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Abstract. In this paper, we prove and discuss averaging results for ordinary differential
equations perturbed by a small parameter. The conditions we assume on the right-hand
sides of the equations under which our averaging results are stated are more general than
those considered in the literature. Indeed, often it is assumed that the right-hand sides
of the equations are uniformly bounded and a Lipschitz condition is imposed on them.
Sometimes this last condition is relaxed to the uniform continuity in the second variable
uniformly with respect to the first one. In our results, we assume only that the right-hand
sides of the equations are bounded by some locally Lebesgue integrable functions with the
property that their indefinite integrals satisfy a Lipschitz-type condition. Also, we consider
that they are only continuous in the second variable uniformly with respect to the first one.
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1. Introduction

The method of averaging is an important tool for analysis of nonlinear differential

equations perturbed by a small parameter. It allows to replace a time-varying small

perturbation, acting on a long time interval, by a time-invariant perturbation, while

introducing only a small error. For significant results on the method of averaging

with developments and examples we refer the interested reader to the books [1], [5],

[10]–[12] and the references given therein.

In the present paper, we establish averaging results for ordinary differential equa-

tions perturbed by a small parameter. The conditions we assume on the right-hand
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sides of the equations under which our averaging results are stated are more gen-

eral than those often considered in the existing literature as in [2], [4], [6]–[9], for

instance (see also the survey paper [3]). Indeed, in all the references cited above,

it is assumed that the right-hand sides of the equations are uniformly bounded. In

addition, in [2], [6]–[8] a Lipschitz condition is imposed on them, whereas in [4], [9],

this condition is relaxed to the uniform continuity in the second variable uniformly

with respect to the first one. In our results, we assume only that the right-hand sides

of the equations are bounded by some locally Lebesgue integrable functions with the

property that their indefinite integrals satisfy a Lipschitz-type condition. Also, we

consider that they are only continuous in the second variable uniformly with respect

to the first one.

2. Averaging results

Consider the following initial value problem associated to an ordinary differential

equation with a small parameter

(2.1) ẋ = f
( t

ε
, x

)

, x(0) = x0,

where f : R+ × R
n → R

n, x0 ∈ R
n and ε > 0 is a small parameter.

To the problem (2.1) we associate the averaged initial value problem

(2.2) ẏ = f0(y), y(0) = x0,

where the function f0 : R
n → R

n is such that for any x ∈ R
n

(2.3) lim
T→∞

1

T

∫ T

0

f(τ, x) dτ = f0(x).

The main result of this paper establishes the approximation of solutions of prob-

lems (2.1) by those of the averaged problem (2.2) on finite time intervals, and reads

as follows.

Theorem 2.1. Let f : R+ × R
n → R

n be a function and x0 ∈ R
n. Suppose that

the following conditions are satisfied:

(H1) the function f is continuous on R+ × R
n;

(H2) the continuity of f in x ∈ R
n is uniform with respect to t ∈ R+;

(H3) there exist a locally Lebesgue integrable function m : R+ → R+ and a constant

M > 0 such that

|f(t, x)| 6 m(t), ∀ t ∈ R+, ∀x ∈ R
n
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with
∫ t2

t1

m(t) dt 6 M(t2 − t1), ∀ t1, t2 ∈ R+;

(H4) for all x ∈ R
n, the limit (2.3) exists.

Then, for any L > 0 and δ > 0, there exists ε0 = ε0(x0, L, δ) > 0 such that for

any ε ∈ (0, ε0] and any solution xε of (2.1), there exists a solution y of (2.2) which

satisfies |xε(t)− y(t)| < δ for all t ∈ [0, L].

Notice that by the conditions (H1) and (H3) the initial value problem (2.1) is

well defined and all its solutions exist for all t > 0. On the other hand, from

conditions (H1)–(H4) we deduce that the average of the function f , that is, the

function f0 : R
n → R

n in (H4), is continuous and bounded (see Lemma 2.1 below).

