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Abstract. We study a mathematical model which describes the antiplane shear deforma-
tion of a cylinder in frictionless contact with a rigid foundation. The material is assumed to
be electro-viscoelastic with long-term memory, and the friction is modeled with Tresca’s law
and the foundation is assumed to be electrically conductive. First we derive the classical
variational formulation of the model which is given by a system coupling an evolutionary
variational equality for the displacement field with a time-dependent variational equation
for the potential field. Then we prove the existence of a unique weak solution to the model.
Moreover, the proof is based on arguments of evolution equations and on the Banach fixed-
point theorem.
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1. Introduction

Antiplane problems play a useful role as pilot problems, allowing for various as-

pects of solutions in solid mechanics to be examined in a particularly simple setting.

Considerable attention has been paid to the modelling of such kind of problems,

see for instance [9], [10], [11], and the references therein. In particular, the review

article [9] deals with modern developments for the antiplane shear model involving

linear and nonlinear solid materials, various constitutive settings and applications.

Antiplane frictional contact problems are used in geophysics in order to describe

pre-earthquake evolution of the regions of high tectonic activity, see for instance [5],

[6] and the references therein. The mathematical analysis of models for antiplane

frictional contact problems can be found in [1], [8], [13], [14], [17], [24].
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Currently there is a considerable interest in frictional or frictionless contact prob-

lems involving piezoelectric materials, i.e., materials characterized by the coupling

of mechanical and electrical properties. This coupling, in a piezoelectric material,

leads to the appearance of electric potential when mechanical stress is present, and

conversely, mechanical stress is generated when electric potential is applied. The

first effect is used in mechanical sensors, and the reverse effect is used in actuators,

in engineering control equipment. Piezoelectric materials for which the mechani-

cal properties are elastic are also called electro-elastic materials and piezoelectric

materials for which the mechanical properties are viscoelastic are also called electro-

viscoelastic materials. General models for piezoelectric materials can be found in

[2], [12], [23]. Static frictional contact problems for elastic and viscoelastic materials

were studied in [3], [16], [18], [22], [21], [19], [20], [7], under the assumption that

the foundation is insulated. Contact problems with normal compliance for electro-

viscoelastic materials were investigated in [15], [25]. There, variational formulations

of the problems were considered and their unique solvability was proved. Antiplane

problems for piezoelectric materials were considered in [4], [24], [27].

In paper [26], the authors have studied an antiplane contact problem for vis-

coelastic materials with long-term memory. This mechanical problem leads to an

integro-differential variational inequality. Unlike [26], in the present paper we deal

with an antiplane contact problem for an electro-viscoelastic cylinder, which leads

to a new mathematical model, different to the one presented in [26]. The novelty

in this paper consists in the fact that we model the friction with Tresca’s law and

the material’s behavior with a viscoelastic constitutive law with long-term memory.

We neglect the inertial term in the equation of motion to obtain a quasistatic ap-

proximation of the process. The main result we provide concerns the existence of

a unique weak solution to the model. Its proof is carried out in several steps, and is

based on arguments of evolutionary variational inequalities and Banach’s fixed-point

theorem.

The rest of the paper is structured as follows. In Section 2 we describe the model of

the frictional contact process between an electro-viscoelastic body and a conductive

deformable foundation. In Section 3 we derive the variational formulation. It consists

of a variational inequality for the displacement field coupled with a time-dependent

variational equation for the electric potential. We state our main result, the existence

of a unique weak solution to the model in Theorem 3.1. The proof of the theorem

is provided in Section 4, where it is based on arguments of evolutionary inequalities,

and a fixed-point theorem. The paper concludes in Section 5.
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2. The model of the antiplane contact problem

We consider a piezoelectric body B identified with a region in R
3 it occupies in

a fixed and undistorted reference configuration. We assume that B is a cylinder with

generators parallel to the x3-axis with a cross-section which is a regular region Ω

in the x1, x2-plane, Ox1x2x3 being a Cartesian coordinate system. The cylinder

is assumed to be sufficiently long so that the end effects in the axial direction are

negligible. Thus, B = Ω × (−∞,∞). The cylinder is acted upon by body forces of

density f0 and has volume free electric charges of density q0. It is also constrained

mechanically and electrically on the boundary. To describe the boundary conditions,

we denote by ∂Ω = Γ the boundary of Ω and we assume a partition of Γ into three

open disjoint parts Γ1, Γ2, and Γ3, on the one hand, and a partition of Γ1 ∪ Γ2 into

two open parts Γa and Γb, on the other hand. We assume that the one-dimensional

measures of Γ1 and Γa, denoted measΓ1 and measΓa, are positive. The cylinder

is clamped on Γ1 × (−∞,∞) and therefore the displacement field vanishes there.

