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Abstract. We construct a class of special homogeneous Moran sets, called {mk}-quasi
homogeneous Cantor sets, and discuss their Hausdorff dimensions. By adjusting the value
of {mk}k>1, we constructively prove the intermediate value theorem for the homogeneous
Moran set. Moreover, we obtain a sufficient condition for the Hausdorff dimension of ho-
mogeneous Moran sets to assume the minimum value, which expands earlier works.
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1. Introduction

Moran sets play an important role in fractal geometry, and are closely connected

with many subjects. There are many important developments and applications in

different ways, e.g., in the power systems (see [2] and its reference), in measurement

of number theory (see [7], [9]), in Lipschitz equivalence (see [6]), in multifractals

(see [4], [10]), in quasi homeomorphisms (see [5], [8]), etc. In these applications,

the homogeneous Moran set plays a very important part. This arouses our great

research interest in it. In [3], Feng, Wen and Wu using Theorem 4.10 in [1] showed

the maximal value and the minimal value of the Hausdorff dimension in the family

of homogeneous Moran sets. But except for the two extreme situations (the dimen-

sion of a partial homogeneous Cantor set may assume the minimum value while the

dimension of a homogeneous Cantor set may assume the maximum value), the struc-
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ture of homogeneous Moran sets whose dimension assumes an intermediate value is

not clear.

In this paper, we construct a class of special homogeneous Moran sets which are

called {mk}-quasi homogeneous Cantor set. And we obtain a sufficient condition that

the Hausdorff dimension of homogeneous Moran sets may get the minimum value,

which extends and deepens the results of the Hausdorff dimension of homogeneous

Moran sets in [3]. By adjusting the value of {mk}k>1, we constructively prove the

intermediate value theorem for the homogeneous Moran sets.

The paper is organized as follows. In Section 2, we recall some preliminaries and

state our main results. In Section 3, we construct the {mk}-Moran set and the

{mk}-quasi homogeneous Cantor set, and discuss their Hausdorff dimension. The

proofs of our main results are presented in Section 4.

2. Preliminaries and main results

First, we review the concept of the homogeneous Moran set. Let {nk}k>1 be

a sequence of positive integers and {ck}k>1 a sequence of positive numbers satisfying

nk > 2 and nkck 6 1, k > 1. For any k > 1, let Dk = {σ = σ1σ2 . . . σk ; 1 6

σj 6 nj, 1 6 j 6 k}, D =
⋃

k>0

Dk, where D0 = {∅}. If σ = σ1σ2 . . . σk ∈ Dk,

τ = τ1τ2 . . . τm ∈ Dm, let στ = σ1σ2 . . . σkτ1τ2 . . . τm.

Definition 2.1. Let I = [0, 1]. The collection of closed subintervals I = {Iσ ;

σ ∈ D} of I has homogeneous Moran structure if it satisfies

(i) I∅ = I;

(ii) for all k > 1, σ ∈ Dk−1, Iσ1, Iσ2, . . ., Iσnk
are subintervals of Iσ, and for i 6= j

is I̊σi ∩ I̊σj = ∅, where Å denotes the interior of A;

(iii) for any k > 1 and any σ ∈ Dk−1, 1 6 j 6 nk, we have

(2.1) ck =
|Iσj |

|Iσ|
,

where |A| denotes the diameter of A.

We call E =
⋂

k>1

⋃

σ∈Dk

Iσ a homogeneous Moran set. We useM({nk}k>1, {ck}k>1)

to denote the collection of homogeneous Moran sets generated by the above homo-

geneous Moran structure, simply written asM, and we call Ek = {Iσ;σ ∈ Dk} the

k-order fundamental intervals of E; I is called the original interval of E.

If the left endpoint of Iσ1 is the same as the left endpoint of Iσ, and the right

endpoint of Iσnk
is the same as the right endpoint of Iσ, and the gaps between Iσi,
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1 6 i 6 nk, are equal, then E is called a homogeneous Cantor set, simply written

as C.

If the left endpoint of Iσ1 is the same as the left endpoint of Iσ, and the left

endpoint of Iσ(i+1) is the same as the right endpoint of Iσi, 1 6 i 6 nk − 1, then E

is called a partial homogeneous Cantor set, simply written as C∗.

