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Jinjun Li, Zhangzhou, Min Wu, Guangzhou
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Abstract. Let f : X → X be a continuous map with the specification property on a com-
pact metric space X. We introduce the notion of the maximal Birkhoff average oscillation,
which is the “worst” divergence point for Birkhoff average. By constructing a kind of dy-
namical Moran subset, we prove that the set of points having maximal Birkhoff average
oscillation is residual if it is not empty. As applications, we present the corresponding re-
sults for the Birkhoff averages for continuous functions on a repeller and locally maximal
hyperbolic set.
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1. Introduction

The aim of the paper is to generalize our former work [18]. Let us begin with

recalling some notation in [18]. Let f : X → X be a continuous map on a compact

metric space (X, d). For x ∈ X and n ∈ N, let fn(x) denote the n-th iterate

of x under f . That is, fn(x) = f(fn−1(x)) and f0(x) = x. Let ϕ : X → R be

a continuous function. The Birkhoff average of ϕ, denoted by Bn(ϕ, x), is defined by

(1.1) Bn(ϕ, x) =
1

n

n−1∑

i=0

ϕ(f i(x)).

The set consisting of those points for which the limit lim
n→∞

Bn(ϕ, x) does not exist

is called the irregular set (or the set of divergence points) for ϕ and it is denoted

This project is supported by National Natural Science Foundation of China (11371148
& 11301473), the Natural Science Foundation of Fujian Province (2014J05008), the Ed-
ucation Committee of Fujian Province (JA13203) and the Program for New Century
Excellent Talents at Minnan Normal University (MX13002).
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by Xϕ,f . More precisely,

Xϕ,f =
{
x ∈ X : lim inf

n→∞

Bn(ϕ, x) < lim sup
n→∞

Bn(ϕ, x)
}
.

The irregular set arises naturally in the context of multifractal analysis, where one

decomposes the space X into the disjoint union

X =
⋃

α∈R

Xϕ(α) ∪Xϕ,f .

Here Xϕ(α) denotes the level set

(1.2) Xϕ(α) =
{
x ∈ X : lim

n→∞

Bn(ϕ, x) = α
}
.

It follows from the Birkhoff ergodic theorem that an irregular set has zero measure

with respect to any invariant measure. Therefore, the set Xϕ,f is often ignored

in ergodic theory. However, there is now an extensive literature showing that the

irregular sets can be large from other points of view, such as from the points of view of

topological entropy and Hausdorff dimension, see [4], [5], [8], [11], [13], [16], [21], [19],

[17], [23], [26], [27], [32] and references therein. In particular, under the assumption

that f satisfies the specification property, it was shown by Chen, Tassilo and Shu [8]

that the irregular set Xϕ,f has full topological entropy and by Thompson [32] that

it has full topological pressure if it is not empty. Recall that a map f is said to have

the specification property if for each ε > 0 there exists an integer m = m(ε) such

that for any collection {Ij = [aj , bj] : aj , bj ∈ N, j = 1, . . . , k} of finite intervals with

aj+1 − bj > m(ε) for j = 1, . . . , k − 1 and any x1, . . . , xk in X , there exists a point

x ∈ X satisfying

(1.3) d(fp+aj (x), fp(xj)) < ε

for all p = 0, . . . , bj − aj and j = 1, . . . , k. The specification property was first intro-

duced by Bowen [6] who required x to be periodic. We say that f : X → X satisfies

the Bowen specification property if under the assumptions of the above definition and

for every p > bk − a1 +m(ε), there exists a p-periodic point x ∈ X satisfying (1.3).

It has turned out to be very useful in spite of its rather complicated appearance.

The reader can refer to [7], [9], [15], [30] for results about the specification property

(particularly the Bowen specification).

Recall that in a metric space X , a set R is called residual if its complement is of

the first category. Moreover, in a complete metric space a set is residual if it contains

a dense Gδ set, see [25]. We say that a set is large from the topological point of view
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if it is residual. Recently, some results show that certain irregular sets can also be

large from the topological point of view. For example, Volkmann [33], Šalát [29],

Albeverio, Pratsiovytyi and Torbin [1], Hyde et al. [14] and Olsen [22] proved that

some kinds of irregular sets associated with integer expansion are residual. Baek

and Olsen [2] discussed the set of extremely non-normal points of a self-similar set

from the topological point of view. Li and Wu [20] proved that the set of divergence

points of self-similar measure with the open set condition is either residual or empty.

Barreira, Li and Valls [3] proved that the irregular set for a continuous function on

a certain subshift is either residual or empty. More generally, Li and Wu [18] proved

the following result.

Theorem 1.1 ([18]). Let f : X → X be a continuous map with the specification

property on a compact metric space X and let ϕ : X → R be a continuous function.

Then the set Xϕ,f is residual if it is not empty.

In this paper, we continue to consider a class of refined subsets of Xϕ,f from the

topological point of view.

Next we would like to present the motivation for this work by recalling one of

results by Denker, Grillenberger and Sigmund [9]. For x ∈ X , let Vf (x) denote

the set of accumulation points of the sequence n → n−1
n−1∑
i=0

δfix, where δx denotes

the Dirac measure. Denoting byMf the set of all f -invariant probability measures

on X , a point x ∈ X is said to have maximal oscillation if Vf (x) = Mf .

Theorem 1.2 ([9]). Let f : X → X be a continuous map with the Bowen specifi-

cation property on a compact metric spaceX . Then the set of points having maximal

oscillation is residual in X .