So, the averaged initial value problem (2.2) is also well defined and all its solutions

exist for all t > 0.

We point out also that under the conditions (H1) and (H2) in Theorem 2.1, it

is only possible to obtain unilateral approximations, that is, the approximation of

solutions of problems (2.1) by those of the averaged problem (2.2). The converse

approximation is, in general, false as showed in [3], page 356, Example 1. However,

when the problem (2.2) has a unique solution, this solution is approximated by any

one of the problem (2.1) as it is stated by the following interesting result which is

a particular case of Theorem 2.1.

Corollary 2.1. Let f : R+ ×R
n → R

n be a function and x0 ∈ R
n. Suppose that

the conditions (H1)–(H4) in Theorem 2.1 are satisfied. Suppose also that

(H5) the initial value problem (2.2) has a unique solution.

Let y be the (unique) solution of (2.2). Then, for any L > 0 and δ > 0, there exists

ε0 = ε0(x0, L, δ) > 0 such that for all ε ∈ (0, ε0], any solution xε of (2.1) satisfies

|xε(t)− y(t)| < δ for all t ∈ [0, L].

When the function f is periodic or more generally almost periodic in the first

variable, some of the conditions in Theorem 2.1 and Corollary 2.1 can be removed.

Indeed, if f is periodic in t, from continuity and periodicity properties it is easy to

deduce condition (H2). Periodicity also implies the condition (H4) in an obvious

way. The average of f is then given, for any x ∈ R
n, by

(2.4)
1

T

∫ T

0

f(τ, x) dτ = f0(x),

where T is the period. If f is almost periodic in t it is well-known that for all x ∈ R
n,

the limit

(2.5) lim
T→∞

1

T

∫ s+T

s

f(τ, x) dτ = f0(x)
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exists uniformly with respect to s ∈ R. So, condition (H4) is satisfied when s = 0. We

point out also that in a number of cases encountered in applications the function f is

a finite sum of periodic functions in t. As in the periodic case above, condition (H2)

is then satisfied. Hence we have the following result.

Corollary 2.2 (Periodic and almost periodic cases). The conclusion of Theo-

rem 2.1 (respectively, Corollary 2.1) holds in both of the following cases:

(1) The function f satisfies conditions (H1), (H3) (respectively, (H1), (H3), (H5))

and is periodic or a sum of periodic functions in the first variable.

(2) The function f satisfies conditions (H1), (H2), (H3) (respectively, (H1), (H2),

(H3), (H5)) and is almost periodic in the first variable.

2.1. Technical lemmas. In what follows we will prove some results we need for

the proof of Theorem 2.1.

Lemma 2.1. Let f : R+ × R
n → R

n be a function. Suppose that f satisfies the

conditions (H1)–(H4) in Theorem 2.1. Then the function f0 : R
n → R

n in (2.3) is

continuous and is uniformly bounded by the constant M in condition (H4).

P r o o f. Continuity of f0. Let x0 ∈ R
n. By the condition (H2), for any ξ > 0

there exists δ > 0 such that for all x ∈ R
n, |x− x0| 6 δ implies that

(2.6) |f(τ, x)− f(τ, x0)| 6 ξ, ∀ τ ∈ R+.

Now, by the condition (H4), we can easily deduce that for any η > 0 there exists

T0 = T0(x0, x, η) > 0 such that for all T > T0 we have

|f0(x)− f0(x0)| 6

∣

∣

∣

∣

f0(x)−
1

T

∫ T

0

f(τ, x) dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

1

T

∫ T

0

f(τ, x) dτ −
1

T

∫ T

0

f(τ, x0)

∣

∣

∣

∣

dτ

+

∣

∣

∣

∣

f0(x0)−
1

T

∫ T

0

f(τ, x0) dτ

∣

∣

∣

∣

6 2η +
1

T

∫ T

0

|f(τ, x)− f(τ, x0)|τ 6 2η + ξ.