Surface tractions of density f2 act on Γ2 × (−∞,∞). We also assume that the

electrical potential vanishes on Γa×(−∞,∞) and a surface electrical charge of density

q2 is prescribed on Γb × (−∞,∞). The cylinder is in contact over Γ3 × (−∞,∞)

with a conductive obstacle, the so-called foundation. The contact is frictional and is

modeled with Tresca’s law. We are interested in the deformation of the cylinder on

the time interval [0, T ]. We assume that

f0 = (0, 0, f0) with f0 = f0(x1, x2, t) : Ω× [0, T ] → R,(2.1)

f2 = (0, 0, f2) with f2 = f2(x1, x2, t) : Γ2 × [0, T ] → R,(2.2)

q0 = q0(x1, x2, t) : Ω× [0, T ] → R,(2.3)

q2 = q2(x1, x2, t) : Γb × [0, T ] → R.(2.4)

The forces (2.1), (2.2) and the electric charges (2.3), (2.4) are expected to give rise

to deformations and to electric charges of the piezoelectric cylinder corresponding

to a displacement u and to an electric potential field ϕ which are independent of x3
and have the form

u = (0, 0, u) with u = u(x1, x2, t) : Ω× [0, T ] → R,(2.5)

ϕ = ϕ(x1, x2, t) : Ω× [0, T ] → R.(2.6)

Such kind of deformation, associated to a displacement field of the form (2.5), is

called an antiplane shear, see for instance [11] and [13] for details.

Below, the indices i and j denote components of vectors and tensors and run

from 1 to 3, summation over two repeated indices is implied, and the index that

follows a comma represents the partial derivative with respect to the corresponding
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spatial variable; also, a dot above represents the time derivative. We use S3 for the

linear space of second order symmetric tensors on R
3 or, equivalently, the space of

symmetric matrices of order 3, and “·”, ‖·‖ will represent the inner products and the

Euclidean norms on R
3 and S3; we have:

u · v = uivi, ‖v‖ = (v · v)1/2 ∀u = (ui), v = (vi) ∈ R
3,

σ · τ = σijτij , ‖τ‖ = (τ · τ )1/2 ∀σ = (σij), τ = (τij) ∈ S3.

The infinitesimal strain tensor is denoted by ε(u) = (εij(u)) and the stress field by

σ = (σij). We also denote by E(ϕ) = (Ei(ϕ)) the electric field and by D = (Di)

the electric displacement field. Here and below, in order to simplify the notation, we

do not indicate the dependence of various functions on x1, x2, x3 or t and we recall

that

εij(u) =
1

2
(ui,j + uj,i), Ei(ϕ) = −ϕ,i .

The material’s behavior is modeled by the following electro-viscoelastic constitu-

tive law with long-term memory:

σ = λ(tr ε(u))I + 2µε(u) + 2

∫ t

0

θ(t− s)ε(u(s)) ds− E∗
E(ϕ),(2.7)

D = Eε(u) + βE(ϕ),(2.8)

where λ and µ are the Lamé coefficients, θ : [0, T ] → R is the viscosity coefficient,

tr ε(u) = εii(u), I is the unit tensor in R
3, E represents the third-order piezoelectric

tensor, and E∗ is its transpose. In the antiplane context (2.5), (2.6), using the

constitutive equations (2.7), (2.8) it follows that the stress field and the electric

displacement field are given by

σ =





0 0 σ13

0 0 σ23

σ31 σ32 0



 ,(2.9)

D =





eu,1−βϕ,1
eu,2−βϕ,2

0



 ,(2.10)

where, β is the electric permittivity constant, e is a piezoelectric coefficient,

σ13 = σ31 = µ∂x1
u+

∫ t

0

θ(t− s)∂x1
u(s) ds,

and

σ23 = σ32 = µ∂x2
u+

∫ t

0

θ(t− s)∂x2
u(s) ds.
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We assume that

(2.11) Eε =





e(ε13 + ε31)

e(ε23 + ε32)

eε33



 ∀ ε = (εij) ∈ S3.

We also assume that the coefficients θ, µ, β, and e depend on the spatial variables

x1, x2, but are independent of the spatial variable x3. Since Eε · v = ε · E∗
v for all

ε ∈ S3, v ∈ R
3, it follows from (2.11) that

(2.12) E∗
v =





0 0 ev1

0 0 ev2

ev1 ev2 ev3



 ∀v = (vi) ∈ R
3.

We assume that the process is mechanically quasistatic and electrically static and

therefore is governed by the equilibrium equations

Divσ + f0 = 0, Di,i − q0 = 0 in B × (0, T ),

where Divσ = (σij,j) represents the divergence of the tensor field σ. Taking into

account (2.1), (2.3), (2.5), (2.6), (2.9), and (2.10), the equilibrium equations above

reduce to the following scalar equations:

div(µ∇u) +

∫ t

0

θ(t− s) div(∇u(s)) ds+ div(e∇ϕ) + f0 = 0 in Ω× (0, T ),(2.13)

div(e∇u− β∇ϕ) = q0.(2.14)

Here and below we use the notation

div τ = τ1,1 + τ1,2 for τ = (τ1(x1, x2, t), τ2(x1, x2, t)),

∇v = (v,1, v,2), ∂νv = v,1 ν1 + v,2 ν2 for v = v(x1, x2, t).

