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Abstract. Let Ω ⊂ C
n be a bounded, simply connected C-convex domain. Let α ∈ Z

n
+

and let f be a function on Ω which is separately C2αj−1-smooth with respect to zj (by
which we mean jointly C2αj−1-smooth with respect to Re zj , Im zj). If f is α-analytic
on Ω \ f−1(0), then f is α-analytic on Ω. The result is well-known for the case αi = 1,
1 6 i 6 n, even when f a priori is only known to be continuous.
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1. Introduction

Radó’s theorem states that a continuous function on an open subset of Cn that
is holomorphic off its zero set extends to a holomorphic function on the given open
set. For the one-dimensional result see Radó [14], and for a generalization to several
variables, see e.g. Cartan [6].

Definition 1.1. Let Ω ⊂ C
n be an open subset and let (z1, . . . , zn) denote the

holomorphic coordinates for Cn. A function f , on Ω, is said to be separately Ck-

smooth with respect to the zj-variable, if for any fixed (c1, . . . , cn−1) ∈ C
n−1, such

that the function
zj 7→ f(c1, . . . , cj−1, zj , cj, . . . , cn−1),

is well-defined as zj varies in some nonempty open set, the latter function is jointly
Ck-smooth with respect to Re zj, Im zj . For α ∈ Z

n
+ we say that f is separately

α-smooth if f is separately Cαj -smooth with respect to zj for each 1 6 j 6 n.

Avanissian and Traore [2], [1] introduced the following definition of polyanalytic
functions of order α in several variables.
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Definition 1.2 (Avanissian and Traore [2]). Let Ω ⊂ C
n be a domain and let

z = x + iy denote the holomorphic coordinates in C
n. A function f ∈ C∞(Ω,C)

is called polyanalytic of order α if there exists a multi-index α ∈ Z
n
+ such that in

a neighborhood of every point of Ω, (∂/∂zj)αjf(z) = 0, 1 6 j 6 n. If the integer αj ,
1 6 j 6 n, is minimal, then f is said to be polyanalytic of exact order α.

In this paper we shall prove a version of Radó’s theorem for polyanalytic functions
of order q > 1, that are C2q−1-smooth (note that the case q = 1 does not reduce
to the usual Radó’s theorem for holomorphic functions, because we require that
the starting function be C1-smooth, not merely continuous). Our main result is
Theorem 2.3 which is the induced result in several variables.
Our proof will rely upon a result from potential theory.

A known result from potential theory. It is known that a C1-smooth func-
tion g on a domain Ω ⊂ R

n, n > 2, which is harmonic on Ω \ g−1(0) is automatically
harmonic on Ω, see Král [11] (see also Král [10]). Note that this result is not true
if we only assume that g is continuous: take for example g(x, y) = x for x > 0 and
g(x, y) = 0 otherwise.

Definition 1.3. Let Ω ⊂ C be an open subset. A function f on Ω is called
polyharmonic of order q if f ∈ C2q(Ω) and ∆qf = 0 on Ω, where ∆ denotes the
Laplace operator.

It is known (see e.g. Tarkhanov [15], page 94) that a function u satisfies ∆mu = 0

if and only if there are harmonic functions uj , 1 6 j < m, such that u(x) =
m−1
∑

j=1

|x|2juj(x).

The following result appears without proof in Chesnokov [8], page 38, C6, and
a proof of the result in the case n1 = n can be found in Harvey and Polking [9],
Theorem 4.3 d.

Theorem 1.4 (Chesnokov [8], and Harvey and Polking [9]). Let Ω ⊂ R
n =

R
n1 ×R

n2 be a domain, let (x, y) denote the Euclidean coordinates, let L be a linear

differential operator on Ω that is of order 2m with respect to x, and let l < 2m. If

Lf = 0 on Ω \A for some f ∈ Cl(Ω) and A satisfying Hn1−2m+l(A ∩ {y = 0}) < ∞

(here Hα is the α-dimensional (outer) Hausdorff measure), then Lf = 0 on Ω.

Example 1.5. Setting n1 = n = 2, l = 2m−1, and A = f−1(0), into Theorem 1.4
will reduce the necessary condition to Hn1−2m+l(f−1(0)) = H1(f−1(0)) < ∞. Hence
Theorem 1.4 reduces to stating that if f ∈ C2m−1(Ω) (where Ω ⊂ R

2 is a bounded
domain) is polyharmonic of order m on Ω \ f−1(0) (in the sense that ∆mf = 0 on
Ω \ f−1(0)), and if H1(f−1(0)) < ∞, then f is polyharmonic of order m on Ω.
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It is well-known that zero sets of (real-valued) harmonic functions are never iso-
lated when n > 2 (see e.g. Axler et al. [3], page 6), and it is also clear that zero sets
of polyharmonic functions can be submanifolds of dimension n− 1. For example, let
Ω = {|z| < 1} ⊂ C and set f(z) = z − z. Then f−1(0) = Ω ∩ {Im z = 0} which
is a one-dimensional line segment, of finite, one-dimensional Hausdorff measure. If
we were to replace Ω by (the unbounded domain) {| Im z| < 1}, then f−1(0) would
not have finite one-dimensional Hausdorff measure, though f would be a well-defined
polyharmonic function of order 2 (in fact it is also 2-analytic) on Ω.

