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Abstract. We consider a large class of impulsive retarded functional differential equations
(IRFDESs) and prove a result concerning uniqueness of solutions of impulsive FDEs. Also,
we present a new result on continuous dependence of solutions on parameters for this class
of equations. More precisely, we consider a sequence of initial value problems for impulsive
RFDEs in the above setting, with convergent right-hand sides, convergent impulse operators
and uniformly convergent initial data. We assume that the limiting equation is an impulsive
RFDE whose initial condition is the uniform limit of the sequence of the initial data and
whose solution exists and is unique. Then, for sufficient large indexes, the elements of
the sequence of impulsive retarded initial value problem admit a unique solution and such
a sequence of solutions converges to the solution of the limiting Cauchy problem.
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1. INTRODUCTION

Our motivation for revisiting the theory of continuous dependence on parameters
for RFDEs, which is described in [5] for the case of non-impulsive systems with
continuous right-hand sides, is to consider more general systems (subject to impulse
action). As a matter of fact, one important application of theorems about continuous
dependence of a solution on a parameter is to obtain averaging methods. Indeed, we
are concerned with averaging principles for RFDEs with impulses using the results of
the present paper. See [2], [1]. We consider a setting of Cauchy problems for retarded
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functional differential equations (we write REDE, for short) subject to impulse effects
at preassigned moments, having a discontinuous initial function and a Lebesgue
integrable right-hand side.

Let r, 0 and ty be real numbers with » > 0 and ¢ > 0. Given t € [to,to + o] and
a function y: [to — r,to + o] — R"™, consider y;: [—r,0] — R™ defined by

ye(0) =yt +46), 6¢el[-r0l.

We consider the initial value problem

y(t):f(yt,t), t#tkv

(1.1) Ay(ty) = In(y(te)), k=1,...,m,
Yto = ¥,
where tx, K = 1,...,m, are the moments of impulse action, with g < t; < ... <

tpy < ...<tm < to+o. We assume that y — Ix(y), k = 1,...,m maps R™ into itself
and

Ay(tr) == y(te+) —y(te—) = y(tet) —ylte), k=1,...,m,

that is, y is left continuous at ¢ = {¢; and the lateral limit y(tx+) exists for
k=1,...,m. This means that y is a regulated function. We also require the
initial function to be regulated and left-continuous, that is, ¢: [—r,0] — R™ admits
the lateral limits

Slirg o(s) = p(t), te(-r0], and Slirgr o(s) = p(t+), te[-r0).

In addition, we assume that the mapping ¢t — f(y:,t) is Lebesgue integrable with
indefinite integral satisfying Carathéodory and Lipschitz-type conditions. Thus, the
mapping ¢t — f(y:,t) need not be piecewise continuous and the usual requirement
that f(1,t) is continuous in the first variable (which is an element of the space of
regulated functions from [—r, 0] to R™) need not be fulfilled. Under these conditions,
we prove a local existence and uniqueness theorem for problem (1.1) as well as a new
result on continuous dependence of the solutions on parameters.

It should be noticed that, in the above setting, it was proved in [3] that sys-
tem (1.1) is equivalent to a system of generalized differential equations taking values
in a Banach space and, as a consequence, local existence and uniqueness of a solution
were guaranteed. In the present paper, we prove the same result without employing
the theory of generalized differential equations.

With respect to continuous dependence of the solutions on parameters, we have
to mention that, in the above setting, the following result is well-known. Consider
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a sequence of initial value problems whose right-hand sides converge to the right-
hand side of an impulsive RFDE and whose initial data also converge. Let the
sequence of impulse operators be convergent as well. Suppose each element of the
sequence of impulsive retarded Cauchy problems admits a unique solution and that
this sequence of unique solutions is uniformly convergent. Consider the limit initial
value problem with limiting right-hand side, limiting impulse operators and limiting
initial condition. Then, the limit of the sequence of solutions is a solution of the
limiting initial value problem. See [3], Theorem 4.1, and [7].

In the present paper, we prove a certain reciprocal of the above result. We consider
a sequence of initial value problems for impulsive RFDEs in the above setting, with
convergent right-hand sides, convergent impulse operators and uniformly convergent
initial data. We assume that the limiting equation is an impulsive RFDE whose
initial condition is the uniform limit of the sequence of initial data and whose solution
exists and is unique. Then, for sufficient large indexes, the elements of the sequence of
impulsive retarded initial value problem admit a unique solution and such a sequence
of solutions converges to the solution of the limiting Cauchy problem.