We now describe the boundary conditions. During the process the cylinder is

clamped on Γ1 × (−∞,∞) and the electric potential vanishes on Γ1 × (−∞,∞);

thus, (2.5) and (2.6) imply that

u = 0 on Γ1 × (0, T ),(2.15)

ϕ = 0 on Γa × (0, T ).(2.16)

Let ν denote the unit normal on Γ× (−∞,∞). We have

(2.17) ν = (ν1, ν2, 0) with νi = νi(x1, x2) : Γ → R, i = 1, 2.
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For a vector v we denote by vν and vτ its normal and tangential components on the

boundary, given by

(2.18) vν = v · ν, vτ = v − vνν.

For a given stress field σ we denote by σν and στ the normal and the tangential

components on the boundary, that is,

(2.19) σν = (σν) · ν, στ = σν − σνν.

From (2.9), (2.10), and (2.17) we deduce that the Cauchy stress vector and the

normal component of the electric displacement field are given by

(2.20) σν =

(

0, 0, µ∂νu+

∫ t

0

θ(t− s)∂νu(s) ds+ e∂νϕ

)

, D · ν = e∂νu− β∂νϕ.

Taking into account (2.2), (2.4), and (2.20), the traction condition on Γ2×(−∞,∞)

and the electric conditions on Γb × (−∞,∞) are given by

µ∂νu+

∫ t

0

θ(t− s)∂νu(s) ds+ e∂νϕ = f2 on Γ2 × (0, T ),(2.21)

e∂νu− β∂νϕ = q2 on Γb × (0, T ).(2.22)

We now describe the frictional contact condition and the electric conditions on

Γ3 × (−∞,∞). First, from (2.5) and (2.17) we infer that the normal displacement

vanishes, uν = 0, which shows that the contact is bilateral, that is, the contact is

kept during the whole process. Using now (2.5) and (2.17)–(2.19), we conclude that

(2.23) uτ = (0, 0, u), στ = (0, 0, στ ),

where

στ =

(

0, 0, µ∂νu+

∫ t

0

θ(t− s)∂νu(s) ds+ e∂νϕ

)

.

We assume that the friction is invariant with respect to the x3 axis and is modeled

with Tresca’s friction law, that is,

(2.24)











|στ (t)| 6 g,

|στ (t)| < g ⇒ u̇τ (t) = 0, on Γ3 × (0, T ).

|στ (t)| = g ⇒ ∃β > 0 such that στ = −βu̇τ
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Here g : Γ3 → R+ is a given function, the friction bound, and u̇τ represents the

tangential velocity on the contact boundary. Using now (2.23), it is straightforward

to see that the friction law (2.24) implies

(2.25)























































∣

∣

∣

∣

µ∂νu+

∫ t

0

θ(t− s)∂νu(s) ds+ e∂νϕ

∣

∣

∣

∣

6 g,

∣

∣

∣

∣

µ∂νu+

∫ t

0

θ(t− s)∂νu(s) ds+ e∂νϕ

∣

∣

∣

∣

< g ⇒ u̇(t) = 0, on Γ3 × (0, T ).

∣

∣

∣

∣

µ∂νu+

∫ t

0

θ(t− s)∂νu(s) ds+ e∂νϕ

∣

∣

∣

∣

= g ⇒

∃β > 0 such that µ∂νu+

∫ t

0

θ(t− s)∂νu(s) ds+ e∂νϕ = −βu̇.

Next, since the foundation is electrically conductive and the contact is bilateral,

we assume that the normal component of the electric displacement field or the free

charge is proportional to the difference between the potential on the foundation and

the body’s surface. Thus,

D · ν = k(ϕ− ϕF ) on Γ3 × (0, T ),

where ϕF represents the electric potential of the foundation and k is the electric

conductivity coefficient. We use (2.20) and the previous equality to obtain

(2.26) e∂νu− β∂νϕ = k(ϕ− ϕF ) on Γ3 × (0, T ).

Finally, we prescribe the initial displacement

(2.27) u(0) = u0 in Ω,

where u0 is a given function on Ω.

We collect the above equations and conditions to obtain the following mathemat-

ical model which describes the antiplane shear of an electro-viscoelastic cylinder in

frictional contact with a conductive foundation.

Problem P. Find the displacement field u : Ω × [0, T ] → R and the electric

potential ϕ : Ω× [0, T ] → R such that

div(µ∇u) +

∫ t

0

θ(t− s) div(∇u(s)) ds+ div(e∇ϕ) + f0 = 0 in Ω× (0, T ),(2.28)

div(e∇u− α∇ϕ) = q0 in Ω× (0, T ),(2.29)
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u = 0 on Γ1 × (0, T ),(2.30)

µ∂νu+

∫ t

0

θ(t− s)∂νu(s) ds+ e∂νϕ = f2 on Γ2 × (0, T ),(2.31)































