In this paper, we are interested in the set consisting of the “worst” divergence

points for the Birkhoff average. To state our main result, we need to introduce

a notion which is inspired by the notion of maximal oscillation. Let us first introduce

some notation. Write

Lϕ = {α ∈ R : Xϕ(α) 6= ∅}.

It follows from the fact that any invariantmeasure of the map with the specification

property has a generic point (see, for example, [9]) that

Lϕ =

{∫

X

ϕdµ : µ ∈ Mf

}
.

Since Mf is compact and connected, and the map µ 7→
∫
X
ϕdµ is continuous, the

set Lϕ is a closed interval when f has the specification property.
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Let Aϕ(x) denote the set of accumulation points of the sequence n 7→ Bn(ϕ, x).

Let us remark that the set Aϕ(x) is a closed interval for any x ∈ X , see, for example,

[19] or [24]. That is,

Aϕ(x) =
[
lim inf
n→∞

Bn(ϕ, x), lim sup
n→∞

Bn(ϕ, x)
]
.

A point x ∈ X is said to have maximal Birkhoff average oscillation if Aϕ(x) = Lϕ.

Let Xmax denote the set of points having maximal Birkhoff average oscillation. That

is,

Xmax = {x ∈ X : Aϕ(x) = Lϕ}.

Intuitively, we feel that the setXmax shall be “small”. However, under the hypothesis

that f satisfies the specification property we will show that the set Xmax is large from

the topological point of view. More precisely, we will prove the following result.

Theorem 1.3. Let f : X → X be a continuous map with the specification prop-

erty on a compact metric space X and let ϕ : X → R be a continuous function. Then

the set Xmax is residual if it is not empty.

We end this section by giving some remarks on Theorem 1.3. Obviously, The-

orem 1.1 follows readily from Theorem 1.3 since Xmax ⊂ Xϕ,f . In the setting of

frequencies of N -adic digits, several authors have studied “points of maximal oscil-

lation” and obtained results similar to Theorem 1.3, see [2], [14], [22], [33].

2. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. To prove Theorem 1.3, it

suffices to show that there exists a set F ⊂ X with the following properties:

(1) F ⊂ Xmax;

(2) F is dense in X ;

(3) F is a Gδ set.

2.1. The construction of the desired set. We first present a construction of

a set of Moran type. The approach to the construction is inspired by the idea in

[10], [12], [31], [18].

Fix ε > 0. Let {mk}k>0 be the sequence of integers defined by mk = m(2−kε)

which is the constant appearing in the definition of the specification property.

Let {Wk}k>0 be a sequence of finite sets in X with W0 = {x0} ⊂ X , and {nk}k>0

a sequence of positive integers. Assume that

(2.1) dnk
(x, y) > 8ε, x, y ∈ Wk, x 6= y.
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Let {Nk}k>0 be another sequence of positive integers with N0 = 1. Using these

data, we are going to construct a subset of Cantor type, which will be denoted by

F = F (ε, {x0}, {Wk}, {nk}, {Nk}).

Denote

Mk = #Wk,

where #A denotes the cardinality of the set A. Fix k > 0. For any Nk points

x1, . . . , xNk
in Wk, i.e., (x1, . . . , xNk

) ∈ WNk

k , we choose a point y(x1, . . . , xNk
) ∈ X

such that

(2.2) dnk
(xj , f

ajy(x1, . . . , xNk
)) <

ε

2k
, j = 1, . . . , Nk,

where aj = (j − 1)(nk + mk). Such a point y(x1, . . . , xNk
) exists because f has

the specification property. We claim that for two distinct points (x1, . . . , xNk
) and

(x1, . . . , xNk
) in WNk

k ,

(2.3) dtk(y(x1, . . . , xNk
), y(x1, . . . , xNk

)) > 6ε,

where tk = aNk
+ nk, i.e.,

tk = (Nk − 1)mk +Nknk.

In fact, let y = y(x1, . . . , xNk
) and y = y(x1, . . . , xNk

). Suppose xs 6= xs for some

s ∈ {1, . . . , Nk}. Then

dtk(y, y) > dnk
(fas(y), fas(y))

> dnk
(xs, xs)− dnk

(xs, f
as(y))− dnk

(xs, f
as(y))

> 8ε− ε− ε = 6ε.

Let

D0 = W0, Dk = {y(x1, . . . , xNk
) : (x1, . . . , xNk

) ∈ WNk

k }, k > 1.

Now we will define recursively Lk and lk as follows. Put

L0 = D0 = W0, l0 = n0.

Suppose we have already defined the set Lk, now we present a construction of Lk+1.

Let

lk+1 = lk +mk+1 + tk+1 = N0n0 +

k+1∑

i=1

Ni(ni +mi).
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For every x ∈ Lk and y ∈ Dk+1 let z = z(x, y) be a point such that

(2.4) dlk(x, z) <
ε

2k+1
and dtk+1

(y, f lk+mk+1(z)) <
ε

2k+1
.

Such a point exists due to the specification property of f . Collect all these points

into the set

Lk+1 = {z = z(x, y) : x ∈ Lk, y ∈ Dk+1}.

For any x ∈ Lk and y, y ∈ Dk+1 with y 6= y, it follows from (2.3) and (2.4) that

(2.5) dlk(z(x, y), z(x, y)) <
ε

2k
and dlk+1

(z(x, y), z(x, y)) > 5ε.

