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Separable ℵk-free modules with almost trivial dual

Daniel Herden, Héctor Gabriel Salazar Pedroza

Abstract. An R-module M has an almost trivial dual if there are no epimorphisms
from M to the free R-module of countable infinite rank R(ω). For every natural
number k > 1, we construct arbitrarily large separable ℵk-free R-modules with
almost trivial dual by means of Shelah’s Easy Black Box, which is a combinatorial
principle provable in ZFC.
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Classification: 13B10, 13B35, 13C13, 13J10, 13L05

1. Introduction

Almost-free algebraic structures have caught the attention of researchers for
many decades. The first known example of such structures, dating back to 1937,
is the Baer-Specker group Zω, a non-free ℵ1-free abelian group of cardinality 2ℵ0 .
Other examples from the 1970’s are a construction by Griffith [10] of some non-
free ℵn-free abelian groups for all n < ω, and a construction by Hill [12], where
he managed to construct such groups of minimal size ℵn. However, no further
algebraic properties of these groups were shown.

During the 1980’s, almost-free groups also appeared in the context of con-
structing groups and modules with prescribed endomorphism ring. For example,
Corner, Göbel [1] and Dugas, Göbel [2] used Shelah’s Black Box to construct in
ZFC torsion-free abelian groups with prescribed endomorphism ring and noticed
that these groups were non-free ℵ1-free as well. However, it was clear that these
groups were not ℵ2-free, and the question on how to generalize these constructions
within ZFC to obtain ℵn-freeness for n > 1 while keeping such additional algebraic
properties remained unanswered for many more years. Only in 2007 Shelah [15]
introduced a new, more powerful version of his Black Box principle, which allowed
him to construct ℵn-free abelian groups with trivial dual. This breakthrough im-
mediately led to other constructions of ℵn-free groups and modules with different
algebraic properties like almost trivial dual or prescribed endomorphism ring (see
for example [6], [7] and [8]).

In [7], the authors construct a class of ℵk-free R-modules M for a fixed natural
number k > 1, where R is a countable domain, but not a field. Moreover, these
modules have trivial dual , i.e. HomR(M,R) = 0. Generally speaking, one starts
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considering a free R-module B and its completion B̂ with respect to a countable
multiplicatively closed subset S of R. An ℵk-free R-module M with trivial dual
is then realized as the S-pure closure of the module generated by B and a specific

family F of elements of B̂. By the choice of this family F, M turns out to be

contained in a direct product of copies of the S-completion R̂ of R. In this paper
we realize the construction of another class of ℵk-free R-modules contained in a
direct product of copies ofR, namely, these modules are S-separable. Nevertheless,
as in [8], where modules over the ring Jp of p-adic integers are considered (and
thus, they are separable), we cannot expect a module M from this class to have
trivial dual. Instead, M will have almost trivial dual , meaning that the free
module of countable rank R(ω) is not an epimorphic image of M . This approach
refines and significantly enhances the expositions of [7] and [8].

The main result in this work is, for a countable commutative ring R (but
not a field), the construction of arbitrarily large S-separable ℵk-free R-modules
with no epimorphisms onto R(ω). So we elaborate a plan to achieve three goals,
namely, separability, ℵk-freeness and eliminating any possible epimorphisms onto
R(ω). We dedicate one section to each one of these goals. In Section 2, the basic
notation and notions are given. In Section 3 we construct an R-module M which
is (only) S-separable. This module is realized as the S-pure closure of the module
generated by a free module B and a specific family F of elements of a very natural

S-pure submodule B of its S-completion B̂. In Section 4, we introduce a so called
Freeness Proposition and choose the family F more carefully towards making our
previously constructed module M ℵk-free. Finally, in Section 5, we introduce
Shelah’s Easy Black Box from [15], which we use to refine our choice of the family
F even more in order to eliminate unwanted epimorphisms onto R(ω). The Easy
Black Box 17, the First λ-Black Box 19 and the Second λ-Black Box 21 and their
proofs appeared in [7] with other names, but they are also included here for the
convenience of the reader.

This work generalizes and is motivated by the first chapter of the second au-
thor’s Ph.D. thesis. The considerably more technical challenge of realizing en-
domorphism rings of separable modules is treated in [5]. Our notation matches
standard literature and we refer to [4], [9] as background material on the theory
of separable modules.

2. Notation and basic notions

Let us begin by introducing some notation.

Notation 1. (i) Functions will be written on the right side of their argument,
so if f is a function with domain A and a ∈ A, then the image of a under f
will be written as af .

(ii) ωλ denotes the set of all functions τ : ω → λ, while ω↑λ is the subset of ωλ
consisting of all order preserving functions η : ω → λ, namely

ω↑λ = { η : ω → λ | mη < nη for m < n }.
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Similarly, ω>λ denotes the set of all functions σ : n → λ with n < ω,
while ω↑>λ is the subset of ω>λ consisting of all order preserving functions
η : n→ λ with n < ω.