∣

∣

∣

∣

µ∂νu+

∫ t

0

θ(t− s)∂νu(s) ds+ e∂νϕ

∣

∣

∣

∣

6 g,

∣

∣

∣

∣

µ∂νu+

∫ t

0

θ(t− s)∂νu(s) ds+ e∂νϕ

∣

∣

∣

∣

< g ⇒ u̇(t) = 0, on Γ3 × (0, T ),

∣

∣

∣

∣

µ∂νu+

∫ t

0

θ(t− s)∂νu(s) ds+ e∂νϕ

∣

∣

∣

∣

= g ⇒

∃β > 0 such that µ∂νu+

∫ t

0

θ(t− s)∂νu(s) ds+ e∂νϕ = −βu̇,

(2.32)

e∂νu− α∂νϕ = q2 on Γb × (0, T ),(2.33)

e∂νu− α∂νϕ = k(ϕ− ϕF ) on Γ3 × (0, T ),(2.34)

u(0) = u0 in Ω.(2.35)

Note that once the displacement field u and the electric potential ϕ which solve

Problem P are known, then the stress tensor σ and the electric displacement field

D can be obtained by using the constitutive laws (2.9) and (2.10), respectively.

3. Variational formulation and main result

We derive now the variational formulation of Problem P . To this end we introduce

the function spaces

V = {v ∈ H1(Ω): v = 0 on Γ1}, W = {ψ ∈ H1(Ω): ψ = 0 on Γa},

where, here and below, we write w for the trace γw of a function w ∈ H1(Ω) on Γ.

Since measΓ1 > 0 and measΓa > 0, it is well known that V and W are real Hilbert

spaces with the inner products

(u, v)V =

∫

Ω

∇u · ∇v dx ∀u, v ∈ V, (ϕ, ψ)W =

∫

Ω

∇ϕ · ∇ψ dx ∀ϕ, ψ ∈W.

Moreover, the associated norms

(3.1) ‖v‖V = ‖∇v‖L2(Ω)2 ∀ v ∈ V, ‖ψ‖W = ‖∇ψ‖L2(Ω)2 ∀ψ ∈ W

are equivalent on V and W , with the usual norm ‖·‖H1(Ω). By Sobolev’s trace

theorem we deduce that there exist two positive constants cV > 0 and cW > 0 such
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that

(3.2) ‖v‖L2(Γ3) 6 cV ‖v‖V ∀ v ∈ V, ‖ψ‖L2(Γ3) 6 cW ‖ψ‖W ∀ψ ∈W.

For a real Banach space (X, ‖·‖X) where X = V ×W , we use the usual notation

for the spaces Lp(0, T ;X) and W k,p(0, T ;X) where 1 6 p 6 ∞, k = 1, 2, . . . We

also denote by C([0, T ];X) the space of continuous and continuously differentiable

functions on [0, T ] with values in X , with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X

and we use the standard notations for the Lebesgue space L2(0, T ;X) as well as

the Sobolev space W 1,2(0, T ;X). In particular, recall that the norm on the space

L2(0, T ;X) is given by the formula

‖u‖2L2(0,T ;X) =

∫ T

0

‖u(t)‖2X dt

and the norm on the space W 2(0, T ;X) is given by the formula

‖u‖2W 1,2(0,T ;X) =

∫ T

0

‖u(t)‖2X dt+

∫ T

0

‖u̇(t)‖2X dt.

Finally, we suppress the argument X when X = R; thus, for example, we use the

notationW 2(0, T ) for the spaceW 2(0, T ;R) and the notation ‖·‖W 2(0,T ) for the norm

‖·‖W 2(0,T ;R).

In the study of Problem P we assume that the viscosity coefficient satisfies

(3.3) θ ∈W 1,2(0, T )

and the electric permittivity coefficient satisfies

(3.4) α ∈ L∞(Ω) and there exists α∗ > 0 such that α(x) > α∗ a.e. x ∈ Ω.

We also assume that the Lamé coefficient and the piezoelectric coefficient satisfy

µ ∈ L∞(Ω) and µ(x) > 0 a.e. x ∈ Ω,(3.5)

e ∈ L∞(Ω).(3.6)

The forces, tractions, volume, and surface free charge densities have the regularity

f0 ∈ W 1,2(0, T ;L2(Ω)), f2 ∈W 1,2(0, T ;L2(Γ2)),(3.7)

q0 ∈ W 1,2(0, T ;L2(Ω)), q2 ∈ W 1,2(0, T ;L2(Γb)).(3.8)
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The electric conductivity coefficient and the friction bound function g satisfy the

following properties:

k ∈ L∞(Γ3) and k(x) > 0 a.e. x ∈ Γ3,(3.9)

g ∈ L∞(Γ3) and g(x) > 0 a.e. x ∈ Γ3.(3.10)

Finally, we assume that the electric potential of the foundation and the initial

displacement are such that

(3.11) ϕF ∈W 1,2(0, T ;L2(Γ3)).

The initial data are chosen such that

(3.12) u0 ∈ V

and, moreover,

(3.13) aµ(u0, v)V + j(v) > (f(0), v)V ∀ v ∈ V.

We define now the functional j : [0, T ] → R+ given by the formula

(3.14) j(v) =

∫

Γ3

g|v| da ∀ v ∈ V.

