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Notes on strongly Whyburn spaces

Masami Sakai

Abstract. We introduce the notion of a strongly Whyburn space, and show that
a space X is strongly Whyburn if and only if X × (ω + 1) is Whyburn. We also
show that if X × Y is Whyburn for any Whyburn space Y , then X is discrete.
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Classification: 54A25; 54D55

1. Introduction

Throughout this paper, all spaces are assumed to be T2, unless a specific sepa-
ration axiom is indicated.

A space X is said to be Fréchet-Urysohn if A ⊂ X and p ∈ A imply that
there is a sequence {pn : n ∈ ω} ⊂ A converging to p. A space X is said to be
strongly Fréchet-Urysohn [14] (or, countably bi-sequential [9]) if for a decreasing
sequence {An : n ∈ ω} of subsets of X , p ∈

⋂
{An : n ∈ ω} implies that there

are points pn ∈ An converging to p. Every strongly Fréchet-Urysohn space is
Fréchet-Urysohn. Michael [9, Proposition 4.D.5] showed that a space X is strongly
Fréchet-Urysohn if and only if X × I is Fréchet-Urysohn, where I is the closed
unit interval. In this result, I can be replaced by the convergent sequence ω + 1:
see the proof of [9, Proposition 4.D.5].

According to recent literature (e.g., [4], [12]), a space X is said to be Whyburn if
A ⊂ X and p ∈ A \A imply that there is a subset B ⊂ A such that B = {p}∪B.
Every Fréchet-Urysohn space is Whyburn, because the convergent sequence is
closed in a T2-space. This notion was considered in Whyburn [16], and was
called property H . Whyburn showed in [16, Corollary 1] that every quotient map
onto a T1-space Y having property H is pseudo-open (=hereditarily quotient).
Later, introducing the notion of an accessibility space [17] which is weaker than
property H , he sharpened this result. He showed that for a T1-space Y , every
quotient map onto Y is pseudo-open if and only if Y is an accessibility space.
A space having property H is always an accessibility space, and conversely a
regular accessibility space has property H . A Whyburn space is sometimes called
an AP-space according to [13].
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Even if a space X is Whyburn, X × (ω + 1) need not be Whyburn. Such
examples are given in Bella and Yaschenko [5]. Aull [3, Theorem 11] showed that
a T2-space X is a k-space and an accessibility space if and only if it is Fréchet-
Urysohn.1 Hence we have:

Proposition 1.1. For a k-space X , X × (ω + 1) is Whyburn if and only if X is

strongly Fréchet-Urysohn.

Proof: Assume that X × (ω + 1) is Whyburn. Since X × (ω + 1) is a k-space
[6, Theorem 3.3.27], by Aull’s result, X × (ω + 1) is Fréchet-Urysohn. Thus X is
strongly Fréchet-Urysohn by Michael’s result. The converse immediately follows
from Michael’s result mentioned above. �

Let Sω be the space obtained by identifying the limits of countably many
convergent sequences. This space is Fréchet-Urysohn (hence, a k-space), but
not strongly Fréchet-Urysohn. Therefore, Sω × (ω + 1) is not Whyburn by the
preceding proposition. One purpose of this paper is to make clear when X×(ω+1)
is Whyburn. Another topic is when X×Y is Whyburn for any Whyburn space Y .

2. Strongly Whyburn spaces

Definition 2.1. A space X is strongly Whyburn if for any sequence {An : n ∈ ω}

of subsets in X and a point p ∈ X \
⋃
{An : n ∈ ω}, p ∈

⋂
{
⋃

m≥n Am : n ∈ ω}
implies that there is a sequence {Bn : n ∈ ω} of closed subsets in X such that

Bn ⊂ An and {p} =
⋂
{
⋃

m≥n Bm : n ∈ ω}.

In the definition above, some Bn may be empty, and note that the condition
{p} =

⋂
{
⋃

m≥n Bm : n ∈ ω} holds if and only if (a) the closed family{Bn : n ∈ ω}

in X is locally finite at any point in X \ {p}, and (b) p ∈
⋃
{Bn : n ∈ ω} holds.

If all An’s are identical with a set A, there is an Fσ-subset F ⊂ A in X such that
F = {p}∪F . Therefore, every strongly Whyburn space is Whyburn. Moreover, we
can easily observe that every strongly Fréchet-Urysohn space is strongly Whyburn.
Thus we have the implications below.

strongly Fréchet-Urysohn → Fréchet-Urysohn
↓ ↓

strongly Whyburn → Whyburn

Theorem 2.2. For a space X , the following are equivalent:

(1) X is strongly Whyburn,

(2) X × (ω + 1) is Whyburn.