(iii) If f : A → BC, i.e. af is a function for all a ∈ A, then we write fa instead
of af .

(iv) If A is a set and κ is a cardinal, then [A ]≤κ denotes the set of all X ⊆ A

such that |X | ≤ κ. Analogously we define [A ]
<κ

and [A ]
κ

= [A ]
=κ

.
(v) If α ≤ γ are ordinals, we write [α, γ ] = { β | α ≤ β ≤ γ }, (α, γ ) =

{ β | α < β < γ } and [α, γ ) = { β | α ≤ β < γ }.
(vi) Let {Ai | i ∈ [ 1,m ] } and {Bi | i ∈ [ 1, n ] } be finite families of sets,

A = A1 × · · · × Am and B = B1 × · · · × Bn. If a = (a1, . . . , am) ∈ A and
b = (b1, . . . , bn) ∈ B, we write a ∧ b = (a1, . . . , am, b1, . . . , bn).

(vii) If κ is a cardinal, κ+ denotes the successor of κ, which is the smallest cardinal
larger than κ.

Let k > 1 be fixed for the rest of this work. Let λ = 〈λ1, . . . , λk 〉 be a finite
increasing sequence of infinite regular cardinals with the following properties:

(i) λℵ0

1 = λ1;

(ii) for all f ∈ [ 1, k − 1 ], λ
λf

f+1 = λf+1.

In particular, for all f ∈ [ 1, k ], ℵ0 < λf and λℵ0

f = λf . For example, one such

sequence can be constructed recursively by putting λ1 =
(
2ℵ0

)+
and λf+1 =(

2λf
)+

for all f ∈ [ 1, k − 1 ].
For f ∈ [ 1, k ], we construct the set

Λf = ω↑λ1 ×
ω↑λ2 × · · · × ω↑λf−1 ×

ω↑λf .

In case f = k, we simply write Λ.

Now let m ∈ [ 1, f ]. We define the set Λfm∗, which is obtained by replacing the
m-th coordinate ω↑λm of Λf by the set ω↑>λm, namely,

Λfm∗ = ω↑λ1 × · · · × ω↑>λm × · · · × ω↑λf .

Then, let

Λf∗ =
⋃̇

m∈[ 1,k ]

Λfm∗.

For f = k we simply write Λ∗ and Λm∗ for all m ∈ [ 1, k ].

Definition 2. Let f ∈ [ 1, k ] and m ∈ [ 1, f ].

(i) If η ∈ ω↑λm, then the support of η is the set

[ η ] = { η ↾ n | n < ω }.

(ii) If ν ∈ ω↑>λm, then the support of ν is the set

[ ν ] = { ν ↾ ℓ | ℓ ≤ dom ν }.
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(iii) If η = (η1, . . . , ηf ) ∈ Λf and n < ω, then η ↿ 〈m,n〉 denotes the element of

Λfm∗ obtained from η by replacing its component ηm by ηm ↾ n, i.e.

η ↿〈m,n〉 = (η1, . . . , ηm−1, ηm ↾ n, ηm+1 . . . , ηf ).

(iv) For every η ∈ Λf and m ∈ [ 1, f ] consider the sets

[ η ↿ m ] = { η ↿〈m,n〉 | n < ω }

and

[ η ] =
⋃̇

m∈[ 1,f ]

[ η ↿ m ]

The set [ η ] is called the support of η.

Let R be a countable commutative ring with 1. Given a finite sequence of
infinite cardinals λ and a subset X∗ ⊆ Λ∗, we consider the free R-module

BX∗
=
⊕

ν∈X∗

Reν .

If X∗ = [ η ] for some η ∈ Λ, then we simply write Bη. The starting point of our
construction will be the free R-module

B =
⊕

ν∈Λ∗

Reν .

Definition 3. Let S be a countable multiplicatively closed subset of R such that
1 ∈ S, 0 /∈ S. We say that an R-module M is:

(i) S-torsion-free if sm = 0 implies m = 0 for all s ∈ S, m ∈M ;
(ii) S-reduced if no element of M is divisible by every element of S, i.e.⋂

s∈S
sM = 0;

(iii) If R itself is S-torsion-free and S-reduced, we call it S-ring.

Choose a countable multiplicatively closed subset S of R such that R is an
S-ring. Fix an enumeration S = { sn | n < ω } such that s0 = 1. For any n < ω,
define qn =

∏
i≤n si. Notice that qn+1 = qnsn+1 for all n < ω. Moreover, for all

m,n < ω, define
qn
qm

=
∏

m<i≤n

si

if m < n. Also notice that qn

q0
= qn and qn

qn
= 1 for all n < ω.

Definition 4. Let M be an R-module. An R-submodule N of M is S-pure if for
all s ∈ S, N ∩ sM = sN . We write N ≤∗ M .