Since the value of η is arbitrary, in the limit we obtain that |f0(x)− f0(x0)| 6 ξ,

which completes the proof of the continuity of f0 at the point x0.
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Boundedness of f0 by M . Let x ∈ R
n. By the condition (H3), we deduce that for

any η > 0 there exists T0 = T0(x, η) > 0 such that for all T > T0 we have

|f0(x)| 6

∣

∣

∣

∣

f0(x)−
1

T

∫ T

0

f(τ, x) dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

1

T

∫ T

0

f(τ, x) dτ

∣

∣

∣

∣

6 η +
1

T

∫ T

0

|f(τ, x)| dτ 6 η +M.

Since the value of η is arbitrary, in the limit we obtain the desired result. �

Lemma 2.2. Let f : R+ × R
n → R

n be a function. Suppose that f satisfies the

condition (H4) in Theorem 2.1. Then, for all x ∈ R
n, t > 0 and α > 0, we have

lim
ε→0+

ε

α

∫ t/ε+α/ε

t/ε

f(τ, x) dτ = f0(x).

P r o o f. Let x ∈ R
n, t > 0 and α > 0.

Case 1 : t = 0. From the condition (H4), it follows immediately that

lim
ε→0

ε

α

∫ α/ε

0

f(τ, x) dτ = f0(x).

Case 2 : t ∈ (0, L]. By some calculations we obtain

(2.7)
ε

α

∫ t/ε+α/ε

t/ε

f(τ, x) dτ =
ε

α

∫ t/ε+α/ε

0

f(τ, x) dτ −
ε

α

∫ t/ε

0

f(τ, x) dτ

=
ε

t+ α

( t

α
+ 1

)

∫ t/ε+α/ε

0

f(τ, x) dτ −
t

α

ε

t

∫ t/ε

0

f(τ, x) dτ

=
ε

t+ α

∫ t/ε+α/ε

0

f(τ, x) dτ

+
t

α

[

ε

t+ α

∫ t/ε+α/ε

0

f(τ, x) dτ −
ε

t

∫ t/ε

0

f(τ, x) dτ

]

.

From the condition (H4), we can easily deduce that

lim
ε→0+

ε

t+ α

∫ t/ε+α/ε

0

f(τ, x) dτ = f0(x)

and

lim
ε→0+

ε

t

∫ t/ε

0

f(τ, x) dτ = f0(x).

Therefore the right-hand side of (2.7) tends to f0(x) as ε → 0+ and the result is

proved. �
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Lemma 2.3. Suppose that the function f in (2.1) satisfies the conditions (H1)

and (H3) in Theorem 2.1. Let x0 ∈ R
n and L > 0. Then the family {xε} of solutions

of the problem (2.1) converges uniformly on [0, L] to a continuous function y when ε

tends to 0+.

P r o o f. For t, τ ∈ [0, L] we have

|xε(t)| 6 |x0|+ML and |xε(t)− xε(τ)| 6 M |t− τ |,

which proves that the family {xε} is uniformly bounded and equicontinuous

on [0, L]. Hence, by the Ascoli-Arzelà theorem, there exists a continuous func-

tion y : [0, L] → R
n such that lim

ε→0+
sup

t∈[0,L]

|xε(t) − y(t)| = 0. This finishes the proof

of the lemma. �

Lemma 2.4. Suppose that the function f in (2.1) satisfies the conditions (H1),

(H3) and (H4) in Theorem 2.1. Let x0 ∈ R
n and L > 0. Let {xε} be the family of

solutions of the problem (2.1) converging uniformly (by Lemma 2.3) to a continuous

function y on [0, L] when ε tends to 0+. Then for all t ∈ [0, L] and α > 0 we have

(2.8) lim
ε→0+

ε

α

∫ t/ε+α/ε

t/ε

f(τ, xε(t)) dτ = f0(y(t)).