We also define the mappings f : [0, T ] → V and q : [0, T ] →W by

(f(t), v)V =

∫

Ω

f0(t)v dx+

∫

Γ2

f2(t)v da,(3.15)

(q(t), ψ)W =

∫

Ω

q0(t)ψ dx−

∫

Γb

q2(t)ψ da+

∫

Γ3

kϕF (t)ψ da,(3.16)

∀ v ∈ V, ψ ∈ W, t ∈ [0, T ].

The definitions of f and q are based on Riesz’s representation theorem; moreover,

it follows from assumptions (3.7)–(3.8) that the integrals above are well-defined and

f ∈ W 1,2(0, T ;V ),(3.17)

q ∈W 1,2(0, T ;W ).(3.18)

Next, we define the bilinear forms aµ : V ×V → R, ae : V ×W → R, a∗e : W×V → R,

and aα : W ×W → R, by equalities

aµ(u, v) =

∫

Ω

µ∇u · ∇v dx,(3.19)

ae(u, ϕ) =

∫

Ω

e∇u · ∇ϕdx = a∗e(ϕ, u),(3.20)

aα(ϕ, ψ) =

∫

Ω

β∇ϕ · ∇ψ dx+

∫

Γ3

kϕψ dx,(3.21)
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for all u, v ∈ V , ϕ, ψ ∈W . Assumptions (3.14)–(3.16) imply that the integrals above

are well-defined and, using (3.1) and (3.2), it follows that the forms aµ, ae, and a
∗
e

are continuous; moreover, the forms aµ and aα are symmetric and, in addition, the

form aα is W -elliptic, since

(3.22) aα(ψ, ψ) > α∗‖ψ‖2W ∀ψ ∈ W.

The variational formulation of Problem P is based on the following result.

Lemma 3.1. If (u, ϕ) is a smooth solution to Problem P , then (u(t), ϕ(t)) ∈ X

and

aµ(u(t), v − u̇(t)) +

(∫ t

0

θ(t− s)u(s) ds, v − u̇(t)

)

V

+ a∗e(ϕ(t), v − u̇(t))(3.23)

+j(v)− j(u̇(t)) > (f(t), v − u̇(t))V ∀ v ∈ V, t ∈ [0, T ],

aα(ϕ(t), ψ) − ae(u(t), ψ) = (q(t), ψ)W ∀ψ ∈ W, t ∈ [0, T ],(3.24)

u(0) = u0.(3.25)

P r o o f. Let (u, ϕ) denote a smooth solution to Problem P , we have u(t) ∈ V ,

u̇(t) ∈ V and ϕ(t) ∈W a.e. t ∈ [0, T ] and, from (2.28), (2.30), and (2.31), we obtain

∫

Ω

µ∇u(t) · ∇(v − u̇(t)) dx+

(∫ t

0

θ(t− s)u(s) ds, v − u̇(t)

)

V

+

∫

Ω

e∇ϕ(t) · ∇(v − u̇(t)) dx

=

∫

Ω

f0(t)(v − u̇(t)) dx+

∫

Γ2

f2(t)(v − u̇(t)) da

+

∫

Γ3

(∣

∣

∣

∣

µ∂νu(t) +

∫ t

0

θ(t− s)∂νu(s) ds+ e∂νϕ(t)

∣

∣

∣

∣

)

(v − u̇(t)) da,

∀ v ∈ V t ∈ (0, T ),

and from (2.29) and (2.33)–(2.34) we obtain

(3.26)

∫

Ω

α∇ϕ(t) · ∇ψ dx−

∫

Ω

e∇u(t) · ∇ψ dx =

∫

Ω

q0(t)ψ dx−

∫

Γb

q2(t)ψ da

+

∫

Γ3

kϕF (t)ψ da ∀ψ ∈W t ∈ (0, T ).
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Using (3.14) and (2.32), we obtain

(3.27) aµ(u(t), v − u̇(t)) +

(
∫ t

0

θ(t− s)u(s) ds, v − u̇(t)

)

V

+ a∗e(ϕ(t), v − u̇(t))

−

∫

Γ3

(∣

∣

∣

∣

µ∂νu(t) +

∫ t

0

θ(t− s)∂νu(s) ds+ e∂νϕ(t)

∣

∣

∣

∣

)

(v − u̇(t)) da

= (f(t), v − u̇(t))V ∀ v ∈ V, t ∈ [0, T ].

Keeping in mind (3.16) and (3.20)–(3.21), we find the second equality in Lemma 3.1,

i.e.,

(3.28) aα(ϕ(t), ψ) − ae(u(t), ψ) = (q(t), ψ)W ∀ψ ∈ W, t ∈ [0, T ].

Using the frictional contact condition (2.32) and (3.14) on Γ3 × (0, T ), we deduce

that for all t ∈ [0, T ]

(3.29) j(u̇(t)) = −

∫

Γ3

(∣

∣

∣

∣

µ∂νu(t) +

∫ t

0

θ(t− s)∂νu(s) ds+ e∂νϕ(t)

∣

∣

∣

∣

)

u̇(t) da,

it is clear that

(3.30) j(v) > −

∫

Γ3

(∣

∣

∣

∣

µ∂νu(t) +

∫ t

0

θ(t− s)∂νu(s) ds+ e∂νϕ(t)

∣

∣

∣

∣

)

v da ∀ v ∈ V.