Consider the S-topology on B generated by the basis { sB | s ∈ S } of neigh-

borhoods around 0. This topology is Hausdorff since R is an S-ring. Let B̂ be
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the S-completion of B. The elements of B̂ are of the form b =
∑

ν∈Λ∗

bνeν ∈ B̂

for some bν ∈ R̂. See [9] for more elementary facts of B̂.

3. Separability

Now consider

B = B̂ ∩
∏

ν∈Λ∗

Reν ,

which is an S-pure submodule of B̂. Our intention is to choose the family F

from B, so that the constructed modules are submodules of a direct product of
copies of R.

Definition 5. Let R be an S-ring. Then S-pure submodules of direct products
Rκ are called S-separable.

Definition 6. (i) For η ∈ Λ and n < ω, we define the branch element associ-
ated with η and n as

yηn =
∑

i≥n

qi
qn

(
k∑

m=1

eη↿〈m,i〉

)
∈ B.

We write yη for yη0.
(ii) Let F = { yη | η ∈ Λ } be the family of branch elements. Define M to be the

S-purification of the module generated by B and F, i.e.

M = 〈B, yηn | yη ∈ F, n < ω 〉 = 〈B,F 〉∗ .

Since M ≤∗ B ≤∗

∏
ν∈Λ∗

Reν , the R-module M is S-separable, so we have
achieved the first goal of our plan.

4. ℵk-freeness

We say that a module M over a hereditary ring is κ-free, if every subset of
M of cardinality < κ is contained in a free submodule of M . For non-hereditary
rings however, it is necessary to modify this notion. The following more general
definition of κ-freeness is due to Göbel, Herden, Shelah [6], which is a slightly
stronger version of that in Eklof, Mekler [3].

Definition 7. If κ is a regular uncountable cardinal, we say that an R-module
M is κ-free if there is a family C of S-pure R-submodules of M satisfying:

(a) every element of C is < κ-generated and free;

(b) every element of [M ]
<κ

(recall Notation 2(iv)) is contained in an element
of C;

(c) C is closed under unions of well-ordered chains of length < κ.



12 Herden D., Salazar Pedroza H.G.

The first step to achieve ℵk-freeness is to prove a Freeness-Proposition, which
allows us to enumerate subsets of Λ in such a convenient way that we can prove
linear independence in the constructed modules. We first have to deal with the
notion of being coordinatewise-closed for filtrations, which will appear in the proof
of the proposition.

Lemma 8. Let F : Λ → [ Λ∗ ]
≤ℵ0 be any map, f ∈ [ 1, k ] and Ω ∈ [ Λ ]

ℵf together

with an ℵf -filtration {℧α | α < ωf } of Ω such that ℧0 = ∅ and
∣∣℧α+1 \ ℧α

∣∣ =
ℵf−1 for all α < ωf . Then it is possible to construct a coordinatewise-closed

ℵf -filtration {Ωα | α < ωf } of Ω, meaning that for all η ∈ Ωα+1, if there exist

η′, η′′ ∈ Ωα such that

{ ηm | m ∈ [ 1, k ] } ⊆ { η′m, η
′′
m | m ∈ [ 1, k ] } ∪ { νm | ν ∈ η′F ∪ η′′F,m ∈ [ 1, k ] },

then η ∈ Ωα. This ℵf -filtration also satisfies Ω0 = ∅ and
∣∣Ωα+1 \ Ωα

∣∣ = ℵf−1 for

all α < ωf .

Proof: First suppose that we have constructed a coordinatewise-closed ℵf -filtra-
tion {Ωα | α < γ } of Ω up to some limit ordinal γ < ωf such that Ω0 = ∅ and∣∣Ωα+1 \ Ωα

∣∣ = ℵf−1 for all α + 1 < γ by means of the original filtration. We
define Ωγ =

⋃
α<γ Ωα as usual.

Now suppose that the coordinatewise-closed ℵf -filtration {Ωα | α ≤ γ } of
Ω has been constructed up to some successor ordinal γ < ωf and also satisfies∣∣Ωα+1 \ Ωα

∣∣ = ℵf−1 for all α + 1 ≤ γ. Let β be the minimal ordinal such that

Ωγ ⊆ ℧β and
∣∣℧β \ Ωγ

∣∣ = ℵf−1. Let Ωγ+1
0 = ℧β and assume we have constructed

Ωγ+1
n for some n < ω. For all m ∈ [ 1, k ], let

ω↑λm(Ωγ+1
n ) =

{
ηℓ | ℓ ∈ [ 1, k ] , η ∈ Ωγ+1

n ∪
⋃

Ωγ+1
n F

}
∩ ω↑λm,

Ωγ+1
n+1 = ω↑λ1(Ω

γ+1
n ) × · · · × ω↑λk(Ω

γ+1
n ) ⊆ Λ

and

Ωγ+1 = Ω ∩
⋃

n<ω

Ωγ+1
n .