P r o o f. Let t ∈ [0, L] and α > 0. We have

(2.9)

∣

∣

∣

∣

ε

α

∫ t/ε+α/ε

t/ε

f(τ, xε(t)) dτ − f0(y(t))

∣

∣

∣

∣

6
ε

α

∣

∣

∣

∣

∫ t/ε+α/ε

t/ε

f(τ, xε(t)) dτ −

∫ t/ε+α/ε

t/ε

f(τ, y(t)) dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

ε

α

∫ t/ε+α/ε

t/ε

f(τ, y(t)) dτ − f0(y(t))

∣

∣

∣

∣

.

By Lemma 2.2 the second term of the right-hand side of (2.9) tends to zero as ε → 0+.

For the first term in the right-hand side of (2.9) we write

ε

α

∣

∣

∣

∣

∫ t/ε+α/ε

t/ε

f(τ, xε(t)) dτ −

∫ t/ε+α/ε

t/ε

f(τ, y(t)) dτ

∣

∣

∣

∣

=
1

α

∣

∣

∣

∣

∫ t+α

t

f
(τ

ε
, xε(t)

)

dτ −

∫ t+α

t

f
(τ

ε
, y(t)

)

dτ

∣

∣

∣

∣

:=
1

α
ξ.

By Lemma 2.3 and the condition (H2), lim
ε→0+

ξ = 0. So, one can conclude that all

terms of the right-hand side of the inequality (2.9) tend to zero as ε → 0+, which

completes the proof of the lemma. �
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Lemma 2.5. Suppose that the function f in (2.1) satisfies the conditions

(H1)–(H4) in Theorem 2.1. Let x0 ∈ R
n and L > 0. Let {xε} be the family

of solutions of the problem (2.1) converging uniformly (by Lemma 2.3) to a contin-

uous function y on [0, L] when ε tends to 0+. Then for all L > 0 we have

lim
ε→0+

sup
t∈[0,L]

∣

∣

∣

∣

∫ t

0

f
(τ

ε
, xε(τ)

)

dτ −

∫ t

0

f0(y(τ)) dτ

∣

∣

∣

∣

= 0.

P r o o f. Let L > 0 and let t0 = 0 < t1 < . . . < tm < . . . < tp = L, p ∈ N, be

a partition of [0, L] with α = α(ε) := tm+1 − tm, m = 0, . . . , p− 1, and lim
ε→0+

α = 0.

Let t ∈ [tm, tm+1] for any m ∈ {0, . . . , p− 1}. Then

(2.10)

∣

∣

∣

∣

∫ t

0

f
(τ

ε
, xε(τ)

)

dτ −

∫ t

0

f0(y(τ)) dτ

∣

∣

∣

∣

6

m−1
∑

i=0

∣

∣

∣

∣

∫ ti+1

ti

f
(τ

ε
, xε(τ)

)

dτ −

∫ ti+1

ti

f0(y(τ)) dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

tm

f
(τ

ε
, xε(τ)

)

dτ −

∫ t

tm

f0(y(τ)) dτ

∣

∣

∣

∣

.

By the condition (H3) and Lemma 2.1 we have

∣

∣

∣

∣

∫ t

tm

f
(τ

ε
, xε(τ)

)

dτ −

∫ t

tm

f0(y(τ)) dτ

∣

∣

∣

∣

6

∫ t

tm

∣

∣

∣
f
(τ

ε
, xε(τ)

)∣

∣

∣
dτ +

∫ t

tm

|f0(y(τ))| dτ 6 2Mα.

Now, for each i = 0, . . . ,m − 1 and τ ∈ [ti, ti+1], by the condition (H3) we can

easily deduce that |xε(τ) − xε(ti)| 6 Mα so that by the condition (H2) and the

continuity of f0 (Lemma 2.2), it follows, respectively, that
∣

∣

∣
f
(τ

ε
, xε(τ)

)

− f
(τ

ε
, xε(ti)

)∣

∣

∣
6 γi = γi(ε)

and |f0(xε(τ)) − f0(xε(ti))| 6 δi = δi(ε), with lim
ε→0+

γi = lim
ε→0+

δi = 0.