2. A cLAss oF IMPULSIVE RFDES

Let X be a Banach space with norm ||-|| and [a, b] a conpact interval of R. A func-
tion f: [a,b] — X is called regulated, if the lateral limits

lim f(s)=f(t—)e X, te€(a,b], and lim f(s)=f(t+) e X, tela,b),

s—t— s—t+

exist. In this case, we write f € G([a,b],X) and we endow G([a,d], X) with the
usual supremum norm || f|| = sup |f(¢)|. Then (G([a,b], X), ||||) is a Banach space.

AL

Moreover, any function in G([a,b], X) is the uniform limit of step functions. For
more details about regulated functions, the reader may want to consult [4], [6].
Define

G ([a,b],X) ={u € G([a,b], X): u is left continuous at every ¢t € (a, b]}.

In G~ ([a,b], X ), we consider the norm induced by G([a,b], X). Then it is clear
that given a function y € G~ ([to — r,to + ¢],R™) and t € [to,to + o], we have
Yt € Gi([_ra 0]; Rn)
We consider the initial value problem for a RFDE with impulses
y(t):f(yt,t), t#tkv
(2.1) Ay(tr) = Ie(y(te)), k=1,....m,
Yto = ¥



where ¢ € G~ ([-7,0],R™) and the moments of the impulse form a finite sequence,
{tk}k=1,....m, which is increasing. We assume that y — I(y), k = 1,...,m maps R"
into itself and

Ay(ty) == y(te+) — y(te—) = y(tr+) — y(te),

that is, y is left continuous at ¢ = ¢ and the lateral limit y(¢x+) exists for k =
1,...,m.

It is known that the impulsive system (2.1) is equivalent to the integral equation

y(H) = y(to) + | f(yers)ds+ > L(y(te),

(22) to<tp <t

Yto = P,

whenever the integral on the right hand side of the equation (2.2) is defined. See [8]
for more details. Throughout the paper, the integrals are understood in the Lebesgue
sense.

For T € (to,00), we define the left continuous Heaviside function concentrated

0 fortg<t<T,
Hr(t) =

at T as follows:

1 forT <t.
Then
>0 L(y(te) = Te(y(te) Hy (t)
to<tp<t k=1

and system (2.1) can be rewritten as

v0) = ylto) + [ Fu9)ds+ 30 ) Hy (0), 1< ftorto + o],
to k=1

Yto = ¥-

(2.3)

We assume that f: G~ ([-7,0],R™) x [to,to + 0] — R™ is a function such that the
mapping ¢t — f(y:, t) is Lebesgue integrable on [to,to + o].
Denote by |-| an arbitrary norm in R™. For y, € G~ ([-r,0],R"), we denote

lys|| = sup ly(s)|. We also assume the following conditions hold:
s€fto—r,to+o]

(A) There is a Lebesgue integrable function M : [tg,to + o] — R such that for all
y € G ([to — 7, to + o], R™) and all uy,us € [to,to + o,

/:2 f(ys,s)ds

U2
< / M(s)ds.
uy



(B) There is a Lebesgue integrable function L: [tg,tp + o] — R such that for all
z,y € G~ ([to — r,to + 0], R™) and all uy,us € [to, Lo + o],

[ ) = Sl as

1

uz
</ L($) s — g loc ds.
u

1

Consider the following conditions concerning the impulse operators I,: R™ — R"™,
k=1,...,m:
(A’) There is a constant K7 > 0 such that for all k =1,...,m and all z € R,

[T (x)] < K.
(B’) There is a constant K5 > 0 such that for all k =1,...,m and all z,y € R",
(e(2) = In(y)| < Kalz —yl.

Note that the Carathéodory and Lipschitz-type conditions (A) and (B) are re-
quired for the indefinite integral of f only and not for the function f itself. Thus,
the standard requirement that f(1),¢) is continuous in ¢ need not be fulfilled. Also,
the mapping t — f(y:,t), t € [to,to + o] need not be piecewise continuous, it is
enough for the mapping to be Lebesgue integrable.

In [3], it was proved that under the conditions (A), (B), (A’) and (B’), a solution
of the system (2.1) can be identified, in a one-to-one correspondence, with a solution
of a system of generalized ordinary differential equations taking values in a Banach
space. Local existence and uniqueness of the solution were guaranteed by [3], Theo-
rems 2.15, 3.4 and 3.5.