�

Definition 9. (i) For η ∈ ω↑>λk ∪ ω↑λk, we define the norm ‖ η ‖ of η as

‖ η ‖ = sup
n<dom η

(nη + 1) ∈ λk;

in particular, ‖α ‖ = α+ 1 for α ∈ λk and ‖ ∅ ‖ = 0.
(ii) For η ∈ Λ ∪ Λ∗, define ‖ η ‖ = ‖ ηk ‖.
(iii) For X ⊆ Λ, put ‖X ‖ = supη∈X ‖ η ‖. Similarly, ‖X ‖ = supν∈X ‖ ν ‖ if

X ⊆ Λ∗.
(iv) A function F : Λ → [ Λ∗ ]

≤ℵ0 is regressive if ‖ ηF ‖ < 0ηk for all η ∈ Λ.
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Freeness-Proposition 10. Let F : Λ → [ Λ∗ ]
≤ℵ0 be a regressive map,

f ∈ [ 1, k ], Ω ∈ [ Λ ]
ℵf−1 and 〈uη | η ∈ Ω 〉 be a family of subsets of [ 1, k ]

such that |uη | ≥ f . Then there exists a bijective enumeration { ηα | α < ζ }
of Ω for some ζ ∈ [ωf−1, ωf ) such that, for all α < ζ, there exist ℓα ∈ uηα and

nα ∈ [ 1, ω) with the property that, for all n ≥ nα,

ηα ↿〈ℓα, n〉 /∈ { ηβ ↿〈ℓα, n〉 | β < α } ∪
⋃

ΩαF

where Ωα = { ηβ | β ≤ α }.

Proof: We proceed by induction on f . If f = 1, then |Ω | = ℵ0 and uη 6= ∅
for all η ∈ Ω. For all α < λk, define Uα = { η ∈ Ω | 0ηk = α }. Consider the
set N = {α < λk | Uα 6= ∅ } and enumerate it as N = {αβ | β < δ } for some
δ < ω1 in such a way that αβ < αγ if and only if β < γ < δ. Put γβ =

∣∣Uαβ

∣∣ and
σβ =

∑
α<β γα. We enumerate Uαβ

= { ηα | σβ ≤ α < σβ +γβ }. This results in a

bijective enumeration { ηα | α < ζ } of Ω such that ζ ∈ [ω, ω1) and, for all α < ζ,

0ηαk ≤ 0ηα+1
k < 0ηα+ω

k .

Choose ℓα ∈ uηα arbitrarily. If ηα ∈ Uγ and β0 is the minimal ordinal such that

ηβ0 ∈ Uγ , then we can find some nα,β ∈ [ 1, ω ) such that ηα ↿〈ℓα, n〉 6= ηβ ↿〈ℓα, n〉
for all β ∈ [β0, α) and n ≥ nα,β . Put nα = maxβ∈[β0,α) nα,β. Then, for all

n ≥ nα, ηα ↿〈ℓα, n〉 /∈ { ηβ ↿〈ℓα, n〉 | β ∈ [β0, α) }. Moreover,

ηα ↿〈ℓα, n〉 /∈ { ηβ ↿〈ℓα, n〉 | β < β0 } ∪
⋃

ΩαF

since F is regressive and 0ηβk < 0ηαk for all β < β0.

Now suppose that the assertion is true for some f ∈ [ 1, k − 1 ]. Let Ω ∈ [ Λ ]
ℵf

and 〈uη | η ∈ Ω 〉 with |uη | ≥ f + 1. Choose an ℵf -filtration {Ωα | α < ωf } of
Ω such that Ω0 = ∅ and

∣∣Ωα+1 \ Ωα
∣∣ = ℵf−1 for all α < ωf . By the previous

lemma, we can assume that this filtration is coordinatewise-closed. For every
η ∈ Ωα+1 \ Ωα, consider

u∗η = {m ∈ [ 1, k ] | ∃ η′ ∈ Ωα, n < ω

( η ↿〈m,n〉 = η′ ↿〈m,n〉 or η ↿〈m,n〉 ∈ η′F ) }.

It follows that
∣∣ u∗η

∣∣ ≤ 1, since
∣∣u∗η

∣∣ > 1 would imply that η ∈ Ωα. Put u′η = uη\u
∗
η

and observe that
∣∣ u′η

∣∣ ≥ f . We apply the induction hypothesis on each of the

sets Ωα+1 \ Ωα together with the family 〈u′η | η ∈ Ωα+1 \ Ωα 〉 to obtain an

enumeration Ωα+1 \Ωα = 〈 ηβ | β < ζ 〉 for some ζ ∈ [ωf−1, ωf) with the required
property. We induce an enumeration on Ω with the desired property by ordering
these enumerations lexicographically. �
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Definition 11. (i) For every b =
∑
ν∈Λ∗

bνeν ∈ B̂ with bν ∈ R̂, the Λ∗-support

of b is the set

[ b ] = { ν | bν 6= 0 }.

(ii) For b ∈ B, define ‖ b ‖ = supν∈[ b ] ‖ ν ‖.

(iii) For α < λk, let Bα = 〈 b ∈ B | ‖ b ‖ < α 〉.