Homogeneous Cantor sets C and partial homogeneous Cantor sets C∗ are two

kinds of special but very important homogeneous Moran sets.

The following result is due to Feng [3]:

Theorem 2.2. Suppose E ∈ M, then we have

t∗ 6 dimH E 6 s∗,

where

dimH C∗ = t∗, dimH C = s∗,

and

t∗ = lim inf
k→∞

lnn1n2 . . . nk−1

− ln c1c2 . . . cknk
, s∗ = lim inf

k→∞

lnn1n2 . . . nk

− ln c1c2 . . . ck
.

However, except for the extreme situations, i.e., when the dimension of the par-

tial homogeneous Cantor set may assume the minimum value while the dimension

of the homogeneous Cantor set may assume the maximum value, the structure of

a homogeneous Moran set whose dimension assumes the intermediate value is not

clear.

In this paper, we construct a class of special homogeneous Moran sets which are

called {mk}-quasi homogeneous Cantor sets and prove the following intermediate

value theorem.

Theorem 2.3. Suppose t∗ 6 s 6 s∗. Then there exists an {mk}-quasi homoge-

neous Cantor set F such that

(2.2) dimH F = s.

In addition, we note that, for any homogeneous Moran set E, if mIσ is the number

of the connected components contained in the k-order fundamental intervals Iσ,

σ ∈ Dk, then we obtain the following useful result:

Theorem 2.4. Suppose E ∈ M. If sup
σ∈D

{mIσ} < ∞, then we have

(2.3) dimH E = t∗.
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From this theorem we know that partial homogeneous Cantor set is only a small

part of homogeneous Moran set whose dimension may assume the minimum value.

However, Corollary 3.3 shows that sup
σ∈D

{mIσ} < ∞ is not a necessary condition.

3. Construction of {mk}-Moran set and {mk}-quasi homogeneous

Cantor set

Definition 3.1. Suppose E ∈ M({nk}k>1, {ck}k>1), Ek is the k-order fun-

damental interval of E and {mk}k>1 is a sequence of positive integers satisfying

1 6 mk 6 nk, k > 1. If the k-order fundamental intervals Iσ1, Iσ2, . . . , Iσnk
con-

tained in Iσ , for all Iσ ∈ Ek−1, arbitrarily connect forming mk connected compo-

nents, written as Jσ1, Jσ2, . . . , Jσmk
, then such a homogeneous Moran set E is called

{mk}-Moran set. We use M({nk}k>1, {ck}k>1, {mk}) to denote the collection of

{mk}-Moran sets.

Suppose E ∈ M({nk}k>1, {ck}k>1, {mk}), let Jσ be the connected components

contained in the (k − 1)-order fundamental intervals. Let Ak = {Jσ ; σ ∈ Σk}, where

Σk = {σ = i1i2 . . . ik−1jk ; 1 6 is 6 ns, 1 6 s 6 k − 1, 1 6 jk 6 mk}. Obviously,

♯Ak = n1n2 . . . nk−1mk. Let l∗ = lim inf
k→∞

ln(n1n2 . . . nk−1mk)/− ln(c1c2 . . . ck ×

nk/mk), δk = c1c2 . . . ck, Nk = n1n2 . . . nk.

Theorem 3.2. Suppose E ∈ M({nk}k>1, {ck}k>1, {mk}), then we have

(3.1) dimH E 6 l∗.

P r o o f. For any l∗ < l < 1, there exist subsequence {ki}i>1 and a positive inte-

ger N such that for any i > N , we have l > ln(n1n2 . . . nki−1mki
)/− ln(c1c2 . . . cki

×

nki
/mki

), i.e.,

(3.2) n1n2 . . . nki−1mki

(

c1c2 . . . cki

nki

mki

)l

6 1.

Obviously, Aki
is a δki

nki
-cover of E, by the definition of Hausdorff measure,

(3.3) H l
δkinki

(E) 6
∑

Jσ∈Aki

|Jσ|
l =

∑

I∈Eki−1

mki
∑

j=1

|Jj |
l.