Corollary 1.6 (to Theorem 1.4). Let Ω ⊂ R
2 be a bounded, simply connected

domain. If f ∈ C2m−1(Ω) is polyharmonic of order m on Ω \ f−1(0) (in the sense

that ∆mf = 0 on Ω \ f−1(0)), then f is polyharmonic of order m on Ω.

P r o o f. Let (x, y) denote the Euclidean coordinates for R2 and assume without
loss of generality 0 ∈ Ω in these coordinates. Setting n = 2 and n1 = n2 = 1,
l = 2m − 1, and A = f−1(0), in Theorem 1.4 will reduce the sufficient condition
to Hn1−2m+l(f−1(0)) = H0(f−1(0) ∩ {y1 = 0}) < ∞. It is well-known that if u
is a harmonic function and if R is an orthogonal matrix then u(s) is harmonic in
s = Rx+ p (in other words the property of being harmonic is invariant under rigid
coordinate changes). Hence if u is polyharmonic of orderm, the function v := ∆m−1u

is harmonic and such that

0 = ∆m
x u(x) = ∆xv(x) = ∆sv(s) = ∆m

s u(s),

where s is obtained by rotation and translation with respect to x. We shall need the
following.

Definition 1.7 (Balk [5], page 4). Let U ⊂ C be a domain and let p ∈ E ⊂ U .
We say that the line l := {z ∈ C : z = p+ teiθ, |t| < ∞, t ∈ R}, p and θ constants, is
a limiting direction of the set E at p if E contains a sequence of points zj = p+tje

iθj ,
tj → 0, θj → θ, tj 6= 0. The point p is called a condensation point of order k of E if
there are k different lines through p which are limiting directions of E.

The following uniqueness property is known.

Lemma 1.8 (Balk [4], page 202). Let U ⊂ R
2 be a simply connected domain and

let u and v be polyharmonic functions on U . Assume that u = v on a subset E ⊂ U

such that E has a condensation point of order ∞. Then u ≡ v on U . Consequently,

if a polyharmonic function on U vanishes on E, then it vanishes identically.

Lemma 1.9. Let Ω ⊂ R
2 be a bounded domain. Assume that f ∈ C2m−1(Ω) is

polyharmonic of order m on Ω \ f−1(0) (in the sense that ∆mf = 0 on Ω \ f−1(0)).
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Then either f vanishes on Ω, or for each point p ∈ f−1(0) there is a pair (B, l),

where B ⊂ Ω is a ball centered at p and l is a straight line through p, such that

l ∩B ∩ f−1(0) is finite.

P r o o f. Assume there exists a point p ∈ f−1(0) such that for every ball
B(p, ε) ⊂ Ω (centered at p and of radius ε > 0) and every line lθ := {(x, y) ∈ R

2 :

(x, y) = p+teiθ, |t| < ∞, t ∈ R}, the set lθ∩f−1(0)∩B(p, ε) contains infinitely many
points. Letting {εj}j∈N be a sequence of positive real numbers such that εj → 0, we
obtain that lθ is a limiting direction of the set f−1(0) at p. This implies that p is
a condensation point of order ∞ of f−1(0). Hence we can apply Lemma 1.8 using
E := f−1(0), U := Ω, in order to obtain that f ≡ 0. This proves Lemma 1.9. �

Let p ∈ f−1(0). By Lemma 1.9, there exists a straight line l through p such
that l ∩ B ∩ f−1(0) is finite, which in turn implies that H0(l ∩ B ∩ f−1(0)) < ∞.
Set s = R[x, y]T + p where R is an orthogonal matrix such that l = {R[x, 0]T + p :

x ∈ R}. Then we obtain that f(s) is polyharmonic of order m near R[0, 0]T + p,
on {R[x, y]T + p : (x, y) ∈ B}. Then f is polyharmonic of order m on an open
neighborhood of p in the variables (x, y). Since p was arbitrary in the zero set of f
this implies that f is polyharmonic of order m on an open neighborhood of f−1(0)

in Ω. This completes the proof of Corollary 1.6. �

Tarkhanov [15], page 42, announced that Chesnokov [7] (which is a dissertation in
Russian) generalized Radó’s theorem to polyharmonic functions; the announcement
of the result of Chesnokov is also made in Pokrovskii [13], page 69, who specifies that
this is regarding polyharmonic functions of order k in the class C2k−1(Ω). Hence,
though we have here presented a separate proof, Corollary 1.6 is a known, unpub-
lished, result, due to Chesnokov [7] in a dissertation.