For every k > 0, put

(2.6) Fk =
⋃

x∈Lk

B̃lk

(
x,

ε

2k

)
,

where

B̃lk(x, δ) = {y ∈ X : d(f i(x), f i(y)) < δ, d(f j(x), f j(y)) 6 δ,

i = 0, 1, . . . , lk−1 − 1, j = lk−1, . . . , lk − 1}.

By (2.5) one can prove that for any x, x ∈ Lk with x 6= x, the sets B̃lk(x, ε/2
k),

B̃lk(x, ε/2
k) are disjoint and Fk+1 ⊂ Fk.

Finally, define

F (ε, {x0}) := F (ε, {x0}, {Wk}, {nk}, {Nk}) =
∞⋂

k=1

Fk.

Remark 2.1. It is not difficult to check that d(x0, y) < ε for any y ∈ F (ε, {x0}).

Next, we will prepare specific data {Wk}, {nk} and {Nk}, then use the approach

described above to construct a dense Gδ subset F ⊂ X such that F ⊂ Xmax.

Let k ∈ N. Choose αk,1, . . . , αk,qk ∈ Lϕ such that

(2.7) Lϕ ⊂

qk⋃

i=1

B
(
αk,i,

1

k

)
, |αk,i+1 − αk,i| <

1

k
for all i, and

|αk,qk − αk+1,1| <
1

k
.

Fix ε > 0. Let {mk}k>0 be the sequence of integers defined by mk = m(2−kε),

which is the constant appearing in the definition of the specification property.
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For α ∈ Lϕ, δ > 0 and n ∈ N put

P (α, δ, n) = {x ∈ X : |Bn(ϕ, x) − α| < δ}.

Given δ > 0, we have P (α, δ, n) 6= ∅ for each α ∈ Lϕ and any sufficiently large n.

Now choose sequences {δk,i}k∈N, i=1,...,qk and {nk,i}k∈N, i=1,...,qk with

δ1,1 > δ1,2 > . . . > δ1,q1 > δ2,1 > δ2,2 > . . . > δ2,q2 > . . . ,

n1,1 < n1,2 < . . . < n1,q1 < n2,1 < n2,2 < . . . < n2,q2 < . . .

such that for any k ∈ N and i = 1, . . . , qk

(2.8) P (αk,i, δk,i, nk,i) 6= ∅.

Let D = {d1, d2, . . . , dv, . . .} ⊂ X be a countable dense set (note that X is com-

pact). Fix dv ∈ D and let W v
0 = {dv}. For k ∈ N and i ∈ {1, . . . , qk}, let

W v
k,i = {xk,i

j : j = 1, . . . ,Mv
k,i}

be one of those maximal (nk,i, 8ε)-separated sets in P (αk,i, δk,i, nk,i).

Choose a sequence of integers {Nv
k,i}k∈N, i=1,...,qk such that the following conditions

are satisfied:

(i) Nv
k,i > 2nk,i+1+mk for k > 1, 1 6 i 6 qk − 1 and Nv

k,qk
> 2nk+1,1+mk+1 for k > 1;

(ii) Nv
k,i+1 > 2N

v
1,1n1,1+Nv

1,2(n1,2+m1)+...+Nv
k,i(nk,i+mk) for k > 1, 1 6 i 6 qk − 1 and

Nv
k+1,1 > 2N

v
1,1n1,1+Nv

1,2(n1,2+m1)+...+Nv
k,qk

(nk,qk
+mk) for k > 1.

Now, let

(n0, n1, n2, n3, . . .) = (1, n1,1, n1,2, . . . , n1,q1 , n2,1, n2,2, . . .);

(W0,W1,W2,W3, . . .) = ({dv},W
v
1,1,W

v
1,2, . . . ,W

v
1,q1 ,W

v
2,1,W

v
2,2, . . .);

(N0, N1, N2, N3, . . .) = (1, Nv
1,1, N

v
1,2, . . . , N

v
1,q1 , N

v
2,1, N

v
2,2, . . .).

By these data and the construction approach presented in the former paragraph, we

obtain the set

F (ε, {dv}) = F (ε, {dv}, {W
v
k }, {nk}, {N

v
k}) =

∞⋂

k=1

qk⋂

i=1

⋃

x∈Lv
k,i

B̃lk,i

(
x,

ε

2rk−1+i

)
.

Here, and in the sequel, rk = q1 + . . .+ qk and r0 = 0.
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Write

F (ε) =
∞⋃

v=1

F (ε, {dv}).

Finally, let

F ′ =

∞⋃

j=1

F
(1
j

)
=

∞⋃

j=1

∞⋃

v=1

∞⋂

k=1

qk⋂

i=1

⋃

x∈Lv
k,i

B̃lk,i

(
x,

1

j2rk−1+i

)

and

F =

∞⋂

k=1

∞⋃

j=1

∞⋃

v=1

qk⋂

i=1

⋃

x∈Lv
k,i

B̃lk,i

(
x,

1

j2rk−1+i

)
.

In the next subsection we will show that the set F is the desired set, and complete

the proof of Theorem 1.3.

2.2. The proof of Theorem 1.3. Theorem 1.3 follows from the Propositions 2.1,

2.2 and 2.3.

Proposition 2.1. We have F ⊂ Xmax.

P r o o f. Fix x ∈ F . For any k > 1, there exist integers j, v ∈ N and z ∈ Lv
k,i+1

such that

(2.9) dlv
k,i+1

(x, z) <
1

j2k
, i = 1, . . . , qk.