In what follows, we give a direct proof of a local existence and uniqueness theorem
for the impulsive RFDE (2.1) without employing the theory of generalized ODEs.

Theorem 2.1. Consider problem (2.1) and suppose conditions (A), (B), (A’)
and (B') are fulfilled. Then there is a A > 0, which depends only on L, M, K1, K
from conditions (A), (B), (A’) and (B’), such that on the interval [tg,tyo + A] there
exists a unique solution y: [tog — 7,to + A] — R™ of problem (2.1).

Proof. Our proof is inspired by the proof of [3], Theorem 2.15. For ¢t €
[to, to + o], define the functions:

ha(t) = / [M(s) + L(s)] ds and ha(t) = max(K, K2) 3 Hy, (1)

to k=1



where H;, denotes the left continuous Heaviside function concentrated at t, that is,

H, (1) 0 fort < ty,
LA 1 fort > iy,

for every k =1,2,...,m. Let h = hy + hs. Then, clearly, the function A is nonde-
creasing and left continuous.

Let us prove the local existence and uniqueness of the solution of (2.1). Since ¢
is not a moment of impulse, h is continuous at ty. Therefore, there exists a A > 0
such that [to,t0 + A] C [to,to + o) and h(to + A) — h(to) < 1/2.

Let @ be the set of all functions z: [tg —r,to+ A] — R™ such that z € G~ ([to —
to + A],R™) and |z(t) — ¢(0)| < h(t) — h(to) for t € [to,to + A].

It is easy to show that the set Q@ C G~ ([to — r,to + A], R™) is closed.

For s € [to — r,to + A] and z € Q, define

o(s —to), 8 E [to—rtol,s

Tz(s) /fzt, Jdt+ S L(a(t), s € ltorto + Al

to<t;<s

Then, by conditions (A) and (A’), we have

T2(s) — (0)] =

f(zt, ydt+ > Li((t)| < h(s) — h(to), s € [to,to + Al

to<t;j<s
Also, the fact that Tz belongs to G ([tg — 7, tg + A], R™) is not difficult to prove.
Thus, T maps () into itself.
Let 21,20 € Q; if tg — r < 81 < 82 < 1o, then
|Tz2(s2) — Tz1(s2) — [T'22(s1) — Tz1(s1)]]
= lp(s2 — to) — @(s2 —to) — @(s1 — to) + (51 —to)| =0
< [lz2 = 21[[[(to + A) — h(to)].
If to — r < s1 < tp and tg < s2 < tg+ A, then conditions (B) and (B’) imply
Tz2(s2) — Tz1(s2) — [T22(s1) — Tz1(s1)]]

/ Tt - FEnnldir S (eat) — 1= ()

to

to<t;< s2
< / L(t)[|(22)e — (20)e]l dt + K2 > |2a(ty) = 21(t) | H, (52)
to j=1

< osupza(s) — zu(s)] [A(s2) — h(to)]
sE€[to—r,to+A]

< 22 = 21[[[A(to + A) — h(to)]-



If tg < s1 < s2 < o+ A, then conditions (B) and (B’) imply

|TZQ(82) — Tzl(SQ) — [TZQ(Sl) — Tzl(sl)]|

/Sz[f((ZQ)t,t)—f((21)t7t)]dt+ Y H(ty) = Liz(t)]

< [ RO — e+ Ke Y [ealts) = 21(05) i s2) — o (50)

< osupza(s) — z1(s)] [A(s2) — A(to)]
s€[to—r,to+A]

<[22 = z1[[[(to + A) — h(to)].
Therefore, using the above inequalities, we obtain
1
1Tz = Tz1l] < ll22 = 21l[[A(to + A) = h(to)] < 5llz2 — z1]l-

Thus, T is a contraction and by the Banach fixed-point theorem, T possesses a unique
fixed point. Remember that by the definition of the operator T', x is a unique solution
of (2.1) ifand only if it is a unique fixed point of T. Therefore, the result follows as
well. ([

Remark 2.1. We point out that A in the previous theorem depends only on
M, L, K; and K> and also, note that by the definition of function h, h(tg) = 0.
Therefore, the proof of the previous theorem can be rewritten replacing h(ty) by 0.