Proof: (1)→(2) We have only to check the Whyburn property at a point (p, ω) ∈
X × (ω + 1). Let A ⊂ X × (ω + 1) and assume (p, ω) ∈ A \ A. If (p, ω) ∈

A ∩ (X × {ω}), using the Whyburn property of X , we can take a subset B ⊂

1In particular, every compact T2 Whyburn space is Fréchet-Urysohn. This fact was given in
[1, Proposition 1 and Theorem 1] and [8, Theorem 1].
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A∩(X×{ω}) such that B = {(p, ω)}∪B. Therefore, we may put A =
⋃
{An×{n} :

n ∈ ω} for some An ⊂ X . If p ∈ An for infinitely many n ∈ ω, then we can take a
sequence in A converging to (p, ω). Therefore, we may assume p /∈

⋃
{An : n ∈ ω}.

The condition (p, ω) ∈ A implies p ∈
⋂
{
⋃

m≥n Am : n ∈ ω}, so there are closed

subsets Bn in X such that Bn ⊂ An and {p} =
⋂
{
⋃

m≥n Bm : n ∈ ω}. Let

B =
⋃
{Bn × {n} : n ∈ ω}. The condition p ∈

⋂
{
⋃

m≥n Bm : n ∈ ω} obviously

implies (p, ω) ∈ B. We observe that {(p, ω)} ∪ B is closed. Let q ∈ X \ {p}. By

{p} =
⋂
{
⋃

m≥n Bm : n ∈ ω}, there are a neighborhood U of q and some n ∈ ω

such that U ∩ (
⋃
{Bm : m ≥ n}) = ∅. Then we have (U × [n, ω]) ∩ B = ∅. Thus

(q, ω) /∈ B.

(2)→(1) Assume that An ⊂ X, p ∈ X \
⋃
{An : n ∈ ω} and p ∈

⋂
{
⋃

m≥n Am :

n ∈ ω}. Let A =
⋃
{An × {n} : n ∈ ω}. Then obviously (p, ω) ∈ A. Since

X × (ω + 1) is Whyburn, there is a subset B ⊂ A such that B = {(p, ω)} ∪ B.
We can put B =

⋃
{Bn × {n} : n ∈ ω} for some Bn ⊂ An. Then each Bn is

closed in X , and the condition (p, ω) ∈ B implies p ∈
⋂
{
⋃

m≥n Bm : n ∈ ω}. Let

q ∈ X \ {p}. By the condition (q, ω) /∈ B, there are a neighborhood U of q and

some n ∈ ω such that (U × [n, ω]) ∩ B = ∅. Hence we have q /∈
⋃
{Bm : m ≥ n}.

Consequently we have {p} =
⋂
{
⋃

m≥n Bm : n ∈ ω}. �

Corollary 2.3. For a k-space X , X is strongly Whyburn if and only if it is

strongly Fréchet-Urysohn.

Unfortunately, the author does not know if for a strongly Whyburn space X ,
X × I is Whyburn. A space X is said to have countable fan-tightness [2] if
whenever An ⊂ X and p ∈

⋂
{An : n ∈ ω}, there are finite subsets Fn ⊂ An such

that p ∈
⋃
{Fn : n ∈ ω}. It is known [5, Corollary 3.4] that if a regular space X

has countable fan-tightness and every point of X is a Gδ-set, then X is Whyburn.
Note that if a space X has countable fan-tightness, so does X × Y for any first-
countable space Y . Therefore we can say that if a regular space X has countable
fan-tightness and every point of X is a Gδ-set, then X × Y is Whyburn for any
first-countable space Y (in particular, X is strongly Whyburn).

A space is said to be submaximal if every dense subset is open (equivalently,
every subset with the empty interior is closed and discrete). Every regular sub-
maximal space is Whyburn [5, Proposition 1.3], but if X is a countable dense-in-
itself submaximal space, X × (ω + 1) is not Whyburn [5, Theorem 2.3]. Hence, a
countable submaximal dense-in-itself space cannot be strongly Whyburn. It looks
interesting to give a direct proof of this fact, using the definition of the strong
Whyburn property. Our idea owes to Bella and Yaschenko [5].

Proposition 2.4. If a space X is countable, dense-in-itself and submaximal, then

it is not strongly Whyburn.

Proof: Fix a point p ∈ X , and let X \ {p} = {xn : n ∈ ω}. Let An = {xn} for

each n ∈ ω. Then obviously p ∈
⋂
{
⋃

m≥n Am : n ∈ ω}. Assume that there is
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a sequence {Bn : n ∈ ω} of closed subsets in X such that Bn ⊂ An and {p} =
⋂
{
⋃

m≥n Bm : n ∈ ω}. Then Bn = ∅, or Bn = {xn}. Let I = {n ∈ ω : Bn 6= ∅}.
Since the family {Bn : n ∈ I} is locally finite at each point in X \ {p}, the set
C = {xn : n ∈ I} is a discrete subspace of X , so C has the empty interior. Hence
C is closed in X . This is a contradiction, because of p ∈ C. �

We give one application of Theorem 2.2. For a Tychonoff space X , we denote
by Cp(X) the space of all real-valued continuous functions with the topology of
pointwise convergence.

