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Abstract. A subgroup H of a finite group G is said to be conjugate-permutable if HHI =
HIH for all g € G. More generaly, if we limit the element g to a subgroup R of G, then
we say that the subgroup H is R-conjugate-permutable. By means of the R-conjugate-
permutable subgroups, we investigate the relationship between the nilpotence of G and the
R-conjugate-permutability of the Sylow subgroups of A and B under the condition that
G = AB, where A and B are subgroups of G. Some results known in the literature are
improved and generalized in the paper.
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1. INTRODUCTION

All groups considered in this paper are finite. Let the group G = AB be the
product of two subgroups A and B. The relationship between the structure of G
and the properties of the subgroups A and B has been extensively studied by a num-
ber of authors, with many interesting results available. For example, Kegel and
Wielandt stated the solvability of G under the condition that A and B are nilpo-
tent (see [5], [8]), Huppert in [4] showed the supersolvability of G when A and B are
cyclic, etc. Besides, the book “Products of Finite Groups” (see [2]) has described the
structure of the groups which are products of some subgroups by using the properties
of the corresponding subgroups.

Based on these results, this paper is aimed at describing the structure of G by
employing conjugate-permutability of A and B.

The research has been supported by the NSFC (Grant no. 11501176, U1504101, U1204101,
11471266), Fundamental Research Funds for the Central Universities (no. XDJK2014C163)
and the Major Project of Education Department of Henan Province (no. 13B110085).
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We begin with the definition of a conjugate-permutable subgroup:

Definition 1.1 ([3]). A subgroup H of a group G is a conjugate-permutable
subgroup of G if HHY = HY9H for all g € G.

Let R be a subgroup of G. In Definition 1.1, if we limit the element g to R, then
we get the following:

Definition 1.2 ([6]). Let R be a subgroup of a group G. A subgroup H of the
group G is an R-conjugate-permutable subgroup of G if HHY = H9H for all g € R.

The results in [6] have described the structure of G by employing R-conjugate-
permutability of some subgroups of GG. In this paper, we investigate the structure
of G (G = AB) by the R-conjugate-permutability of the Sylow subgroups of the
factors A and B. (See Theorems 3.1-3.3.)

In order to prove Theorem 3.1 we need the following definition and the following
property (see [4], §13):

Definition 1.3 ([4]). A group G is called gquasinilpotent if given any chief
factor X of G, any element of G induces an inner automorphism on X.

Property 1.1. The generalized Fitting subgroup F*(G) is quasinilpotent, and
every subnormal quasinilpotent subgroup of G is contained in F*(G).

Throughout this paper, we use Z.(G) to denote the hypercenter of a group G.

Apart from this, all unexplained notations and terminology are standard and taken
from [7].

2. PRELIMINARIES

We first list some lemmas which will be useful for the proof of our main results.

Lemma 2.1 ([6], Lemma 2.2). Let H and R be subgroups of a group G. If H is
R-conjugate-permutable, and RH = HR, then H <<t HR.

Lemma 2.2. Let H and R be subgroups of a group G and N a normal subgroup
of G. If H is R-conjugate-permutable, then HN/N is RN /N-conjugate-permutable.
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Proof. For any S € RN/N there exists r € R such that 5 =rN. We have

(HN/N)® - (HN/N) = (HN/N)"N . HN/N
=H"N/N-HN/N
=H"N-HN/N
=H"HN/N
= HH"N/N (H is R-conjugate-permutable)
= HN/N - H'N/N
= HN/N - (HN/N)®.

Therefore HN/N is RN/N-conjugate-permutable. O

Lemma 2.3. Let G be a group. If ®(G) =1, then Z(G) = Z(G).

Proof. Let the upper central series of G be
1=2y(G) < Z1(G) £ ... < Z,(G) < ...

Since Z,(G)/Zn-1(G) = Z(G/Z,-1(G)), we are required to prove equality
Z3(G) = Z(G). If Z(G) = 1, obviously, Z2(G) = Z(G). If Z(G) > 1, notice
that ®(G) = 1, so there exists a complement H for Z(G) in G. This means
that G = Z(G)H and Z(G)NH = 1. Also Z3(G)/Z(G) = Z(Z(G)H/Z(G)) =

Z(H/Z(G)NH) = Z(H) and Z(H) < Z(G) N H = 1, from which we have
Z3(G) = Z(G). Therefore Zo.(G) = Z(G). O

Lemma 2.4 ([1], Corollary 3). The hypercenter Z~,(G) is the intersection of the
normalizers of all Sylow subgroups of a group G.