Definition 12. A sequence of elements (bηn)n<ω ⊆ B is called regressive with
respect to η ∈ Λ, if the following holds:

(i) ‖ bη0 ‖ < 0ηk,
(ii) bηn − sn+1bη n+1 ∈ B for all n < ω, i.e. (bηn)n<ω is a divisibility chain,
(iii) [ bηn ] ⊆ [ bη0 ] for all n < ω.

Every element bη ∈ B allows for a suitable sequence (bηn)n<ω of elements

bηn ∈ B such that conditions (ii) and (iii) hold with bη0 = bη. We fix such a

sequence for each bη ∈ B.

Definition 13. For an element bη ∈ B with regressive sequence (bηn)n<ω ⊆ B,
we define the branch-like element associated with η and n as

y′ηn = bηn + yηn.

We write y′η for y′η0. We call the element bηn the correction of the branch ele-
ment yηn.

We fix a map δ : λk → B such that αδ ∈ Bα for all α < λk. Consider the
following family F = { y′η = bη + yη | η ∈ Λ, bη = 0ηkδ } of branch-like elements

and construct the module M as in Definition 6(ii).

Definition 14. For g ∈ M , define the Λ-support [ g ]Λ of g to be the set of
elements of Λ that contribute to the representation of g. More precisely, if qmg =
b+

∑
η∈Λ nηy

′
η for some m ≥ 0, where b ∈ B and nη ∈ R for all η ∈ Λ, then

[ g ]Λ = { η ∈ Λ | nη 6= 0 }.

Obviously, [ g ]Λ is finite. For N ⊆M , we define [N ]Λ =
⋃
g∈N [ g ]Λ.

Theorem 15. The module M defined as above is ℵk-free.

Proof: Suppose that H is a subset of M of cardinality ℵk−1. Let σ : B →

[ Λ∗ ]
≤ℵ0 be the “Λ∗-support” function, i.e. bσ = [ b ] for all b ∈ B. Notice that

F : Λ → [ Λ∗ ]
≤ℵ0 given by ηF = 0ηkδσ is regressive since αδ ∈ Bα for all α < λk.

Let Ω = [H ]Λ, Ω∗ = [H ] \ ([ Ω ] ∪
⋃
η∈Ω [ ηF ]) and observe that |Ω | ≤ ℵk−1.

Then the submodules

MΩ = 〈 eη↿〈m,n〉, eν , y
′
η | η ∈ Ω, ν ∈ ηF,m ∈ [ 1, k ] , n < ω 〉∗,
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and

MΩ∗Ω = BΩ∗
⊕MΩ

satisfy H ⊆MΩ∗Ω. Our goal is to show that MΩ∗Ω is free, for which it suffices to
show that MΩ is free. Suppose that |Ω | = ℵk−1. By taking uη = [ 1, k ] for all
η ∈ Ω, we enumerate Ω = { ηα | α < ζ } for some ζ ∈ [ωk−1, ωk) according to the
Freeness Proposition 10 and find ℓα ∈ uη and nα < ω such that

ηα ↿〈ℓα, n〉 /∈ { ηβ ↿〈ℓα, n〉 | β < α } ∪
⋃

ΩαF

for all n ≥ nα. This allows us to write

MΩ = 〈 eηα↿〈m,n〉, eν , y
′
ηαn | α < ζ, ν ∈ ηαF,m ∈ [ 1, k ] , n < ω 〉.

Let

Mα = 〈 eηβ↿〈m,n〉, eν , y
′
ηβn

| β < α, ν ∈ ηβF,m ∈ [ 1, k ] , n < ω) 〉

and notice that M0 = {0},
⋃
α<ζMα = MΩ and

Mα+1 = Mα + 〈 eηα↿〈m,n〉, eν , y
′
ηαn | ν ∈ ηαF,m ∈ [ 1, k ] , n < ω) 〉

= Mα + 〈 eηα↿〈ℓα,n〉 | n < nα) 〉 + 〈 y′ηαn | n ≥ nα 〉 + 〈 eν | ν ∈ ηαF 〉

+ 〈 eηα↿〈m,n〉 | m ∈ [1, k] \ {ℓα}, n < ω) 〉

since

eηα↿〈ℓα,n〉 = y′ηαn − sn+1y
′
ηα(n+1) − bηαn −

k∑

m=1
m 6=ℓα

eηα↿〈m,n〉

for n ≥ nα and

y′ηαn =
qnα

qn
y′ηαnα

+

nα−1∑

i=n

qi
qn

(
bηαi +

k∑

m=1

eηα↿〈m,i〉

)

for n < nα. We claim that Mα+1/Mα is free. To prove our claim, suppose

∑

n<nα

rneηα↿〈ℓα,n〉

︸ ︷︷ ︸
(1)

+
∑

n≥nα

rny
′
ηαn

︸ ︷︷ ︸
(2)

+
∑

n<ω

k∑

m=1
m 6=ℓα

rmneηα↿〈m,n〉

︸ ︷︷ ︸
(3)

+
∑

ν∈ηαF

rνeν

︸ ︷︷ ︸
(4)

∈Mα.

