6...6j16j0=j

t
∏

i=1

1− bx

1− bxqji
qji .

Setting bx = q in the above identity, then letting q → 1, we have

Corollary 3.5. If t is a nonnegative integer, then

N1
∑

k=0

(

N1

k

)

(−1)k

(k + 1)t+2
=

N1
∑

y1=0

(

N1

y1

)

(−1)y1

y1 + 1

y1
∑

j=0

(

y1

j

)

(−1)j

j + 1

∑

06jt6...6j16j0=j

t
∏

i=1

1

ji + 1
.(23)

Letting cx = ex = a2x = . . . = a2tx, a2i/a2i−1 = q, qx = y in (21), we get

Corollary 3.6. If |cx| < 1, t is a nonnegative integer, then

N1
∑

k=0

[

N1

k

]

(1− bx)t+2

(1 − bxqk)t+2
(−1)kq(

k

2)+k(t+2)(24)

=
1− bxqN1+1

(1− bxq)

N1
∑

y1=0

[

N1

y

]

1

(1− bxq)(−1)y1

1− bxqy1+1

× q(
y1
2 )+y1

y1
∑

j=0

[

y1
j

]

(q; q)j(1− bx)(−1)jq(
j

2)+j−y1j

(bxq; q)j(1− bxqj)

×
∑

06jt6...6j16j0=j

t
∏

i=1

1− bx

1− bxqji
qji .
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Setting bx = q in the above identity, then letting q → 1, we have

Corollary 3.7. If t is a nonnegative integer, then

1

N1 + 2

N1
∑

k=0

(

N1

k

)

(−1)k

(k + 1)t+2
(25)

=

N1
∑

y1=0

(

N1

y1

)

(−1)y1

y1 + 2

y1
∑

j=0

(

y1

j

)

(−1)j

(j + 1)2

∑

06jt6...6j16j0=j

t
∏

i=1

1

ji + 1
.

Setting x → a2t−1 in (8), we get

Corollary 3.8. Let b, c, d, e, y and x1, . . . , xn, a1, a2, . . . , a2t be indeterminate, let

Ni be nonnegative integers for i = 1, 2, . . . , n with n > 1, and suppose that none of

the denominators in (26) vanishes. For |e| < min{|x|, |y|}, |a2j | < 1, j = 1, 2, . . . , t,

e2(y1, . . . , yn) being the second elementary symmetric function of {y1, . . . , yn}, we

have

1 =

n
∏

i=1

(

xi

xn
cy; q

)

Ni
(

xi

xn
ca2t−1; q

)

Ni

∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

(26)

×
(

cbqNn
)Yn

n
∏

i=1

( xi

xn

cy; q
)−1

yi

qy2+2y3+...+(n−1)yn−e2(y1,...,yn)
(y

b
; q
)

Yn

×
∑

06j6Yn

(

q−Yn , a2t−1

b
, d
e
; q
)

j
qj

(

q, a2t−1

e
, y

b
; q
)

j

×
∑

06jt6...6j0

t
∏

i=1

(

q−ji−1 , a2i−1

a2i
, a2t−1

a2i−3

; q
)

ji
qji

(

q, a2t−1

a2i
, a2i−2

a2i−3

q1−ji−1 ; q
)

ji

}

,

where a−1 = d, a0 = e, j0 = j, and t is a nonnegative integer.

Setting x → a2t−1 in (9), we find

Corollary 3.9. Let b, c, d, e, y and x1, . . . , xn, a1, . . . , a2t be indeterminate, let

Ni be nonnegative integers for i = 1, 2, . . . , n with n > 1, and suppose that none of

the denominators in (27) vanishes. For |e| < min{|x|, |y|}, |a2j | < 1, j = 1, 2, . . . , t,

e2(y1, . . . , yn) being the second elementary symmetric function of {y1, . . . , yn}, we

405



have

n
∏

i=1

(xn

xi

ca2t−1q
Nn−Ni ; q

)

Ni

(27)

=
∑

06yi6Ni

i=1,2,...,n

{

∏

16r<s6n

1− xr

xs
qyr−ys

1− xr

xs

n
∏

i=1

(xn

xi

)yi(

bcqNn
)Yn

n
∏

r,s=1

(

xr

xs
q−Ns ; q

)

yr
(

xr

xs
q; q

)

yr

×

n
∏

i=1

(

xn

xi
cyqNn−NiqYn−yi ; q

)

Ni
(

xn

xi
cyqNn−NiqYn−yi ; q

)

yi

qy2+2y3+...+(n−1)yn+e2(y1,...,yn)
(y

b
; q
)

Yn

×
∑

06j6Yn

(

q−Yn , a2t−1

b
, d
e
; q
)

j
qj

(

q, a2t−1

e
, y

b
; q
)

j

×
∑

06jt6...6j0=j

t
∏

i=1

(

q−ji−1 , a2i−1

a2i
, a2t−1

a2i−3

; q
)

ji
qji

(

q, a2t−1

a2i
, a2i−2

a2i−3
q1−ji−1 ; q

)

ji

}

.
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