The first inequality in Lemma 3.1 follows now from (3.27) and (3.29)–(3.30).

Now, Lemma 3.1 and condition (3.25) lead to the following variational problem:

Problem PV. Find a displacement field u : [0, T ] → V and an electric potential

field ϕ : [0, T ] →W such that

aµ(u(t), v − u̇(t)) +

(∫ t

0

θ(t− s)u(s) ds, v − u̇(t)

)

V

+ a∗e(ϕ(t), v − u̇(t))(3.31)

+j(v)− j(u̇(t)) > (f(t), v − u̇(t))V ∀ v ∈ V, t ∈ [0, T ],

aα(ϕ(t), ψ) − ae(u(t), ψ) = (q(t), ψ)W ∀ψ ∈ W, t ∈ [0, T ],(3.32)

u(0) = u0.(3.33)

�

Our main existence and uniqueness result, which we state now and prove in the

next section, is the following:
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Theorem 3.1. Assume that (3.3)–(3.18) hold. Then the variational problem PV

possesses a unique solution (u, ϕ) satisfying

(3.34) u ∈ W 1,2(0, T ;V ), ϕ ∈W 1,2(0, T ;W ).

We note that an element (u, ϕ) which solves Problem PV is a weak solution of the

antiplane contact Problem P . Theorem 3.1 thus states that the antiplane contact

Problem P has a unique weak solution, provided that (3.3)–(3.18) hold.

4. Proof of Theorem 3.1

The proof of Theorem 3.1 will be carried out in several steps. In the rest of this

section we assume that (3.3)–(3.18) hold.

Step 1 : In the first step of the proof we introduce the set

(4.1) W = {η ∈ W 1,2(0, T ;X) such that η(0) = 0X}

and we recall the following existence and unigueness result.

Lemma 4.1. For all η ∈ W there exists a unique element η ∈ W 1,2(0, T ;X)

which satisfies the inequality and the data condition defined by the problem PV1
η:

Problem PV1
η.

a(uη(t), v − u̇η(t)) + (η(t), v − u̇η(t))X + j(v)− j(u̇η(t))(4.2)

> (f(t), v − u̇η(t))X ∀ v ∈ X, t ∈ [0, T ],

uη(0) = u0.(4.3)

We use in the proof of Lemma 4.1 the following theorem:

Theorem 4.1 ([1], p. 117). Let (X, (·, ·)X) be a real Hilbert space and let j : X →

(−∞,∞) be a convex lower semicontinuous functional. Assume that j 6= ∞, that is,

D(j) = {v ∈ X | j(v) <∞} 6= ϕ.

Let f ∈ W 1,2(0, T ;X) and u0 ∈ X be such that

sup
v∈D(j)

= {(f(0), v)X − (u0, v)X − j(v)} <∞.
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Then the variational problem PV possesses a unique solution (u, ϕ) satisfying u(0) =

u0 and

(u(t), v − u̇(t))X + j(v) − j(u̇(t)) 6 (f(t), v − u̇(t))X ∀ v ∈ X a.e. t ∈ (0, T ).

P r o o f of Lemma 4.1. Let a(·, ·) be defined by

(4.4) a(u, v) = (u, v)a ∀u, v ∈ X.

Notice that (·, ·)a is an inner product on the space X and ‖·‖a is the associated norm

which is equivalent to the norm ‖·‖X on the space X . Then (X, (·, ·)a) is a real

Hilbert space.

We define now the function fη : [0, T ] → X by the formula

(4.5) (fη(t), v)a = (f(t), v)X − (η(t), v)X ∀ v ∈ V, t ∈ [0, T ].

It follows from (3.17) and (4.1) that

(4.6) fη(t) ∈W 1,2(0, T ;X).

Using now (4.5) at t = 0, we obtain

(4.7) (fη(0), v)a = (f(0), v)X − (η(0), v)X ∀ v ∈ V, t ∈ [0, T ].

Moreover, rewriting (4.4) at t = 0, we have

(4.8) a(u0, v) = (u0, v)a ∀ v ∈ X.

On the other hand, taking into account (4.1), (4.7), and (4.8), we obtain the equality

(4.9) (fη(0), v)a − (u0, v)a − j(v) = (f(0), v)X − a(u0, v)− j(v) ∀ v ∈ V.

From assumption (3.13), we find

(4.10) sup
v∈D(j)

= {(fη(0), v)a − (u0, v)a − j(v)} <∞.

Taking into account (3.13), (3.14), (4.6), and (4.10), we can use Theorem 4.1 on the

space (X, (·, ·)a), then there exists a unique element uη satisfying

(4.11) uη ∈W 1,2(0, T ;X) such that uη = u0

and

(4.12) (uη(t), v − u̇η(t))a + j(v) − j(u̇η(t))

> (fη(t), v − u̇η(t))a∀ v ∈ X a.e. t ∈ (0, T ).