In order to prove F ⊂ Xmax we must show that

(2.10) Lϕ ⊂ Aϕ(x)

and

(2.11) Aϕ(x) ⊂ Lϕ.

P r o o f of (2.10). For α ∈ Lϕ ⊂
qk⋃
i=1

B(αk,i, 1/k) there exists ik ∈ {2, . . . , qk − 1}

such that α ∈ B(αk,ik , 1/k). Let us remark that if ik = 1 or qk we also obtain the

desired result. However, in order to avoid tedious discussion we suppose ik 6= 1, qk

without loss of generality.

Write

sk = 1 +

k−1∑

i=1

qi∑

j=1

Nv
i,j(ni,j +mi) +

ik∑

j=1

Nv
k,j(nk,j +mk).
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Note that sk is nothing but the quantity lvk,ik which appeared in the construction

of F .

Now we will show that

(2.12)

∣∣∣∣
1

sk

sk−1∑

p=0

ϕ(fp(x)) − αk,ik

∣∣∣∣ → 0 as k → ∞.

If (2.12) holds then we have

∣∣∣∣
1

sk

sk−1∑

p=0

ϕ(fp(x)) − α

∣∣∣∣ 6
∣∣∣∣
1

sk

sk−1∑

p=0

ϕ(fp(x))− αk,ik

∣∣∣∣+ |αk,ik − α|

6

∣∣∣∣
1

sk

sk−1∑

p=0

ϕ(fp(x))− αk,ik

∣∣∣∣+
1

k
→ 0,

which implies that α ∈ Aϕ(x) and therefore (2.10) holds.

To prove (2.12), we need the following lemma.

Lemma 2.1. For k, j, v ∈ N and i ∈ {1, . . . , qk}, define

Rv
k,i := max

z∈Lv
k,i

∣∣∣∣

lvk,i−1∑

p=0

ϕ(fp(z))− lvk,iαk,i

∣∣∣∣.

Then
Rv

k,i

lvk,i
→ 0 as k → ∞.

P r o o f. For any c > 0 put

Var(ϕ, c) = sup{|ϕ(x)− ϕ(y)| : d(x, y) < c}.

Since X is compact, Var(ϕ, c) → 0 as c → 0 for any continuous function ϕ. Clearly,

if dn(x, y) < c, then

∣∣∣∣
n−1∑

i=0

ϕ(f i(x)) −
n−1∑

i=0

ϕ(f i(y))

∣∣∣∣ 6
n−1∑

i=0

|ϕ(f i(x)) − ϕ(f i(y))| 6 nVar(ϕ, c).

First we let y ∈ Dv
k,i and estimate

∣∣∣
tvk,i−1∑
p=0

ϕ(fp(y)) − tvk,iαk,i

∣∣∣. By the definition

of Dv
k,i, there exist (x

k,i
1 , . . . , xk,i

Nk,i
) ∈ (W v

k,i)
Nv

k,i such that

dnk,i
(xk,i

j , faj (y)) <
1

j2k
,
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where aj = (j−1)(nk,i+mk), j = 1, . . . , Nv
k,i. (We remark that the above inequality

and some of the following ones in this subsection are not optimal. However, they

simplify the notation and are sufficient for our estimates.) Hence,

∣∣∣∣
nk,i−1∑

p=0

ϕ(fp(xk,i
j ))−

nk,i−1∑

p=0

ϕ(faj+p(y))

∣∣∣∣ 6 nk,i Var
(
ϕ,

1

j2k

)
.

It follows from xk,i
j ∈ W v

k,i ⊂ P (αk,i, δk,i, nk,i) that

(2.13)

∣∣∣∣
nk,i−1∑

p=0

ϕ(faj+p(y))− nk,iαk,i

∣∣∣∣ 6 nk,i

(
Var

(
ϕ,

1

j2k

)
+ δk,i

)
.

Decompose the interval [0, tvk,i − 1] into small intervals:

[0, tvk,i − 1] =

Nv
k,i⋃

j=1

[aj , aj + nk,i − 1] ∪

Nv
k,i−1⋃

j=1

[aj + nk,i, aj + nk,i +mk − 1].

Write ‖ϕ‖ = max
x∈X

|ϕ|. On the intervals [aj , aj + nk,i − 1] we will use the estimate

(2.13), and on the intervals [aj + nk,i, aj + nk,i +mk − 1], since αk,i ∈ [−‖ϕ‖, ‖ϕ‖]

we use the estimate

∣∣∣∣
mk−1∑

p=0

ϕ(faj+nk,i+p(y))−mkαk,i

∣∣∣∣ 6 mk(‖ϕ‖+ |αk,i|) 6 2mk‖ϕ‖.

Therefore,

(2.14)

∣∣∣∣

tvk,i−1∑

p=0

ϕ(fp(y))− tvk,iαk,i

∣∣∣∣ 6 Nv
k,ink,ik

(
Var

(
ϕ,

1

j2k

)
+ δk,i

)

+ 2(Nv
k,i − 1)mk‖ϕ‖.

On the other hand, it follows from the definition of Lv
k,i that for every z ∈ Lv

k,i

there exist x ∈ Lv
k,i−1 and y ∈ Dv

k,i such that

(2.15) dlv
k,i−1

(x, z) <
1

j2k
, dtv

k,i
(y, f lvk,i−1+mk(z)) <

1

j2k
.