3. CONTINUOUS DEPENDENCE FOR IMPULSIVE RFDESs

First, regarding continuous dependence results for impulsive RFDEs, we have to
mention [9] for an elucidatory discussion of the continuous dependence of solutions
on parameters of an impulsive delay differential equations whose impulse operators
also involve delays.

In this section, we mention some important results and definitions that are essential
for proving our main result, namely, Theorem 3.3.

Definition 3.1. A set A C G([a,b], X) is called equiregulated, if it has the fol-
lowing property: for every € > 0 and tg € [a, b], there is § > 0 such that
(1) ifye A, t/ €[a,b] and tg — 0 <’ < g, then |y(to~) —y(t')| < &
(2) ify e A, t" € [a,b] and to <t < to+ J, then |y(t") —y(to™)| < e.



The next proposition can be found in [4], Theorem 2.18. It is an Arzela-Ascoli-type
theorem for regulated functions.

Theorem 3.1. The following conditions are equivalent:

(i) A set A C G([a,b], R™) is relatively compact.

(ii) The set {y(a): y € A} is bounded and there is an increasing continuous function
n: [0,00) — [0,00), 7(0) = 0 and an increasing function K: [a,b] — R such
that

ly(t2) — y(t)]| < n(K(t2) — K(t1))

for every y € A, a < t1 <ty < b.
(iii) A is equiregulated and for every t € [a,b], the set {y(t);y € A} is bounded.

For p =0,1,2,..., we consider the following Cauchy problem:
y(t) :fp(ytat)7 t#t/w

(3.1) Ay(te) = I (y(tr), k=1,...,m,
to:SDpv
where tg <t <...<tp <...<tm <top+o,andforeachp=0,1,2,..., .+ I ()

maps R™ into itself and Ay(ty) := y(tp+) —y(tr—) = y(tr+) —y(tr), k =1,2,...,m

The next theorem is a continuous dependence result which, together with Theo-
rem 3.1, is essential for proving our main result. A proof of the next theorem can be
found in [3], Theorem 4.1.

Theorem 3.2. Assume that for each p =0,1,..., we have ¢, € G~ ([-r,0],R"),
and moreover, f,: G~ ([-r,0],R") X [to,tg + o] — R™ and I}: R" — [R" k=
1,2,...,m, satisfy conditions (A), (B), (A’) and (B’) for the same functions M, L
and the same constants Ky, Ko. Suppose

(3.2) lim  sup

P20 9e(to,to+a]

9
/t o 5) — folge, )] ds| = 0

for every y € G~ ([to — r,to + o], R™) and

(3.3) lim I7(z) = I} ()

p—00
for every v € R", k = 1,...,m. Assume further that, for each p = 1,2,...,
Yp: [to —1r,to+ o] = R™ is a solution on [ty — r,to + o] of the problem
y(t) :fp(ytat)v t7étk7
yto = 30[)7



and

(3.5) lim y, =y uniformly on [to — 7, to + o).

p—00
Then y: [to — r,to + 0] — R™ is a solution on [ty — r,ty + o] of the problem

y(t) = fo(ye,t), t#tr,
Yty = $o0-

The assumptions (3.2) and (3.3) in Theorem 3.2 ensure that, if the sequence
{Yp}p>1, Yp: [to — 1 to +0] = R™, p = 1,2,..., of solutions of (3.1) converges
uniformly to a function y: [tg — 7, tg + 0] — R™, then the limit is a solution of (3.6).

The next result says that adding a uniqueness condition to the “limit” equation,
then, for sufficiently large p € N, y,: [to — 7, to + 0] — R™ is a solution of (3.1)
provided the sequence of the initial data {¢,},>1 converges uniformly on [—r,0].

Theorem 3.3. Assume that there exist M, L, B, K1 and K> such that the condi-
tions (A), (B), (A’) and (B') are satisfied for each p when f is replaced by f, and I,
are replaced by I. Also, suppose that

t

(3.7) m [ [fp(Ys, 5) = fol(ys, s)|ds = 0, ¢ € [to, 0 + 0]

p—oo [y

for every y € G~ ([to — r,to + 0], R™), and

: Pl — 70
(3.8) phﬁngo I(z) = I (x)
foreveryx € R" andk =1,...,m. Lety: [to—r,to+0] — R™ be a unique solution of
y(t):fo(yt7t)a t#tka
Yto = PO,

on [to—r,to+0o], where oo € G~ (|—r,0],R™). Let {¢,}p>1 be a sequence of regulated
and left continuous functions from [—r,0] to R™. Assume further that ¢, — o
uniformly on [—r,0] as p — oo. Then, for sufficiently large p € N, there exists
a solution y, of

y(t) :fp(ytat)v t7étk7
(3.10) Ay(te) = y(t), k=1,....m,
yto = 30[)7



on [ty —r,to + o] and the sequence {y,},>1 possesses a subsequence which converges
uniformly, that is,