It is immediate that the support of term (1) is disjoint from those of the other
terms. Then rn = 0 for all n < nα with eηα↿〈ℓα,n〉 /∈ Mα. By the Freeness
Proposition 10, ηα ↿ 〈ℓα, n〉 neither belongs to the support of the terms (3) and
(4) nor to the support of Mα for all n ≥ nα, which implies that rn = 0 for all
n ≥ nα. Since ‖ bηα ‖ < 0ηαk , it follows that rmn = rν = 0 for all m ∈ [ 1, k ]\{ ℓα },
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n < ω and ν ∈ ηαF such that eηα↿〈m,n〉, eν /∈Mα. Therefore, Mα+1/Mα is freely
generated by the set

{ eηα↿〈ℓα,r〉, y
′
ηαs, eηα↿〈m,t〉, eν |

r < nα, s ≥ nα,m ∈ [ 1, k ] \ { ℓα }, t < ω, ν ∈ ηαF } \Mα.

Since MΩ is the union of the continuous chain {Mα | α < ζ } such that M0 is
free and every Mα+1/Mα is free, MΩ itself is free. The ℵk-freeness of M is now
witnessed by the family C = {MΩ∗Ω | ℵk > |Ω∗ | , |Ω | }. �

Hence, we have achieved the second goal of our plan.

5. No epimorphisms onto R(ω)

To accomplish the third and final goal of our plan, we need to refine our choice
of corrections bη of the branch elements yη. This is done by means of Shelah’s

Easy Black Box . The Black Box is a combinatorial principle that allows us to
partially predict a given map under specific cardinal conditions. Various vari-
ants of this principle have been successfully used to realize complicated algebraic
constructions (see, for example, [2], [6], [9] and [14] for applications of the Ge-
neral Black Box and the Strong Black Box). Its main feature is the fact that it
is provable in ZFC, since prediction of maps is normally the direct consequence
of additional set-theoretic assumptions like Martin’s Axiom or Jensen’s Diamond
Principle ♦. Since the Easy Black Box is the central principle behind every ver-
sion of the Black Box, its current state of development focuses on replacing older
versions of the Black Box with the Easy Black Box. See [11] for a more detailed
exposition on the advantages and disadvantages of doing this replacement.

Definition 16. For an infinite cardinal λ and a set S of cardinality ≤ λℵ0 , a trap

for the Easy Black Box is a map

ϕη : [ η ] → S

for some η ∈ ω↑λ.

The Easy Black Box 17. Let λ be an infinite cardinal and S a set of cardinality

≤ λℵ0 . Then there exists a family of traps

〈ϕη | η ∈ ω↑λ 〉

that satisfies the following

Prediction Principle: for all Φ : ω↑>λ → S and ν ∈ ω↑>λ, there exists η ∈ ω↑λ
with ν ⊂ η and Φ ↾ [ η ] = ϕη.
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Proof: Since |S | ≤ λℵ0 = | ωλ |, we can fix an embedding π : S →֒ ωλ. We also
fix a map µ : λ → ω>λ such that µ−1 [σ ] is unbounded in λ for all σ ∈ ω>λ, or
equivalently, there is a list

ω>λ = 〈µα | α < λ 〉

with enough repetitions for each σ ∈ ω>λ. For example, use Solovay’s Theorem
(see [13, p. 95, Theorem 8.10]) to obtain a family {Eν | ν ∈ ω>λ } of disjoint

stationary subsets of λ such that λ =
⋃̇
ν∈ω>λEν , and define µα = ν for all

α ∈ Eν .
We would like to identify elements of nS with those of ω>λ. For this reason,

we define a coding map πn : nS → n2

λ for all n ∈ (0, ω) such that if ϕ ∈ nS,
then πnϕ is given by (qn + r)πnϕ = rπqϕ for q, r ∈ [ 0, n ) (recall Notation 1(iii)).
Equivalently (recall Notation 1(viii)),

ϕπn = (0ϕπ ↾ n) ∧ · · · ∧ ((n− 1)ϕπ ↾ n).

We now consider the set

X = { η ∈ ω↑λ | ∃ψ ∈ ωS ∃ i < ω ∀n ≥ i (πn+1
ψ↾(n+1) = µnη) }.

Since π is an embedding, if η ∈ X, then ψ is unique, so we call it ψη. We use X to
construct the family of traps 〈ϕη | η ∈ ω↑λ 〉 in the following way: if η ∈ X, then
define (η ↾ n)ϕη = nψη for all n < ω, and if η /∈ X, choose ϕη arbitrarily.