Hence,
∣∣∣∣

lvk,i−1∑

p=0

ϕ(fp(z))− lvk,iαk,i

∣∣∣∣ 6 S1(k) + S2(k) + S3(k),
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where

S1(k) =

∣∣∣∣

lvk,i−1−1∑

p=0

ϕ(fp(z))− lvk,i−1αk,i

∣∣∣∣,

S2(k) =

∣∣∣∣

lvk,i−1+mk−1∑

p=lv
k,i−1

ϕ(fp(z))−mkαk,i

∣∣∣∣,

S3(k) =

∣∣∣∣

tvk,i−1∑

p=lv
k,i−1

+mk

ϕ(fp(z))− tvk,iαk,i

∣∣∣∣.

Clearly, S1(k) 6 2lvk,i−1‖ϕ‖ and S2(k) 6 2mk‖ϕ‖. It follows from (2.14) and (2.15)

that

S3(k) 6

∣∣∣∣

tvk,i−1∑

p=lv
k,i−1

+mk

ϕ(fp(z))− tvk,iαk,i

∣∣∣∣

6

∣∣∣∣

tvk,i−1∑

p=0

ϕ(f lvk,i−1+mk+p(z))−

tvk,i−1∑

p=0

ϕ(fp(y))

∣∣∣∣ +
∣∣∣∣

tvk,i−1∑

p=0

ϕ(fp(y))− tvk,iαk,i

∣∣∣∣

6 tvk,iVar
(
ϕ,

1

j2k

)
+Nv

k,ink,i

(
Var

(
ϕ,

1

j2k

)
+ δk,i

)
+ 2(Nv

k,i − 1)mk‖ϕ‖.

It follows from the above argument that

(2.16) Rv
k,i 6 2(lvk,i−1+Nv

k,imk)‖ϕ‖+(tvk,i+Nv
k,ink,ik)Var

(
ϕ,

1

j2k

)
+Nv

k,ink,iδk,i.

By the choice of {Nv
k,i}, we have l

v
k,i > 2l

v
k,i−1 . Hence,

Rv
k,i

lvk,i
→ 0 as k → ∞.

�

Now with help of Lemma 2.1 we are going to prove (2.12). Since z ∈ Lv
k,i+1 (z is

defined as in (2.9)) there exist x ∈ Lv
k,i and y ∈ Dv

k,i+1 such that

dlv
k,i
(x, z) <

1

j2k
, dtv

k,i+1
(y, f lvk,i+mk(z)) <

1

j2k
.

Therefore,

dlv
k,i
(x, x) <

1

j2k−1
, dtv

k,i+1
(y, f lvk,i+mk(x)) <

1

j2k−1
,
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and

(2.17)

∣∣∣∣
sk−1∑

p=0

ϕ(fp(x)) − skαk,ik

∣∣∣∣ =
∣∣∣∣

lvk,ik
−1∑

p=0

ϕ(fp(x)) − lvk,ikαk,ik

∣∣∣∣

6

∣∣∣∣

lvk,ik
−1∑

p=0

ϕ(fp(x)) −

lvk,ik
−1∑

p=0

ϕ(fp(x))

∣∣∣∣+
∣∣∣∣

lvk,i−1∑

p=0

ϕ(fp(x))− lvk,ikαk,ik

∣∣∣∣

6 lvk,ikVar
(
ϕ,

1

j2k−1

)
+Rv

k,ik
.

Clearly, (2.17) and Lemma 2.1 imply (2.12). The proof of (2.12) and therefore the

proof of (2.10) is completed. �

P r o o f of (2.11). Let n ∈ N and n > lv1,1. Then there exist k, ik and j with

ik ∈ {1, . . . , qk − 1} (similarly to the above, we can suppose that ik 6= qk), 0 6 j 6

Nv
k,i+1 − 1 such that

lvk,ik + j(nk,ik+1 +mk) < n 6 lvk,ik + (j + 1)(nk,ik+1 +mk).

We have the following estimate.

Lemma 2.2. ∣∣∣∣
1

n

n−1∑

p=0

ϕ(fp(x)) − αk,ik

∣∣∣∣ → 0 as k → ∞.

P r o o f. Since z ∈ Lv
k,ik
(z is defined as in (2.9)) there exist x ∈ Lv

k,ik
and

y ∈ Dv
k,ik
such that

dlv
k,ik

(x, z) <
1

j2k
, dtk,ik+1

(y, f lvk,ik
+mk(z)) <

1

j2k
.

Therefore

dlv
k,ik

(x, x) <
1

j2k−1
, dtk,ik+1

(y, f lvk,ik
+mk(x)) <

1

j2k−1
.

Moreover, if j > 0, it follows from the definition of Dv
k,ik+1 that there exist points

xk,ik+1
1 , . . . , xk,ik+1

j ∈ W v
k,ik+1 such that

dnk,ik+1
(xk,ik+1

t , f bt(y)) <
1

j2k
,
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where bt = (t− 1)(nk,ik+1 +mk), t = 1, . . . , j, and hence

(2.18) dnk,ik+1
(xk,ik+1

t , f lvk,ik
+mk+bt(x)) <

1

j2k−2
.

We represent [0, n− 1] as the union

[0, lvk,ik − 1] ∪

j⋃

t=1

[lvk,ik + (t− 1)(mk + nk,ik+1), lvk,ik + t(mk + nk,ik+1)− 1]

∪ [lvk,ik + j(mk + nk,ik+1), n− 1].