Lemma 2.5 ([11, Theorem 2.10]). If X × Y contains a homeomorphic copy of

Sω and X is first-countable, then Y contains a homeomorphic copy of Sω.

Proposition 2.6. If Cp(X) is Whyburn, then Sω cannot be embedded into

Cp(X).

Proof: Fix a point x ∈ X . Note that Cp(X) is homeomorphic to Cp(X, x) ×R,
where Cp(X, x) = {f ∈ Cp(X) : f(x) = 0} and R is the real line. Since Cp(X) is
Whyburn, Cp(X, x)× (ω +1) is also Whyburn, so Cp(X, x) is strongly Whyburn.
If Cp(X) has a homeomorphic copy of Sω, by the preceding lemma, Cp(X, x) has
a homeomorphic copy of Sω. This is a contradiction. �

The Whyburn property for Cp(X) were investigated in [5], [10] and [15]. So far
the author knows, there is no precise characterization (in terms of X) for Cp(X)
to be Whyburn.

Let F be a filter on a set. Then F is said to be free if
⋂
F = ∅ holds, and

have the countable intersection property if for each countable subfamily G ⊂ F ,⋂
G 6= ∅ holds. If F is an ultrafilter, then

⋂
G 6= ∅ is equivalent to

⋂
G ∈ F . For

the discrete space D(κ) of cardinality κ ≥ ω, let p ∈ βD(κ) \ D(κ), where βD(κ)
is the Stone-Čech compactification of D(κ) (i.e., p is a free ultrafilter on D(κ)).
Let X(p) = {p} ∪ D(κ) be the subspace of βD(κ). We examine whether X(p) is
strongly Whyburn.

A space is said to be a P-space if every Gδ-subset is open. There are many non-
discrete Whyburn P -spaces, for example, consider the one-point Lindelöfication
of the discrete space of cardinality ω1. In contrast with this fact, we have the
following.

Lemma 2.7. Every strongly Whyburn P-space is discrete.

Proof: Let X be a strongly Whyburn space and assume that there is a non-
isolated point p ∈ X . Then p ∈ X \ {p}, so there is an Fσ-subset F ⊂ X \ {p} in
X such that p ∈ F . This implies that X is not a P -space. �

Theorem 2.8. Let p ∈ βD(κ) \ D(κ). Then the following assertions are equiva-

lent:

(1) X(p) is strongly Whyburn,

(2) p does not have the countable intersection property,

(3) X(p) × Y is Whyburn for any first-countable space Y .
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Proof: (1)→(2) If p has the countable intersection property, then X(p) is ob-
viously a P -space. By Lemma 2.7, X(p) is not strongly Whyburn.

(3)→(1) is trivial.
(2)→(3) We have only to check the Whyburn property at (p, y) ∈ X(p) × Y .

Suppose (p, y) ∈ A \A for some subset A ⊂ X(p)×Y . Without loss of generality,
we may assume A ⊂ D(κ)×Y . We put A =

⋃
{{α}×Aα : α < κ}, where Aα ⊂ Y

and some Aα may be empty. Let {Un : n ∈ ω} be an open neighborhood base at
y such that Un ⊃ Un+1. For each n ∈ ω, we put Pn = {α < κ : Aα ∩ Un 6= ∅}.
Then Pn ⊃ Pn+1, and Pn ∈ p by the condition (p, y) ∈ A. Using (2), we can take
subsets Qn ⊂ Pn such that Qn ∈ p, Qn ⊃ Qn+1 and

⋂
{Qn : n ∈ ω} = ∅. For

each n ∈ ω and α ∈ Qn \ Qn+1, take a point yn,α ∈ Un ∩ Aα. We define a subset
B ⊂ A as follows:

B = {(α, yn,α) : n ∈ ω, α ∈ Qn \ Qn+1}.

