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ON THE DIAMETER OF THE INTERSECTION GRAPH

OF A FINITE SIMPLE GROUP

Xuanlong Ma, Nanning, Beijing

(Received March 12, 2015)

Abstract. Let G be a finite group. The intersection graph ∆G of G is an undirected graph
without loops and multiple edges defined as follows: the vertex set is the set of all proper
nontrivial subgroups of G, and two distinct vertices X and Y are adjacent if X ∩ Y 6= 1,
where 1 denotes the trivial subgroup of order 1. A question was posed by Shen (2010)
whether the diameters of intersection graphs of finite non-abelian simple groups have an
upper bound. We answer the question and show that the diameters of intersection graphs
of finite non-abelian simple groups have an upper bound 28. In particular, the intersection
graph of a finite non-abelian simple group is connected.
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1. Introduction

Csákéany and Pollák [3] introduced the intersection graph of nontrivial proper

subgroups of a finite group. Let G be a finite group which is not a cyclic group of

prime order. The intersection graph ∆G of G is the undirected graph whose vertex

set is the set of all proper nontrivial subgroups of G, and two distinct vertices X

and Y are joined by an edge if X ∩ Y 6= 1, where 1 denotes the trivial subgroup of

order 1. This definition was inspired by the intersection graph of nontrivial proper

subsemigroups of a semigroup [1]. In [3], the authors posed the problem to classify

the finite groups whose intersection graphs are disconnected. In 2010, the problem

was solved by Shen [10]. Zelinka [13] studied the intersection graphs of finite abelian

groups, and conjectured that two finite abelian groups with isomorphic intersection
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graphs are isomorphic. Very recently, Kayacan and Yaraneri [6] investigated the

conjecture and showed that it is almost true.

It was shown in [10] that the intersection graph of a finite non-abelian simple

group is connected. At the end of the paper, the author put forward the problem:

Do the diameters of intersection graphs of finite non-abelian simple groups have an

upper bound? A graph related to the maximal subgroups of a group has been studied

in [4]. It follows from [4], Theorem 1.1, that the diameters of intersection graphs

of non-abelian simple groups have an upper bound 64. In this paper we prove the

following theorem.

Theorem 1.1. Let G be a finite non-abelian simple group. Then diam(∆G) 6 28.

In particular, ∆G is connected.

All graphs considered in this paper are finite, simple, and undirected. Let Γ be

a graph. Denote by V (Γ) and E(Γ) the vertex set and the edge set of Γ, respectively.

If {x, y} is an edge of Γ, then we say that x and y are adjacent in Γ, and we denote

this by x ∼ y. The distance of two vertices x and y, denoted by dΓ(x, y), is the

length of the shortest path between x and y. We say dΓ(x, y) = ∞ if x and y are

not connected in Γ. A component of Γ is its maximal connected subgraph. If Γ is

connected, the largest distance between a pair at vertices of Γ is called the diameter

of Γ, and is denoted by diam(Γ). For two integers a and b, we denote the greatest

common divisor of a and b by (a, b). Let G be a finite group. Denote by π(G) the set

of all prime divisors of |G|, where |G| is the order of G. The prime graph ΓG of G

is the graph whose vertex set is π(G), and two distinct vertices p and q are adjacent

if there is an element of order pq in G. For a positive integer i, πi always denotes

a component of ΓG, and we say simply that πi is a subset of π(G).

2. The results

Throughout this section, G denotes a finite non-abelian simple group.

Lemma 2.1 ([2], Corollary 2). Let p be an odd prime divisor of |G|. Then

dΓG
(p, 2) = 1, 2 or ∞.

Lemma 2.2. Suppose that H,K ∈ V (∆G). Then

(1) if |H | and |K| are even, then d∆G
(H,K) 6 2;

(2) if (|H |, |K|) 6= 1, then d∆G
(H,Kg) 6 2 for some g ∈ G.

P r o o f. (1) Take a ∈ H and b ∈ K such that |a| = |b| = 2. Since G is simple,

we have that 〈a, b〉 is a proper subgroup of G. If a ∈ K or b ∈ H , then H is adjacent

366



to K in ∆G, and so d∆G
(H,K) = 1. If a /∈ K and b /∈ H , then H ∼ 〈a, b〉 ∼ K, and

hence d∆G
(H,K) 6 2.

(2) Take a prime p in π(H) ∩ π(K). Choose a in H and b in K such that |a| =

|b| = p. Let P be a Sylow p-subgroup of G such that a ∈ P . Then b ∈ P g−1

for

some g ∈ G. It follows that bg ∈ P . Note that bg ∈ Kg. Hence H ∼ P ∼ Kg, as

desired. �

Lemma 2.3. Let J4 be Janko’s large simple sporadic group. Then ∆J4
is con-

nected and diam(∆J4
) 6 4.