On the interval [0, lvk,ik − 1] we have the estimate (2.17). On each of the intervals

[ct, ct + (mk + nk,ik+1)− 1], where ct = lvk,ik + (t− 1)(mk + nk,ik+1), we estimate

(2.19)

∣∣∣∣
ct+(mk+nk,ik+1)−1∑

p=ct

ϕ(fp(x)) − (mk + nk,ik+1)αk,ik

∣∣∣∣

6

∣∣∣∣
ct+mk−1∑

p=ct

ϕ(fp(x)) −mkαk,ik

∣∣∣∣

+

∣∣∣∣
ct+mk+nk,ik+1−1∑

p=ct+mk

ϕ(fp(x)) − nk,ik+1αk,ik

∣∣∣∣

6 2mk‖ϕ‖+ nk,ik+1δk,ik+1

+ nk,ik+1Var
(
ϕ,

1

j2k−2

)
(by (2.18)).

Finally, on [lvk,ik + j(mk + nk,ik+1), n− 1] we have

(2.20)

∣∣∣∣
n−1∑

p=lv
k,ik

+j(mk+nk,ik+1)

ϕ(fp(x)) − (n− lvk,ik − j(mk + nk,ik+1))αk,ik

∣∣∣∣

6 2(n− lvk,ik − j(mk + nk,ik+1))‖ϕ‖ 6 2(nk,ik+1 +mk)‖ϕ‖.

Collecting the estimates (2.17), (2.19) and (2.20) we have

∣∣∣∣
n−1∑

p=0

ϕ(fp(x)) − nαk,ik

∣∣∣∣ 6 Rv
k,ik

+ (lvk,ik + jnk,ik+1)Var
(
ϕ,

1

j2k−2

)

+ 2(nk,ik+1 + (j + 1)mk)‖ϕ‖+ jnk,ik+1δk,ik+1.
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Clearly, we have

∣∣∣∣
1

n

n−1∑

p=0

ϕ(fp(x)) − αk,ik

∣∣∣∣ <
Rv

k,ik

lvk,ik
+Var

(
ϕ,

1

j2k−2

)

+ 2
(nk,ik+1 +mk

Nv
k,ik

+
mk

nk,ik+1

)
‖ϕ‖+ δk,ik+1.

By Lemma 2.1 and the choice of {Nv
k,i} we claim that the right-hand side tends to

zero as k → ∞. The proof of Lemma 2.2 is completed. �

Now we use Lemma 2.2 to prove (2.11). Fix x ∈ F . For any sufficiently large n,

by (2.7) and Lemma 2.2 we have

dist(Bn(ϕ, x),Lϕ) 6 |Bn(ϕ, x)− αk,ik |+ dist(αk,ik ,Lϕ) → 0,

which implies that dist(Bn(ϕ, x),Lϕ) → 0 as n → ∞. Note that since Lϕ is closed,

we have Aϕ(x) ⊂ Lϕ. This completes the proof of (2.11). �

Proposition 2.2. The set F is dense in X .

P r o o f. Note that since F ′ ⊂ F , it suffices to show that F ′ ∩ B(x, r) 6= ∅ for

every x ∈ X and r > 0. Given x ∈ X and r > 0, there exist j ∈ N with 2/j < r and

dv ∈ D such that d(x, dv) < 1/j.

For any y ∈ F (1/j, {dv}) ⊂ F ′, it follows from Remark 2.1 that d(y, dv) < 1/j.

Therefore,

d(x, y) 6 d(x, dv) + d(dv , y) <
2

j
< r.

This implies that F ′ ∩B(x, r) 6= ∅. �

Proposition 2.3. The set F is a Gδ set.

P r o o f. Fix j ∈ N and dv ∈ D. For k > 1 and i ∈ {1, . . . , qk}, let

Gv
k,i =

⋃

x∈Lv
k,i

Blv
k,i

(
x,

ε

2rk−1+i

)
,

where

Blv
k,i

(
x,

1

j2rk−1+i

)
=

{
y ∈ X : d(f j(x), f j(x)) <

1

j2rk−1+i
, j = 0, . . . , lvk,i − 1

}
.
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Clearly, the sets Gv
k,i are open sets. Observe that G

v
k,i ⊂ F v

k,i for any k > 1 and

i = 1, . . . , qk, where F
v
k,i are defined as in (2.6). That is,

F v
k,i =

⋃

x∈Lv
k,i

B̃lv
k,i

(
x,

1

j2rk−1+i

)
.

On the other hand, we claim that

(2.21) F v
k,i+1 ⊂ Gv

k,i, F v
k+1,1 ⊂ Gv

k,qk

for any k > 1 and i = 1, . . . , qk − 1. Therefore,

∞⋃

j=1

∞⋃

v=1

qk⋂

i=1

⋃

x∈Lv
k,i

B̃lv
k,i

(
x,

1

j2rk−1+i

)
=

∞⋃

j=1

∞⋃

v=1

qk⋂

i=1

⋃

x∈Lv
k,i

Bv
lk,i

(
x,

1

j2rk−1+i

)
,

which implies that F is a Gδ set.

Now we proceed to prove (2.21). We only prove that F v
k,i+1 ⊂ Gv

k,i for any

k > 1 and i ∈ {1, . . . , qk − 1} since the proof of F v
k+1,1 ⊂ Gv

k,qk
is analogous.

Given y ∈ F v
k,i+1, there exists z ∈ Lv

k,i+1 such that y ∈ B̃lv
k,i+1

(z, (1/j)/2(rk−1+i+1)).