Hence, from (2.10), it follows that

(2.11)

∣

∣

∣

∣

∫ t

0

f
(τ

ε
, xε(τ)

)

dτ −

∫ t

0

f0(xε(τ)) dτ

∣

∣

∣

∣

6

m−1
∑

i=0

∣

∣

∣

∣

∫ ti+1

ti

f
(τ

ε
, xε(ti)

)

dτ −

∫ ti+1

ti

f0(xε(ti)) dτ

∣

∣

∣

∣

+

m−1
∑

i=0

∫ ti+1

ti

(γi + δi) dτ + 2Mα.
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For each i = 0, . . . ,m− 1, we have

βi :=

∣

∣

∣

∣

∫ ti+1

ti

f
(τ

ε
, xε(ti)

)

dτ −

∫ ti+1

ti

f0(xε(ti)) dτ

∣

∣

∣

∣

= α

∣

∣

∣

∣

ε

α

∫ ti/ε+α/ε

ti/ε

f(τ, xε(ti)) dτ − f0(xε(ti))

∣

∣

∣

∣

:= α̺i 6 α̺m,

where ̺m = max{̺i = ̺i(ε) : i = 0, . . . ,m− 1} and, by Lemma 2.4, lim
ε→0+

̺i = 0.

Then
m−1
∑

i=0

βi 6 ̺m

m−1
∑

i=0

α = ̺m

m−1
∑

i=0

(ti+1 − ti) = ̺mt 6 ̺mL.

On the other hand, we have

m−1
∑

i=0

∫ ti+1

ti

(γi + δi) dτ 6 ηm

m−1
∑

i=0

∫ ti+1

ti

dτ = ηmt 6 ηmL,

where ηm = ηm(ε) = max{γi + δi : i = 0, . . . ,m− 1} and lim
ε→0+

ηm = 0.

Finally, from (2.11) we obtain

(2.12) sup
t∈[0,L]

∣

∣

∣

∣

∫ t

0

f
(τ

ε
, xε(τ)

)

dτ −

∫ t

0

f0(xε(τ)) dτ

∣

∣

∣

∣

6 (̺+ η)L + 2Mα,

where ̺ = max{̺m : m = 0, . . . , p− 1} and η = max{ηm : m = 0, . . . , p− 1}. As the

right-hand side of (2.12) tends to zero as ε → 0+, the lemma is proved. �

2.2. Proof of Theorem 2.1. We are now able to prove our main result (there is

not much work left). We assume that the assumptions in Theorem 2.1 are fulfilled.

Let L > 0. Let {xε} be the family of solutions of the problem (2.1). By Lemma 2.3,

there exists a continuous function y : [0, L] → R
n such that

(2.13) lim
ε→0+

sup
t∈[0,L]

|xε(t)− y(t)| = 0.

For any t ∈ [0, L] the function y is such that

(2.14)

∣

∣

∣

∣

y(t)− x0 −

∫ t

0

f0(y(τ)) dτ

∣

∣

∣

∣

6 |y(t)− xε(t)|+

∣

∣

∣

∣

xε(t)− x0 −

∫ t

0

f0(y(τ)) dτ

∣

∣

∣

∣

6 sup
t∈[0,L]

|y(t)− xε(t)|+ sup
t∈[0,L]

∣

∣

∣

∣

∫ t

0

f
(τ

ε
, xε(τ)

)

dτ −

∫ t

0

f0(y(τ)) dτ

∣

∣

∣

∣

.
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By (2.13) and Lemma 2.5, the right-hand side of (2.14) tends to zero as ε → 0+, so

that one can conclude that the function y is a solution of the problem (2.2). The

proof is complete. �

A c k n ow l e d g em e n t. The authors are grateful to the anonymous referee

whose comments and criticisms have improved the paper.
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