P r o o f. By the main result of [7], we get all conjugacy classes of maximal

subgroups of J4. Observe that every maximal subgroup of J4 is of even order. Let

H and K be two distinct vertices of ∆J4
. Then there exist two maximal subgroups

M1 and M2 such that H ⊆ M1 and K ⊆ M2. By (1) of Lemma 2.2, one has

d∆J4
(M1,M2) 6 2. This implies that d∆J4

(H,K) 6 4. It follows that ∆J4
is

connected and diam(∆J4
) 6 4. �

A subgroup H of a group K is called isolated if H ∩Hk = 1 or H ∩Hk = H for

each k ∈ K, and for each h ∈ H \ {1}, CK(h) ⊆ H . A group K is called Frobenius

if there exists a nontrivial proper subgroup H of K such that NK(H) = H and

CK(h) ⊆ H for all nontrivial h ∈ H .

Lemma 2.4 ([11], Theorem 3). Let πi be a component of ΓG not containing 2.

Then G has a nilpotent Hall πi-subgroup which is isolated in G.

Lemma 2.5. Let P and H be two distinct subgroups of G such that |P | = p and

2 | |H |, where p is an odd prime. If p and 2 are connected in ΓG, then d∆G
(H,P ) 6 6.

P r o o f. Note that p and 2 are connected. By Lemma 2.1, one has that

dΓG
(p, 2) = 1 or 2.

Suppose that dΓG
(p, 2) = 1. Then G has an element x of order 2p. Note that

(|x|, |P |) = p. By (2) of Lemma 2.2, we have d∆G
(〈x〉g , P ) 6 2 for some g ∈ G.

Furthermore, d∆G
(〈x〉g , H) 6 2 by (1) of Lemma 2.2. It follows that d∆G

(H,P ) 6 4.

Suppose that dΓG
(p, 2) = 2. Let 2 ∼ q ∼ p be a path from 2 to p in ΓG. Then

there exist y, z ∈ G such that |y| = 2q and |z| = pq. It follows from Lemma 2.2 that

d∆G
(〈z〉g1 , P ) 6 2, d∆G

(〈z〉g1 , 〈y〉g2) 6 2, d∆G
(〈y〉g2 , H) 6 2

for some g1, g2 ∈ G. This forces that d∆G
(H,P ) 6 6, as desired. �

Lemma 2.6. Suppose that ΓG has at most five components, and P and H are

two subgroups of G such that |P | = p and 2 | |H |, where p is an odd prime. If p is

not connected to 2 in ΓG, then d∆G
(H,P ) 6 14.
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P r o o f. Suppose that π1 and π2 are two components of ΓG such that 2 ∈ π1

and p ∈ π2. Since 2 and p are not connected, G has a nilpotent Hall π2-subgroup A

which is isolated in G by Lemma 2.4. Let Q be a Sylow q-subgroup of A, where q

is a prime. Suppose that Q is non-abelian. By the main theorem of [2], Q contains

a nontrivial element which commutes with an involution. Hence G has an element

of order 2q, and so 2 is adjacent to q in ΓG. It follows that 2 ∈ π2, a contradiction.

This implies that Q is abelian, and so is A. By [9], Theorem 1, one of the following

holds: G ∼= PSL(2, qt) for some positive integer t, NG(Q) contains an involution, or

Q is cyclic.

Suppose that G ∼= PSL(2, qt). By [5], (Chapter 2, Section 8), there exists an

element u in NG(Q) such that NG(〈u〉) is dihedral. Thus we have a path Q ∼

NG(Q) ∼ NG(〈u〉) in ∆G. Note that d∆G
(NG(〈u〉), H) 6 2. Then d∆G

(Q,H) 6 4.

If p = q, then it is not hard to see that d∆G
(P,H) 6 6, as required. Assume that

q 6= p. Since A is abelian, p and q are adjacent in ΓG. In other words, there exists

a proper subgroup of G such that its order is divisible by p and q. This implies that

d∆G
(P,Qg) 6 4 for some g ∈ G by Lemma 2.2. Consequently d∆G

(P,H) 6 8, as

desired.

Suppose that NG(Q) contains an involution. Note that NG(Q) is a proper sub-

group of G. We get d∆G
(Q,H) 6 3. It means that if p = q, then d∆G

(P,H) 6 5; if

p 6= q, then d∆G
(P,H) 6 7, as desired.

Now assume that Q is cyclic. Then A is cyclic. If NG(A) = A, then G is Frobenius,

and so G has a nontrivial normal subgroup which is the Frobenius kernel, a contra-

diction. It follows that there exists a nontrivial element x ∈ NG(A)\A. Note that A

is a Hall subgroup. We may assume that |x| is a prime p3 and p3 /∈ π2. Since A〈x〉 is

a proper subgroup of G, it follows that d∆G
(Ag1 〈x〉g1 , P ) 6 2 for some g1 ∈ G. Sup-

pose that p3 ∈ π1. Then according to Lemma 2.5, we have d∆G
(〈x〉g1 , H) 6 6. Since

d∆G
(Ag1 〈x〉g1 , P ) 6 2 and 〈x〉g1 ⊆ Ag1〈x〉g1 , one has d∆G

(H,P ) 6 8, as desired.