By the construction of the set Lv
k,i+1, there exists x ∈ Lv

k,i such that dlvk,i
(x, z) <

(1/j)/2(rk−1+i+1). Therefore,

dlv
k,i
(y, x) 6 dlv

k,i
(y, z) + dlv

k,i
(z, x) <

1

j2(rk−1+i+1)
+

1

j2(rk−1+i+1)
=

1

j2rk−1+i
,

which implies that y ∈ Gv
k,i. The proof of (2.21) is completed. �

3. Applications

In this section we give some applications of Theorem 1.3. It is well known that any

factor of a topologically mixing subshift of finite type has the specification property

(see, for example, Proposition 21.4 in [9]) and thus our main theorem applies. In

particular, we give the corresponding results for the Birkhoff averages for continuous

functions on a repeller and locally maximal hyperbolic set.

3.1. Result for the Manneville-Pomeau map. Let I = [0, 1]. Given a number

s ∈ (0, 1), the Manneville-Pomeau map f : I → I is defined by

f(x) = x+ x1+s mod 1.
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The map f has the specification property since it is topologically conjugate to a full

one-sided shift on two symbols, see [31]. Let ϕ(x) = log |f ′(x)|. With such a choice,

we have

Bn(ϕ, x) =
1

n

n−1∑

i=0

ϕ(f i(x)) =
1

n
log |(fn)′(x)|.

That is, the irregular set

Iϕ,f =
{
x ∈ I : lim inf

n→∞

1

n
log |(fn)′(x)| < lim sup

n→∞

1

n
log |(fn)′(x)|

}

is the set of points for which the Lyapunov exponent does not exist. It is worth

pointing out that Pollicott and Weiss [27] proved that the set Iϕ,f has Hausdorff

dimension equal to 1. Moreover, the set Lϕ can be represented as [0, α] with some

α > 0. It follows from Theorem 1.3 that the set

Imax = {x ∈ I : Aϕ(x) = [0, α]}

is residual if it is not empty.

3.2. Result for the repeller. Let f : M → M be a C1 map on a smooth

manifold and let J ⊂ M be a compact f -invariant set. We say that f is expanding

on J and that J is a repeller for f if there exist c > 0 and τ > 1 such that

‖dxf
nv‖ > cτn‖v‖

for x ∈ J , v ∈ TxM and n ∈ N. Given a continuous function ϕ : J → R, we consider

the subset of irregular sets

Jmax = {x ∈ J : Aϕ(x) = Lϕ}.

It is well known that the map f : J → J is a factor of a topologically mixing

one-sided subshift of finite type, see [28]. Therefore the map f has the specification

property and the following result is a version of Theorem 1.3 for the Birkhoff averages

of a continuous function on repeller.

Theorem 3.1. Let J be a repeller for a topologically mixing C1 map f and let

ϕ : J → R be a continuous function. Then the irregular set Jmax is residual if it is

not empty.
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3.3. Result for the hyperbolic set. Let f : M → M be a C1 diffeomorphism

on a smooth manifoldM and let Λ ⊂ M be a compact f -invariant set. We say that f

is a hyperbolic set for f if there exists τ ∈ (0, 1), c > 0 and a decomposition

TxM = Es(x)⊕ Eu(x)

for each x ∈ Λ such that

dxfE
s(x) = Es(f(x)), dxfE

u(x) = Eu(f(x)),

‖dxf
nv‖ 6 cτn‖v‖ whenever v ∈ Es(x),

and

‖dxf
−nv‖ 6 cτn‖v‖ whenever v ∈ Eu(x),

for every x ∈ Λ and n ∈ N. We say that f is a locally maximal hyperbolic set if there

exists an open set U ⊃ Λ such that

Λ =
⋂

n∈Z

fn(U).

Given a continuous function ϕ : Λ → R, we consider the subset of irregular sets

Λmax = {x ∈ Λ: Bϕ(x) = Lϕ},

where Bϕ(x) denotes the set of accumulation points of the sequence n → Bn(ϕ, x)

with

Bn(ϕ, x) =
1

2n− 1

n−1∑

i=−(n−1)

ϕ(f i(x)).

The map f : Λ → Λ is a factor of a topologically mixing two-sided subshift of finite

type, and thus satisfies the specification property. The following result is a version

of Theorem 1.3 for the Birkhoff averages on a locally maximal hyperbolic set.

Theorem 3.2. Let Λ be a locally maximal hyperbolic set for a topologically

mixing C1 diffeomorphism f . Then the set Λmax is residual if it is not empty.

Acknowledgement. The authors would like to thank the referee for his/her

valuable comments and suggestions that led to the improvement of the manuscript.

239



References

[1] S.Albeverio, M. Pratsiovytyi, G. Torbin: Topological and fractal properties of real num-
bers which are not normal. Bull. Sci. Math. 129 (2005), 615–630.

[2] I.-S.Baek, L.Olsen: Baire category and extremely non-normal points of invariant sets
of IFS’s. Discrete Contin. Dyn. Syst. 27 (2010), 935–943.

[3] L.Barreira, J. Li, C.Valls: Irregular sets are residual. Tohoku Math. J. (2) 66 (2014),
471–489.

[4] L.Barreira, J. Schmeling: Sets of “non-typical” points have full topological entropy and
full Hausdorff dimension. Isr. J. Math. 116 (2000), 29–70.