First we observe (p, y) ∈ B. Let N be a neighborhood of (p, y) in X(p) × Y .
Take R ∈ p and n ∈ ω satisfying ({p} ∪ R) × Un ⊂ N . Since R ∩ Qn 6= ∅ and⋂
{Qk : k ∈ ω} = ∅, there is some k ≥ n such that R ∩ (Qk \ Qk+1) 6= ∅. If

α ∈ R ∩ (Qk \ Qk+1), then (α, yk,α) ∈ B ∩ (({p} ∪ R) × Un) ⊂ B ∩ N . Thus we

have (p, y) ∈ B. Next we observe B = B ∪ {(p, y)}. For a point y′ ∈ Y \ {y},
we see (p, y′) /∈ B. Since Y is T2, there are an open neighborhood V of y′ and
n ∈ ω such that V ∩Un = ∅. We consider the open neighborhood ({p}∪Qn)×V
of (p, y′). Suppose (({p} ∪ Qn) × V ) ∩ B 6= ∅. Then there are some k ∈ ω and
α ∈ Qk \ Qk+1 such that (α, yk,α) ∈ ({p} ∪ Qn) × V . The conditions α /∈ Qk+1

and α ∈ Qn imply n ≤ k. On the other hand, yk,α ∈ Uk and yk,α /∈ Un (because,

yk,α ∈ V ) imply k < n. This is a contradiction. Thus we have (p, y′) /∈ B.
Therefore X(p) × Y is Whyburn. �

We refer to [7, Chapter 12] on measurable and non-measurable cardinals. What
we have to recall is that for a set X , every ultrafilter p on X with the countable
intersection property satisfies

⋂
p 6= ∅ if and only if the cardinality of X is non-

measurable [7, 12.2]. By Theorem 2.8, we have the following.

Corollary 2.9. The following assertions hold.

(1) If m is a measurable cardinal and p is a free ultrafilter on D(m) with the

countable intersection property, then X(p) is not strongly Whyburn.

(2) If n is a non-measurable cardinal and p is a free ultrafilter on D(n), then

X(p) is strongly Whyburn.

3. κ-Whyburn spaces

Finally, in this section, we investigate when X×Y is Whyburn for any Whyburn
space Y . If X×Y is Fréchet-Urysohn for any Fréchet-Urysohn space Y , then Y is
discrete. Because, if X is not discrete, then X contains the convergent sequence
ω + 1, so the product X × Sω is not Fréchet-Urysohn.
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Temporarily, for an infinite cardinal κ, a space X is said to be κ-Whyburn if
A ⊂ X , |A| ≤ κ and p ∈ A \ A imply that there is a subset B ⊂ A such that
B = {p} ∪ B. Obviously a space is Whyburn if and only if it is κ-Whyburn for
each infinite cardinal κ.

Theorem 3.1. For an infinite cardinal κ and a space X , the following assertions

are equivalent:

(1) every subset A ⊂ X with |A| ≤ κ is closed (equivalently, closed and

discrete) in X ,

(2) X × Y is κ-Whyburn for any κ-Whyburn space Y ,

(3) X × Y is κ-Whyburn for any Whyburn space Y .

Proof: (1)→(2) Let Y be a κ-Whyburn space, and assume that A ⊂ X × Y ,
|A| ≤ κ and (p, q) ∈ A \A. Let πX : X × Y → X be the projection. Since the set

πX(A \ ({p} × Y )) is closed in X , we have (p, q) ∈ A ∩ ({p} × Y ). Applying the
κ-Whyburn property of Y , we can take a subset B ⊂ A such that B = {(p, q)}∪B.

(2)→(3) is trivial.
We show (3) →(1). Note that X is, at least, κ-Whyburn. Assume the contrary

of (1). Then there is a subset A ⊂ X such that A is not closed in X and |A| ≤ κ.
Let |A| = λ ≤ κ, and let p ∈ A \A. The subspace S = {p} ∪A of X is Whyburn,
because of |S| ≤ κ. For each α < λ, let Yα = {pα} ∪ Aα be a homeomorphic
copy of S, where pα = p and Aα = A. Let Y = {p̃} ∪ (

⋃
α<λ Aα) be the quotient

space of the topological sum of Yα’s obtained by collapsing the set {pα : α < λ}
to one point p̃. It is not difficult to check that Y is Whyburn. Since |S × Y | ≤ κ,
we have only to see that S × Y is not Whyburn. Let f : A → λ be a bijection.
We put E =

⋃
{{x} × Af(x) : x ∈ A}, then obviously (p, p̃) ∈ E \ E. If S × Y is

Whyburn, there is a subset F ⊂ E such that F = {(p, p̃)} ∪ F . The set F is of
the form F =

⋃
{{x} × Bf(x) : x ∈ A}, where Bf(x) ⊂ Af(x). Since {(p, p̃)} ∪ F

is closed,
⋃
{Bf(x) : x ∈ A} is closed in Y . This is a contradiction, because of

(p, p̃) ∈ F . Thus S × Y is not Whyburn. �

Applying the preceding theorem, we immediately have:

Corollary 3.2. For a space X , X × Y is Whyburn for any Whyburn space Y if

and only if X is discrete.
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