Now suppose that p3 /∈ π1. Let π3 be the component of ΓG containing p3 and r2 be

the minimal prime of π2. Take a ∈ A with |a| = r2. Note that A is cyclic. Since x ∈

NG(A) \A, one gets that 〈a〉〈x〉 is a proper subgroup of G. If p3 > r2, then 〈a〉〈x〉 is

cyclic and since A is isolated in G, one has x ∈ A, a contradiction. Note that p3 6= r2.

It follows that p3 < r2. Moreover, by Lemma 2.4, there exists a nilpotent Hall π3-

subgroup B in G such that it is isolated in G. Similarly, for any Sylow r-subgroup

R of B, G ∼= PSL(2, rt) for some positive integer t, NG(R) contains an involution,

or R is cyclic. Note that d∆G
(Ag1〈x〉g1 , P ) 6 2 and d∆G

(Ag1〈x〉g1 , Bg0) 6 2 for some

g0 in G. If G ∼= PSL(2, rt), then Rg0 ∼ NG(R
g0) ∼ NG(〈v〉) for some v ∈ NG(R

g0),

where NG(〈v〉) is dihedral, so d∆G
(H,P ) 6 8, as desired. If NG(R) contains an

involution, then d∆G
(H,P ) 6 7, as desired. Thus, we get that R is cyclic, and

so is B. Then there exists an element y ∈ NG(B) \ B such that |y| is a prime
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p4 and p4 /∈ π3. Since d∆G
(Ag1 〈x〉g1 , P ) 6 2 and d∆G

(Ag1〈x〉g1 , Bg2〈y〉g2) 6 2 for

some g2 ∈ G, one has d∆G
(Bg2〈y〉g2 , P ) 6 4. If p4 ∈ π1, by Lemma 2.5, one gets

d∆G
(H,P ) 6 10, as required.

Let p4 lie in the component π4 of ΓG. We may assume that π4 6= π1. Let r3 be

the minimal prime of π3. Similarly, we get p4 < r3. It means that p4 < r3 < r2.

Thus π4 6= πi for each i = 1, 2, 3. It follows from Lemma 2.4 that there exists

a nilpotent Hall π4-subgroup C such that it is isolated in G. Similarly, C is abelian

and there is a nontrivial element z ∈ NG(C) \ C such that |z| is a prime p5 /∈ π4.

Let R be a Sylow r-subgroup of C. Since the prime graph ΓPSL(2,rt) has precisely

three components (see [8]), NG(R) contains an involution or R is cyclic. If NG(R)

contains an involution, then d∆G
(H,P ) 6 9, as required. Thus, we may assume

that C is cyclic. Let r4 be the minimal prime of π4. Similarly p5 < r4. Namely

p5 < r4 6 p4 < r3 < r2.

Suppose that p5 ∈ π1. Note that

d∆G
(Ag1 〈x〉g1 , P ) 6 2, d∆G

(Ag1 〈x〉g1 , Bg2〈y〉g2 ) 6 2

and

d∆G
(Cg3〈z〉g3 , Bg2〈y〉g2) 6 2

for some g3 ∈ G. By Lemma 2.5 one has d∆G
(〈z〉h3 , H) 6 6. This implies that

d∆G
(H,P ) 6 12, as desired.

Let π5 be the component of ΓG containing p5. We now may assume that π5 6= pi
for each i = 1, . . . , 4. Similarly, G has a cyclic Hall π5-subgroup D, and there exists

an element w ∈ NG(D) \D such that |w| is a prime p6 /∈ π5. Let r5 be the minimal

prime of π5. We conclude that p6 < r5 < r4 < r3 < r2. Since ΓG has at most five

components, we have p6 ∈ π1. Consequently d∆G
(Dg4〈w〉g4 , P ) 6 8 for some g4 ∈ G,

and by Lemma 2.5, d∆G
(〈w〉g4 , H) 6 6. This implies that d∆G

(H,P ) 6 14. �

P r o o f of Theorem 1.1. Note that if G ≇ J4, then ΓG has at most five com-

ponents by [8], [11]. If G ∼= J4, then by Lemma 2.3 one has diam(∆G) 6 4. Thus

we assume that ΓG has at most five components. Let L and K be any two dis-

tinct subgroups of G. Then G has two prime-order subgroups P and Q such that

P ⊆ L and Q ⊆ K. Take a proper subgroup H of even order in G. By Lemmas 2.2,

2.5 and 2.6, one has that d∆G
(H,P ) 6 14 and d∆G

(H,Q) 6 14. This means that

d∆G
(L,K) 6 28. Consequently, ∆G is connected and diam(∆G) 6 28. �

It follows from [12] that ΓG has precisely five components if and only if G ∼= E8(q),

where q ≡ 0, ±1 (mod 5). The proof of the following corollary is straightforward.

Corollary 2.7. Suppose that G ≇ E8(q), where q ≡ 0, ±1 (mod 5). Then ∆G is

connected and diam(∆G) 6 24.
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