Lemma 2.5 ([4], Theorem 13.6). A group G is quasinilpotent if and only if
G/Z~(G) is quasinilpotent.
3. MAIN RESULTS
Now we are equipped to prove the main results.
Theorem 3.1. Suppose that A and B are subgroups of a group G such that

G = AB. If every Sylow subgroup of A is BF*(G)-conjugate-permutable, and every
Sylow subgroup of B is AF*(G)-conjugate-permutable, then G is nilpotent.
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Proof. Assume that the theorem is false and let G be a counterexample of
minimal order.

Let p be any prime factor of |G| and let P € Syl (G), then there exist P4 € Syl,(A)
and Pp € Syl,(B) such that P = P4Pp. Keeping in mind that P is BF*(G)-
conjugate-permutable, it follows that P4 is PpF™*(G)-conjugate-permutable. By
Lemma 2.1, we have P4 <1< P4 PpF*(G), that is to say P4 <1<t PF*(G). Similarly,
we have Pp <<t PF*(G). Applying P = (P4, Pg), we conclude that P <<t PF*(G).
Notice that P € Syl,(PF*(G)), we have P < PF*(G), hence F*(G) C Ng(P). By
Lemma 2.4 and the arbitrariness of p, we have F*(G) C Z.(G), hence F(G) =
F*(G) = Z(G).

We shall complete the proof with regard to whether ®(G) =1 or not.

Case 1: ®(G) # 1. Let us consider the quotient group G/®(G).

Let H/®(G) = F*(G/®(G)). We aim next to show that H/®(G) = F*(G)/®(G).
It is clear that F*(G)/®(G) C F*(G/®(G)) = H/®(G), thus we are required to
prove and H/®(G) < F*(G)/®(G). If not, we have (H/®(G))/(F*(G)/®(G)) > 1.
Notice that both H/®(G) and F*(G)/®(G) are quasinilpotent, that also

(H/®(G))/(F"(G)/®(G)) = H/F*(G),

therefore H/F*(G) is quasinilpotent, which would imply that H/Z.(G) is quasinil-
potent by F*(G) = Z.(G). Note that

(H/Z50(G))/(Z00(H)/Zo0(G)) = H/Zoo(H),

therefore H/Z(H) is quasinilpotent. We deduce from Lemma 2.5 the following fact
that H is a normal quasinilpotent subgroup of G, so H C F*(G), in contradiction
to H/F*(G) > 1. Thus F*(G/®(G)) = F*(G)/®(G).

Assume that p is any prime factor of |[A®(G)/®(G)|, and S/®(G) is any Sylow
p-subgroup of A®(G)/®(G), thus there exists a Sylow p-subgroup P4 of A such
that P4®(G)/®(G) = S/®(G). By Lemma 2.2 we have that P4®(G)/®(G) is
BF*(G)/®(G)-conjugate-permutable. Observe that F*(G)/®(G) = F*(G/®(GQ)),
therefore

B-F*(G)/®(G) = B(G)/2(G) - F(G)/2(G) = BE(G)/2(G) - F*(G/®(G)).

Hence P4®(GQ)/®(G) (= S/®(G)) is B®(G)/P(G) - F*(G/®(G))-conjugate-permut-
able, namely, every Sylow subgroup S/®(G) of A®(G)/®(G) is B®(G)/P(G) x
F*(G/®(G))-conjugate-permutable. Similarly we deduce that every Sylow subgroup
of BO(G)/®(G) is AP(G)/P(G)-F*(G/P(G))-conjugate-permutable. So the hypoth-
esis of the theorem is inherited by G/®(G), and we have that G/®(G) is nilpotent
by the minimality of G, hence G is nilpotent, a contradiction.
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Case 2: ®(G) = 1. According to Lemma 2.3, we have Zo(G) = Z(G). Applying
the result of the second paragraph, we conclude that F*(G) = Z(G), which shows
that G = Cg(F*(G)). Note that Cq(F*(G)) C F*(G). It means that G C F*(G) =
F(G), therefore G is nilpotent, a contradiction. |

Remark 3.1. When G is a solvable group, we have F*(G) = F(G). So we
deduce from Theorem 3.1 the following fact:

Corollary 3.1. Let A and B be such subgroups of a solvable group G that
G = AB. If every Sylow subgroup of A is BF(G)-conjugate-permutable, and ev-
ery Sylow subgroup of B is AF(G)-conjugate-permutable, then G is nilpotent.

Remark 3.2. In Theorem 3.1, let A =1. We deduce the following fact:

Corollary 3.2. If every Sylow subgroup of a group G is F*(G)-conjugate-
permutable, then G is nilpotent.

Theorem 3.2. Suppose that A and B are such subgroups of a solvable group G
that G = AB, and P is a normal Sylow p-subgroup of G. If every Sylow subgroup
of A is B P-conjugate-permutable, and every Sylow subgroup of B is AP-conjugate-
permutable, then G is p-nilpotent.