[5] A.Bisbas, N. Snigireva: Divergence points and normal numbers. Monatsh. Math. 166
(2012), 341–356.

[6] R.Bowen: Periodic points and measures for axiom A diffeomorphisms. Trans. Am. Math.
Soc. 154 (1971), 377–397.

[7] J.Buzzi: Specification on the interval. Trans. Am. Math. Soc. 349 (1997), 2737–2754.
[8] C.Ercai, T.Küpper, S. Lin: Topological entropy for divergence points. Ergodic Theory
Dyn. Syst. 25 (2005), 1173–1208.

[9] M.Denker, C.Grillenberger, K. Sigmund: Ergodic Theory on Compact Spaces. Lecture
Notes in Mathematics 527, Springer, Berlin, 1976.

[10] A.-H.Fan, D.-J. Feng: On the distribution of long-term time averages on symbolic space.
J. Stat. Phys. 99 (2000), 813–856.

[11] A.-H.Fan, D.-J. Feng, J.Wu: Recurrence, dimension and entropy. J. Lond. Math. Soc.,
(2) 64 (2001), 229–244.

[12] A.Fan, L. Liao, J. Peyrière: Generic points in systems of specification and Banach val-
ued Birkhoff ergodic average. Discrete Contin. Dyn. Syst. 21 (2008), 1103–1128.

[13] D.-J. Feng, K.-S. Lau, J.Wu: Ergodic limits on the conformal repellers. Adv. Math. 169
(2002), 58–91.

[14] J.Hyde, V. Laschos, L.Olsen, I. Petrykiewicz, A. Shaw: Iterated Cesàro averages, fre-
quencies of digits, and Baire category. Acta Arith. 144 (2010), 287–293.

[15] A.Katok, B.Hasselblatt: Introduction to the Modern Theory of Dynamical Systems. En-
cyclopedia of Mathematics and Its Applications 54, Cambridge Univ. Press, Cambridge,
1995.

[16] J. Li, B. Li: Hausdorff dimensions of some irregular sets associated with β-expansions.
Sci. China Math. 59 (2016), 445–458.

[17] J. Li, M.Wu: A note on the rate of returns in random walks. Arch. Math. (Basel) 102
(2014), 493–500.

[18] J. Li, M.Wu: Generic property of irregular sets in systems satisfying the specification
property. Discrete Contin. Dyn. Syst. 34 (2014), 635–645.

[19] J. Li, M.Wu: Divergence points in systems satisfying the specification property. Discrete
Contin. Dyn. Syst. 33 (2013), 905–920.

[20] J. Li, M.Wu: The sets of divergence points of self-similar measures are residual. J. Math.
Anal. Appl. 404 (2013), 429–437.

[21] J. Li, M.Wu, Y.Xiong: Hausdorff dimensions of the divergence points of self-similar
measures with the open set condition. Nonlinearity 25 (2012), 93–105.

[22] L.Olsen: Extremely non-normal numbers. Math. Proc. Camb. Philos. Soc. 137 (2004),
43–53.

[23] L.Olsen: Multifractal analysis of divergence points of deformed measure theoretical
Birkhoff averages. J. Math. Pures Appl. (9) 82 (2003), 1591–1649.

[24] L.Olsen, S.Winter: Normal and non-normal points of self-similar sets and divergence
points of self-similar measures. J. Lond. Math. Soc., (2) 67 (2003), 103–122.

240



[25] J.C.Oxtoby: Measure and Category. A Survey of the Analogies between Topological and
Measure Spaces. Graduate Texts in Mathematics, Vol. 2, Springer, New York, 1980.

[26] B. S. Pitskel: Topological pressure on noncompact sets. Funct. Anal. Appl. 22 (1988),
240–241; translation from Funkts. Anal. Prilozh. 22 (1988), 83–84.

[27] M.Pollicott, H.Weiss: Multifractal analysis of Lyapunov exponent for continued frac-
tion and Manneville-Pomeau transformations and applications to Diophantine approx-
imation. Commun. Math. Phys. 207 (1999), 145–171.

[28] D.Ruelle: Thermodynamic Formalism. The Mathematical Structures of Equilibrium
Stastistical Mechanics. Cambridge Mathematical Library, Cambridge University Press,
Cambridge, 2004.

[29] T. Šalát: A remark on normal numbers. Rev. Roum. Math. Pures Appl. 11 (1966), 53–56.
[30] K.Sigmund: On dynamical systems with the specification property. Trans. Am. Math.

Soc. 190 (1974), 285–299.
[31] F.Takens, E.Verbitskiy: On the variational principle for the topological entropy of cer-

tain non-compact sets. Ergodic Theory Dyn. Syst. 23 (2003), 317–348.
[32] D.Thompson: The irregular set for maps with the specification property has full topo-

logical pressure. Dyn. Syst. 25 (2010), 25–51.
[33] B.Volkmann: Gewinnmengen. Arch. Math. 10 (1959), 235–240. (In German.)

Authors’ addresses: J i n j u n L i, School of Mathematics and Statistics, Minnan Nor-
mal University, 36 Xian-qian-zhi Street, Zhangzhou, 363000, Fujian, P.R.China, e-mail:
li-jinjun@163.com, M i n Wu, Department of Mathematics, South China University of
Technology, Wushan Road, Guangzhou 510641, Tianhe, Guandong, P.R.China, e-mail:
wumin@scut.edu.cn.

241


		webmaster@dml.cz
	2020-07-03T22:05:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