Using (4.4) and (4.7), we obtain inequality (3.31) and initial data (3.33) defined in

Problem PV . This concludes the proof of Lemma 4.1. �
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Step 2 : In the second step, we use the displacement field uη obtained in Lemma 4.1

to define the following variational problem for the electric potential field.

Problem PV2
η. Find an electrical potential ϕη : [0, T ] →W such that

(4.13) aα(ϕη(t), ψ)− ae(uη(t), ψ) = (q(t), ψ)W ∀ψ ∈W, t ∈ [0, T ].

The proof of well-posedness of Problem PV2
η follows.

Lemma 4.2. There exists a unique solution ϕη ∈ W 1,2(0, T ;W ) which satis-

fies (4.13). Moreover, if ϕη1
and ϕη2

are the solutions of (4.13) corresponding to

η1, η2 ∈ C([0, T ];V ), then there exists c > 0 such that

(4.14) ‖ϕη1
(t)− ϕη2

(t)‖W 6 c‖uη1
(t)− uη2

(t)‖V ∀ t ∈ [0, T ].

P r o o f. Let t ∈ [0, T ]. We use the properties of the bilinear form aβ and the Lax-

Milgram lemma to see that there exists a unique element ϕη(t) ∈ W which solves

(4.13) at any moment t ∈ [0, T ]. Consider now t1, t2 ∈ [0, T ]; using (4.13), we get

(4.15) aα(ϕη(t1), ψ)− ae(uη(t1), ψ) = (q(t1), ψ)W ∀ψ ∈W, t1 ∈ [0, T ]

and

(4.16) aα(ϕη(t2), ψ)− ae(uη(t2), ψ) = (q(t2), ψ)W ∀ψ ∈W, t2 ∈ [0, T ].

Using and (4.15), (4.16), and (3.22), we find that

α∗‖ϕ(t1)−ϕ(t2)‖
2
W 6 (‖e‖L∞(Ω)‖u(t1)−u(t2)‖V +‖q(t1)−q(t2)‖W )‖ϕ(t1)−ϕ(t2)‖W ,

it follows from the previous inequality that

(4.17) ‖ϕ(t1)− ϕ(t2)‖W 6 c(‖u(t1)− u(t2)‖V + ‖q(t1)− q(t2)‖W ).

Then, the regularity uη ∈W 1,2(0, T ;V ) combined with (3.18) and (4.17) imply that

ϕη ∈W 1,2(0, T ;W ) which concludes the proof. �

Now, for all η ∈ W we denote by uη the solution of Problem PV1
η obtained in

Lemma 4.1 and by ϕη the solution of Problem PV2
η obtained in Lemma 4.2.

Step 3 : In the third step, we consider the operator Λ: W → W .

We now use Riesz’s representation theorem to define the element Λη(t) ∈ W by

the equality

(4.18) (Λη(t), w)W =

∫ t

0

θ(t− s)uη(s) ds+ a∗e(ϕη(t), w)

∀ η ∈ W , ∀w ∈ W, t ∈ [0, T ].

Clearly, for a given η ∈ W the function t 7→ Λη(t) belongs to W . In this step we

show that the operator Λ: W → W has a unique fixed point.
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Lemma 4.3. There exists a unique η∗ ∈ W such that Λη∗ = η∗.

P r o o f. Let η1, η2 ∈ W and t ∈ [0, T ]. In what follows we denote by ui and ϕi

the functions uηi
and ϕηi

obtained in Lemmas 4.1 and 4.2, for i = 1, 2. Using (4.18)

and (3.20), we obtain

(4.19) ‖Λη1(t)− Λη2(t)‖
2
X

6 C

(∫ t

0

‖u1(s)− u2(s)‖
2
X ds+ ‖ϕ1(t)− ϕ2(t)‖

2
W

)

∀ t ∈ [0, T ].

The constant C represents a generic positive number which may depend on

‖θ‖W 1,2(0,T ), T and e, and whose value may change from place to place.

Since uη ∈ W 1,2(0, T ;V ) and ϕη ∈ W 1,2(0, T ;W ), we deduce from inequal-

ity (4.19) that Λη ∈W 1,2(0, T ;X). On the other hand, (4.14) and arguments similar

to those used in the proof of (4.17) yield

(4.20) ‖ϕ1(t)− ϕ2(t)‖W 6 C‖u1(t)− u2(t)‖V .

Using now (4.20) in (4.19), we get

(4.21) ‖Λη1(t)− Λη2(t)‖
2
X

6 C

(∫ t

0

‖u1(s)− u2(s)‖
2
X ds+ ‖u1(t)− u2(t)‖V

)

, a.e. t ∈ [0, T ].