Proof. Assume that the theorem is false, let a counterexample G of smallest
order be chosen. It is clear that P £ ®(G). We show next that ®(G) = 1. If
not, we have P®(G)/®(G) < G/®(G) by P 4 G, and G/P(G) = ADP(G)/P(G) x
B®(G)/®(G). From Lemma 2.2 we deduce that the hypothesis of the theorem is
inherited by G/®(G), and we have that G/®(G) is p-nilpotent by the minimality
of G, hence G is p-nilpotent, a contradiction. Therefore ®(G) = 1.

Assume that ¢ (¢ # p) is any prime factor of |G| and put @ € Syl,(G), then there
exist Qa € Syl,(A) and Qp € Syl (B) such that Q@ = QQp. Keeping in mind that
Q4 is BP-conjugate-permutable, it follows that @4 is Q) g P-conjugate-permutable.
We have Q4 << QaQpP by Lemma 2.1, that is to say Q4 <1<t QP. Similarly,
we have Qp << QP. Applying Q = (Qa,Qp), we conclude that Q@ << QP.
Notice that @ is Sylow g¢-subgroup of QP, we have Q < QP, then P C Ng(Q).
By the arbitrariness of ¢ and Lemma 2.4 we have P C Z.(G). From ®(G) =1 we
deduce that Zo(G) = Z(G), which shows that P < Z(G), therefore G is p-nilpotent,
a contradiction. 0

Remark 3.3. In Theorem 3.2, let A =1. We deduce the following fact:

Corollary 3.3. Let P be a normal Sylow p-subgroup. If every Sylow subgroup
of G is P-conjugate-permutable, then G is p-nilpotent.
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Theorem 3.3. Let A and B be subgroups of a solvable group G such that
G = AB, N be such a normal subgroup of G that G/N is nilpotent. If every Sy-
low subgroup of A is BN -conjugate-permutable, and every Sylow subgroup of B is
AN -conjugate-permutable, then G is nilpotent.

Proof. Assume that the theorem is false and let G be a counterexample of
minimal order. It is clear that 1 < N £ ®(G). We show next that ®(G) = 1. If not,
1< N®(G)/®(G) < G/P(G) by N < G. Notice that

(G/2(G))/(N®(G)/2(G)) = (G/N)/(N®(G)/N),

we have that (G/®(G))/(N®(G)/®(G)) is nilpotent since G/N is nilpotent. From
Lemma 2.2 we deduce that the hypothesis of the theorem is inherited by G/®(G),
so we may assume that ®(G) = 1 by the choice of G.

Assume that p is any prime factor of |G| and P € Syl,(G). Then there exist
P4 € Syl,(A) and Pg € Syl,(B) such that P = P4Pp. Keeping in mind that Pa
is BN-conjugate-permutable, we have that P4 is PgN-conjugate-permutable. So
P4 << P4PgN by Lemma 2.1, that is to say P4 <<t PN. Similarly, we have
Pp <1 PN. Applying P = (P4, Pg), we conclude that P <<t PN. Notice that P is
Sylow p-subgroup of PN, we have P < PN, which implies that N C Ng(P). By the
arbitrariness of p and Lemma 2.4 we have N C Z(G). From ®(G) =1 we deduce
that Zoo(G) = Z(G), so N < Z(G). Observe that G/N is nilpotent, therefore G is
nilpotent, a contradiction. (I

Remark 3.4. In Theorem 3.3, let N = G. We deduce the following fact:

Corollary 3.4. Let A and B be such subgroups of a solvable group G that G =
AB. If every Sylow subgroup of A and B is conjugate-permutable in G, then G is
nilpotent.

Remark 3.5. In Theorem 3.3, let A = 1. We deduce the following fact:

Corollary 3.5. Suppose that N is a normal subgroup of G such that G/N is
nilpotent. If every Sylow subgroup of G is N-conjugate-permutable, then G is nilpo-
tent.

Remark 3.6. Setting N = F*(N) in Corollary 3.5 and combining it with Corol-
lary 3.2, we get the following fact:

Corollary 3.6. Suppose that N is a normal subgroup of G such that G/N is
nilpotent. If every Sylow subgroup of G is F*(N)-conjugate-permutable, then G is
nilpotent.
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Proof. Assume that p is any prime factor of | N|, and P, is any Sylow p-subgroup
of N. Then there exists P € Syl,(G) such that Py = PN N. Also P is F"*(N)-
conjugate-permutable, so we have P <<t PF*(N) by Lemma 2.1. Notice that P
is a Sylow p-subgroup of PF*(N), thus P < PF*(N), which shows that F*(N) <
Ng(P). Also N 4G and Py = PN N, so F*(N) < N¢g(P), therefore Py is F™*(N)-
conjugate-permutable. Applying Corollary 3.2 we conclude that NNV is nilpotent, and
so N = F*(N). By Corollary 3.5 we have G is nilpotent. O
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