(3.11) llim yp, =Yy uniformly on [ty — r,to + o).
— 00

Proof. The present proof is inspired by the proof of [10], Theorem 8.6, for
generalized ODEs. We strongly use the fact that the functions f,, p = 0,1,2,...,
take values in a finite dimensional space so that we can apply Theorem 3.1.

Since ¢, — o uniformly on [—r, 0] as p — oo, it follows that ¢o € G~ ([—r,0], R™).

For each p € N, all the hypotheses of Theorem 2.1 are satisfied, hence there is
a A > 0 such that on the interval [to, to + A], there exists a local unique solution y,,
of problem (3.10). Notice that, according to the proof of Theorem 2.1, A > 0 is
uniform and independent of p.

Therefore, for each p, y, is a solution of (3.10) on [ty,?o + A] and by conditions
(A), (B), (A') and (B'), for every s1,s2 € [to,to + A] such that so > s1 we have

lyp(s2) = yp(s1)]l < /82 [L(s) + M(5)]ds + max(K1, K2) Y _[Hy, (s2) — H,(51)]
51 k=1

S1

< /SQ[L(S)—I—M(S)] ds 4+ max(K1, Ka2) g [Hy, (s2) — Hy, (s1)]
k=1
+ (s2 — 51),

where H;, denotes the left continuous Heaviside function concentrated at ¢;. Then,
defining the functions 7: [0,00) — [0,00) and K: [to,to + A] — R by

K(t) = /t[L(s) + M(s)]ds + max(K7y, K») Z H,, (t) — Hy, (to)] + (t — to)
k=1

to

and

we have |lyp(s2) — yp(s1)|| < n(K(s2) — K(s1)), where K is clearly increasing
and 7 is a continuous function satisfying 7(0) = 0. Then, since ¢, is bounded, for
p=0,1,2,..., Theorem 3.1 implies that {y,},>1 contains a subsequence which is
uniformly convergent on [tg,to + A].

Without loss of generality, we can denote this subsequence again by {y,};2;. Since
(Yp)to = p, we see that {y,}>2 is in fact uniformly convergent on [to — 7, %o + A].
Thus,

lim y, =y

pP—>00
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uniformly on [tg —r,to + A]. By Theorem 3.2 and by the uniqueness of solutions, it
follows that y is a solution of (3.9) on [to,to + A].

Therefore, the theorem holds on [tg,tg + A]. It also holds on [t — 7, %], since
¥p — o uniformly.

Now, let us assume that the convergence result does not hold on the whole interval
[to — 7,to + o]. Thus there exist a A’, 0 < A’ < ¢ and N € N sufficiently large such
that for every A < A’ and for p > N, there is a solution y, of (3.10) on [to—r, to+A4],
with (yp)t, = ¢p, and plLIIolo yp(t) = y(t) for t € [to — r,to + A], but this does not hold

n [to — r,to + A] whenever A > A,
Since

S1

yp(s2) = yp(s1)ll < /SQ[L(SHM(S)] ds + max(K1, K2) Y _[Hy,(s2) = Hy, (s1)],
k=1

for every sa,81 € [tg — r,to + A’) and every p > N, we have that the limit
Yp((to + A")=) = h%l Yp(to + A" +¢), p>N,
e—0—

exists and y,((to + A")—) = y,(to + A’), for p > N, since y is left continuous.
Defining y, (to+A') = y,((to+A")—) for p > N, then plLrI;o yp(to+A") = y(to+A").
Therefore, the theorem holds on [tg —r, to + A’] as well. Then, using to+ A’ < g+ o
as the starting point, it can be proved, analogously, that the theorem holds on the
interval [to + A, ¢y + A’ + 1] for some 1 > 0, and this contradicts our assumption.
Thus, the theorem holds on the whole interval [tg — r,to + o]. O
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