We now verify that this family of traps satisfies the Prediction Principle. Let
Φ : ω↑>λ → S and ν ∈ ω↑>λ. We start the construction of η ∈ ω↑λ extending
ν by setting nη = nν for all n ∈ dom ν. Now assume we have defined η ↾ n up
to a certain n ≥ dom ν. Consider the element ϕn+1 ∈ n+1S given by mϕn+1 =

(η ↾ m)Φ for all m ≤ n. Then πn+1
ϕn+1 ∈ ω>λ and µ−1

[
πn+1
ϕn+1

]
is unbounded in λ.

Define nη = α to be the least ordinal α > (n − 1)η such that µα = πn+1
ϕn+1 . This

finishes the construction of the extension η ∈ ω↑λ of ν. Moreover, let

ϕ =
⋃

n≥dom ν

ϕn.

Since η ∈ X is witnessed by ϕ = ψη and i = dom ν, it immediately follows that
(η ↾ n)ϕη = (η ↾ n)Φ for all n < ω. �

Definition 18. Let C = 〈C1, . . . , Ck 〉 be a sequence of sets such that |Cm | ≤ λm
and takeC =

⋃
m∈[ 1,k ] Cm. A set-trap for η ∈ Λ and C is a function ϕη : [ η ] → C.

The First λ-Black Box 19. Let Λ and Λ∗ be as before, C = 〈C1, . . . , Ck 〉
and C as in Definition 18. Then there exists a family of set-traps 〈ϕη | η ∈ Λ 〉
satisfying the following
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Prediction Principle: If ϕ : Λ∗ → C is any map with the trap condition

Λm∗ϕ ⊆ Cm and α < λk, then there exists η ∈ Λ such that ϕ ↾ [ η ] = ϕη
and 0ηk = α.

Proof: We will proceed by induction on the length of λ.
Assume that the length of λ is 1, so we can simply write λ = 〈λ 〉 and C = 〈C 〉.

Then Λ = ω↑λ and Λ∗ = ω↑>λ. Put S = C. Since |S | ≤ λ = λℵ0 , the Easy Black
Box 17 provides us with a family of (set-)traps 〈ϕη | η ∈ ω↑λ 〉 with ϕη : [ η ] → S.
We now verify the prediction principle. Let ϕ : Λ∗ → C be a map and let α < λ.
Choose an arbitrary ν ∈ Λ∗ such that 0ν = α. By the Easy Black Box 17, there
exists η ∈ Λ such that ν ⊂ η and ϕη ⊆ ϕ. This means ϕ ↾ [ η ] = ϕη and 0η = α.

Now assume that the assertion is true for some f ∈ [ 1, k − 1 ] and that the
length of λ is f + 1. In this case, λ = 〈λ1, . . . , λf+1 〉 and C = 〈C1, . . . , Cf+1 〉.

We also write Cm =
⋃m
i=1 Ci for m ∈ [ 1, f + 1 ]. Define S = Λf

Cf+1 (the set of

all maps from Λf to Cf+1) and notice that |S | ≤ λ
λf

f+1 = λf+1 = λℵ0

f+1. Hence,

the Easy Black Box 17 provides us with a family 〈ϕη | η ∈ ω↑λf+1 〉 of traps
ϕη : [ η ] → S. We would like to define the set-traps ϕη : [ η ] → Cf+1 for all
η ∈ Λf+1. By the induction hypothesis, we already have a family 〈ψη | η ∈ Λf 〉
of set-traps ψη : [ η ] → Cf . Given an η = (η1, . . . , ηf+1) ∈ Λf+1, put η′ =
(η1, . . . , ηf ) ∈ Λf . Then for every η ∈ Λf+1 define

(η ↿〈m,n〉)ϕη =

{
(η′ ↿ 〈m,n〉)ψη′ , if m ∈ [ 1, f ] ;

η′ϕ
ηf+1

ηf+1↾n, if m = f + 1.

(Recall Notation 1(iii).)

It remains to verify the prediction principle. Let ϕ : Λf+1
∗ → Cf+1 be such

that Λf+1
m∗ ϕ ⊆ Cm and let α < λf+1. Choose an arbitrary ν ∈ ω↑>λf+1 with

0ν = α. Since Λf+1
f+1∗ϕ ⊆ Cf+1, for every ρ ∈ ω↑>λf+1, we can define a function

Φρ : Λf → Cf+1 by η′Φρ = (η′ ∧ ρ)ϕ. This, in turn, gives us a function
Φ : ω↑>λf+1 → S. By the Easy Black Box 17, there exists η ∈ ω↑λf+1 such that
ν ⊂ η and ϕη ⊂ Φ.

We now use ϕ and η to define a function ϕ′ : Λf∗ → Cf . For every ν ∈ Λf∗ ,

define νϕ′ = (ν ∧ η)ϕ, and observe that Λfm∗ϕ
′ ⊆ Cm for all m ∈ [ 1, f ]. By

induction hypothesis, there exists η′ ∈ Λf such that ϕ′ ↾ [ η′ ] = ψη′ . Define
ηf+1 = η and η = η′ ∧ η. In this way, 0ηf+1 = 0ν = α. Finally, we must verify
that ϕ ↾ [ η ] = ϕη. If m ∈ [ 1, f ], then

(η ↿〈m,n〉)ϕ = (η′ ↿ 〈m,n〉)ϕ′ = (η′ ↿ 〈m,n〉)ψη′ = (η ↿〈m,n〉)ϕη,

and if m = f + 1, then

(η ↿〈m,n〉)ϕ = η′Φηf+1↾n = η′ϕ
ηf+1

ηf+1↾n = (η ↿〈m,n〉)ϕη.