Taking into account (3.31), we have the inequalities

a(u1(t), v − u̇1(t)) + (η1(t), v − u̇1(t))X + j(v)− j(u̇1(t))

> (f(t), v − u̇1(t))X ∀ v ∈ X, t ∈ [0, T ]

and

a(u2(t), v − u̇2(t)) + (η2(t), v − u̇2(t))X + j(v)− j(u̇2(t))

> (f(t), v − u̇2(t))X ∀ v ∈ X, t ∈ [0, T ],

for all v ∈ X , a.e. s ∈ (0, T ). We choose v = u̇2(s) in the first inequality and

v = u̇1(s) in the second inequality, add the result to obtain

1

2
‖u1(s)− u2(s)‖

2
X 6 −(η1(s)− η2(s), u̇1(s)− u̇2(s))X a.e. s ∈ (0, T ).

Let t ∈ [0, T ]. Integrating the previous inequality from 0 to t and using (3.33), we

obtain

1

2
‖u1(t)− u2(t)‖

2
X 6 − (η1(t)− η2(t), u1(t)− u2(t))X

+

∫ t

0

(η̇1(s)− η̇2(s), u1(s)− u2(s))X ds.
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We deduce that

C‖u1(t)− u2(t)‖
2
X 6 ‖η1(t)− η2(t)‖X‖u1(t)− u2(t)‖X

+

∫ t

0

‖η̇1(s)− η̇2(s)‖X‖u1(s)− u2(s)‖X ds.

Using Young’s inequality, we get

(4.22) ‖u1(t)− u2(t)‖
2
X 6 C

(

‖η1(t)− η2(t)‖
2
X +

∫ t

0

‖η̇1(s)− η̇2(s)‖
2
X ds

+

∫ t

0

‖u1(s)− u2(s)‖
2
X ds

)

.

On the other hand, as

η1(t)− η2(t) =

∫ t

0

‖η̇1(s)− η̇2(s)‖
2
X ds,

we can obtain

(4.23) ‖η1(t)− η2(t)‖
2
X 6 C

∫ t

0

‖η̇1(s)− η̇2(s)‖
2
X ds.

Using now (4.23) in (4.22), we have

‖u1(t)− u2(t)‖
2
X 6 C

(∫ t

0

‖η̇1(s)− η̇2(s)‖
2
X ds+

∫ t

0

‖u1(s)− u2(s)‖
2
X ds

)

.

Taking into account Gronwall’s inequality, we deduce

(4.24) ‖u1(t)− u2(t)‖
2
X 6 C

∫ t

0

‖η̇1(s)− η̇2(s)‖
2
X ds,

which yields

(4.25)

∫ t

0

‖u1(s)− u2(s)‖
2
X ds 6 C

∫ t

0

‖η̇1(s)− η̇2(s)‖
2
X ds.

From (4.21), (4.24) and (4.25) we obtain

‖Λη1(t)− Λη2(t)‖
2
X 6 C

∫ t

0

‖η̇1(s)− η̇2(s)‖
2
X ds.
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Iterating the last inequality m times, we infer

‖Λmη1(t)− Λmη2(t)‖
2
X 6 Cm

∫ t

0

∫ s1

0

. . .

∫ sm−1

0

‖η̇1(sm)− η̇2(sm)‖2X dsm . . . ds1,

where Λm denotes the power of the operator Λ. The last inequality gives

‖Λmη1(t)− Λmη2(t)‖
2
W 1,2(0,T ;X) 6

CmTm

m!
‖η1 − η2‖

2
W 1,2(0,T ;X),

which implies that for m sufficietly large the power Λm of Λ is a contraction in the

Banach space, since

lim
m→∞

CmTm

m!
= 0,

it follows now from Banach’s fixed-point theorem that there exists a unique element

η∗ ∈ W such that Λmη∗ = η∗. Moreover, since

Λm(Λη∗) = Λ(Λmη∗) = Λη∗,

we deduce that Λη∗ is also a fixed point of the operator Λm. By the uniqueness of

the fixed point, we conclude that Λη∗ = η∗, which shows that η∗ is a fixed point, we

conclude that Λη∗ = η∗. �

Step 4 : In the fourth and last step of our demonstration, we have now all the

ingredients to provide the proof of Theorem 3.1:

Existence. Let η∗ ∈W 1,2(0, T ;V ) be the fixed point of the operator Λ, and let

uη∗ , ϕη∗ be the solutions of problems PV1
η and PV2

η, respectively, for η = η∗. It

follows from (4.18) that

(η∗(t), v)V =

∫ t

0

θ(t− s)uη∗(s) ds+ a∗e(ϕη∗(t), w) ∀ v ∈ V, t ∈ [0, T ]

and, therefore, (3.31), (3.33), and (4.14) imply that (uη∗ , ϕη∗) is a solution of prob-

lem PV. Regularity (3.34) of the solution follows from Lemmas 4.1 and 4.2.

Uniqueness. The uniqueness of the solution follows from the uniqueness of the

fixed-point of the operator Λ. It can also be obtained by using arguments similar to

those used in [26] and [15].

356



5. Conclusion

We presented a model for an antiplane contact problem for electro-viscoelastic

materials with long-termmemory. The problem was set as a variational inequality for

the displacements and a variational equality for the electric potential. The existence

of a unique weak solution for the problem was established by using arguments from

the theory of evolutionary variational inequalities and a fixed-point theorem. This

work opens the way to study further problems with other conditions for electrically

conductive materials.
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