2. Statement and proof of the main theorem

Theorem 2.1 (auxiliary to the main result). Let Ω ⊂ C be a bounded, simply

connected domain. Let f ∈ C2q−1(Ω) be a q-analytic function on Ω \ f−1(0), for

some q > 1. Then f is q-analytic on Ω.

P r o o f. Let f = u + iv where u = Re f , v = Im f . It is a known result, see
Balk [4], page 200, that Re f is polyharmonic of order q. Now f−1(0) ⊆ u−1(0),
whence u ∈ C2q−1(Ω) and u is polyharmonic of order q on Ω \ u−1(0). By Radó’s
theorem for sufficiently smooth polyharmonic functions, given by Corollary 1.6, it
follows that u is polyharmonic of order q on all of Ω. Similarly we conclude that v
is polyharmonic of order q on Ω. Thus f satisfies

(2.1) 0 = ∆qf = Dq(Dqf),
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meaning that Dqf is q-analytic on Ω. On the other hand, it is known (see e.g.
Krantz [12], Lemma 4.6.6, page 197) that if Df and Df are L2, then

(2.2) ‖Df‖L2 = ‖Df‖L2,

and by iteration ‖Dqf‖L2 = ‖Dqf‖L2. Furthermore, Ω\f−1(0) is open and assuming
f 6≡ 0 (if f ≡ 0 we are done), it is also nonempty, and thus

(2.3) 0 = ‖Dqf‖L2(Ω\f−1(0)) = ‖Dqf‖L2(Ω\f−1(0)).

If V ⊂ C is a bounded open subset and g is a polyharmonic function of order
k > 1 on V, then: (0 = ‖g‖L2(V ) ⇒ g ≡ 0 on V ). Indeed, 0 = ‖g‖L2(V ) =

∫

V
|g|2

implies that the smooth real-valued nonnegative function gg, vanishes a.e. on V ; thus
gg ≡ 0 on V . Hence we have (using g = Dqf and V = Ω \ f−1(0), in the previous
argument) that Dqf = 0 on Ω\f−1(0). However we also know that Dqf is q-analytic
on Ω, and a q-analytic function which vanishes on an open subset, vanishes on the
whole connected component of that subset. Since Ω is connected, this implies that
Dqf = 0 on Ω, which, as we have pointed out above (i.e. using |Dqf | ⇔ Dqf = 0

and |Dqf | ⇒ |Dqf | = 0), implies that Dqf = 0 on Ω. This completes the proof. �

Next we shall need the following result on separately polyanalytic functions, due
to Avanissian and Traore [1].

Theorem 2.2 ([1], Theorem 1.3, page 264). Let Ω ⊂ C
n be a domain and let

z = (z1, . . . , zn) denote the holomorphic coordinates in C
n with Re z =: x, Im z = y.

Let f be a function which, for each j, is polyanalytic of order αj in the variable

zj = xj + iyj (in such case we shall simply say that f is separately polyanalytic of

order α). Then f is jointly smooth with respect to (x, y) on Ω and furthermore is

polyanalytic of order α = (α1, . . . , αn) in the sense of Definition 1.2.

Theorem 2.3 (Main result). Let Ω ⊂ C
n be a bounded C-convex domain. Let

α ∈ Z
n
+ and let f be a function on Ω which is separately C

2αj−1-smooth with respect

to zj . If f is α-analytic on Ω \ f−1(0), then f is α-analytic on Ω.

P r o o f. Denote for a fixed c ∈ C
n−1, Ωc,k := {z ∈ Ω: zj = cj , j < k, zj =

cj−1, j > k}. Since Ω is C-convex, Ωc,k is simply connected. Consider the function
fc(zk) := f(c1, . . . , ck−1, zk, ck, . . . , cn−1). Clearly, fc is αk-analytic on Ωc,k \ f

−1(0)

for any c ∈ C
n−1. Since f−1

c (0) ⊆ f−1(0), Theorem 2.1 applies to fc meaning that f
is separately polyanalytic of order αj in the variable zj , 1 6 j 6 n. By Theorem 2.2
the function f must be polyanalytic of order α (in the sense of Definition 1.2) on Ω.
This completes the proof. �
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We do not know how much it is possible to loosen the smoothness condition on f ,
but it is clear that continuity alone is not enough. Take for example the function

f(z) =

{

|z|2 − 1, |z| > 1,

1− |z|2, |z| < 1.

Then f is continuous and 2-analytic off its zero set {|z| = 1}, but not 2-analytic.

Acknowledgment. We thank the referee for helpful comments.
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