This completes the proof. �
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Definition 20. Let N be an R-module. A trap for B and N is a homomorphism
ϕη : Bη → N .

The Second λ-Black Box 21. Let Λ and Λ∗ be as before and N an R-module

such that |N | ≤ λ1. Then there exists a family 〈ϕη | η ∈ Λ 〉 of traps for B and

N satisfying the following

Prediction Principle: If ϕ : B → N is any homomorphism and α < λk, then there

exists η ∈ Λ such that ϕ ↾ Bη = ϕη and 0ηk = α.

Proof: The members of the sequence C = 〈C1, . . . , Ck 〉 where Cm = N for all

m ∈ [ 1, k ] satisfy |Cm | ≤ λm since λ is increasing and |N | ≤ λ1. Hence, C = N .
The First λ-Black Box 19 provides us with a family of set-traps 〈ϕη | η ∈ Λ 〉.
Since [ η ] ⊂ Λ∗, each ϕη can be regarded as a homomorphism ϕη : Bη → N .
Since any homomorphism ϕ : B → N is completely determined by its action on
the generators eν of B, it can be regarded as a function ϕ : Λ∗ → C which also
satisfies Λmϕ ⊆ Cm. Thus, for α < λk, the First λ-Black Box 19 yields that there
exists η ∈ Λ such that 0ηk = α and ϕ ↾ [ η ] = ϕη, i.e. ϕ ↾ Bη = ϕη. �

We now present the Step Lemma. Step Lemmas are the results that allow to
choose correctly the elements of the family F, i.e. to choose properly the correc-
tions bη for the branch elements yη in order to eliminate unwanted epimorphisms.

Step Lemma 22. Let η ∈ Λ, bη = 0ηkδ and ϕη from the Second λ-Black Box 21.

There exists an εη ∈ { 0, 1 } such that no homomorphism

ϕ :
〈
B, y′η = εηbη + yη

〉
∗
→ S,

where S =
⊕

n<ω Ren, satisfies both ϕ ↾ Bη = ϕη and bηϕ ∈ Ŝ \ S.

Proof: Suppose towards a contradiction that for both ε ∈ {0, 1}, there exists

some ϕε : 〈B, εbη + yη 〉∗ → S such that ϕε ↾ Bη = ϕη and bηϕ
ε ∈ Ŝ \ S. On one

hand, (bη+yη)ϕ
1−yηϕ

0 ∈ S. On the other hand, (bη+yη)ϕ
1−yηϕ

0 = bηϕ
1 ∈ Ŝ\S,

which is the desired contradiction. �

Let F = { y′η = εηbη + yη | η ∈ Λ, bη = 0ηkδ } be the family of branch-
like elements obtained after choosing every εη by means of the Step Lemma 22.
Define M as in Definition 6(ii).

Lemma 23. If ϕ : M → S is an epimorphism, then Bϕ ∩ Ŝ \ S 6= ∅.

Proof: If Bϕ ∩ Ŝ \ S = ∅, then the set X = { eν | ν ∈ Λ∗ } \ kerϕ satisfies
|X | ≤ ℵ0, since |S | = ℵ0. If |X | = ℵ0, then for any countable subset (with an
adequate enumeration) { eνn

| n < ω, νn ∈ Λ∗ } ⊆ X we have (
∑

n<ω qneνn
)ϕ ∈

Bϕ ∩ Ŝ \ S, a contradiction. It follows that |X | < ℵ0. Therefore, ϕ is not an
epimorphism. �

Theorem 24. There exists an S-separable ℵk-free R-module M with no epimor-

phisms onto S.
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Proof: Let M be as before. Notice that λℵ0

k = λk implies that we can fix the

map δ : λk → B to be surjective. Suppose ϕ : M → S is an epimorphism. By

the previous lemma, Bϕ ∩ Ŝ \ S 6= ∅. Take any g ∈ B such that gϕ = s ∈ Ŝ \ S.
Then there exists α < λk such that αδ = g. By the Second λ-Black Box 21, there
exists η ∈ Λ such that ϕ ↾ Bη = ϕη and 0ηk = α. But then ψ = ϕ ↾

〈
B, y′η

〉
∗

satisfies both ψ ↾ Bη = ϕη and bηψ = bηϕ = (0ηkδ)ϕ = (αδ)ϕ = gϕ = s ∈ Ŝ \ S,
contradicting the choice of εη. Therefore M has no epimorphisms onto S. �

In this way, we have achieved the third and last goal of our plan.
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