Since
mki
∑

j=1

|Jj | ≡ nki
δki
, 0 < l < 1, by Jensen’s inequality, we have

(3.4) H l
δkinki

(E) 6
∑

I∈Eki−1

mki

(nki
δki

mki

)l

= n1n2 . . . nki−1mki

(

δki

nki

mki

)l

6 1.
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As i → ∞, δki
nki

→ 0, we get H l(E) 6 1 < ∞. By the definition of Hausdorff

dimension, we have dimH E 6 l. By the arbitrariness of l, we have dimH E 6 l∗. �

Corollary 3.3. If lim
k→∞

ln(mk)/− ln(δknk) = 0, then for any E ∈ M({nk}k>1,

{ck}k>1, {mk}), we have

(3.5) dimH E = t∗,

where t∗ is defined as in Theorem 2.2.

P r o o f. If lim
k→∞

lnmk/− ln(δknk) = 0, then

l∗ = lim inf
k→∞

lnn1n2 . . . nk−1mk

− ln(δknk/mk)

= lim inf
k→∞

lnn1n2 . . . nk−1/− ln(δknk) + lnmk/− ln(δknk)

1 + lnmk/− ln(δknk)
= t∗.

And since t∗ 6 dimH E 6 l∗ is the known result, we have dimH E = t∗. �

In order to verify that the maximum value l∗ can be obtained, in the following

we introduce a special class of {mk}-Moran sets, called {mk}-quasi homogeneous

Cantor sets. Let ak = [nk/mk] + 1, where [a] denotes the largest integer less than or

equal to a.

Definition 3.4. Suppose F ∈ M({nk}k>1, {ck}k>1, {mk}). Let I be the (k−1)-

order fundamental interval of F , and let J1, J2, . . . , Jmk
be the connected components

contained in I. If the gaps between Ji, 1 6 i 6 mk, are equal and the left endpoint

of J1 is the same as the left endpoint of I, the right endpoint of Jmk
is the same as

the right endpoint of I, and

max{|Ji| − |Jj | ; 1 6 i, j 6 mk} = δk,

then F is called an {mk}-quasi homogeneous Cantor set.

Remark 3.5. In the special case, if mk ≡ nk, then F is a homogeneous Cantor

set; if mk ≡ 1, then F is a partial homogeneous Cantor set.

Remark 3.6. By the definition of {mk}-quasi homogeneous Cantor set, we can

see that if for any 1 6 i 6 mk, Ji is composed of ak or ak − 1, k-order fundamental

intervals arbitrarily connected, then |Ji| = δkak or δk(ak − 1).
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4. Proof of main results

First, we introduce a very important theorem, that is, the mass distribution prin-

ciple:

Lemma 4.1 ([1]). Suppose µ is the mass distribution on F , and for some s, there

exist C > 0 and δ > 0 such that for any U satisfying |U | 6 δ we have

µ(U) 6 C|U |s.

Then dimH F > s.

Theorem 4.2. Suppose F is an {mk}-quasi homogeneous Cantor set. Then

dimH F = l∗.

P r o o f. By Theorem 3.2, dimH F 6 l∗. It suffices to prove that dimH F > l∗.

For any 0 < l < l∗, there exists N such that when k > N , then

(4.1) n1n2 . . . nk−1mk

(

δk
nk

mk

)l

> 1.

There exists a natural measure µ on the homogeneous Moran set F and for any

k-order fundamental intervals I,

(4.2) µ(I) =
1

n1n2 . . . nk
.

In order to apply Lemma 4.1, in the following we will show that there exists

a constant C > 0 such that for any U satisfying |U | = δ < δN we have

(4.3) µ(U) 6 C|U |l.

It is easily checked that there exists a unique k > N such that akδk 6 δ <

ak−1δk−1. Suppose that e is the number of elements in the intersection of U and Ak,

let Jσi, Jσ(i+1) be the two adjacent connected components contained in the (k − 1)-

order fundamental intervals Iσ . By the definition of an {mk}-quasi homogeneous

Cantor set, the gaps between them are independent of σ and i, written as ηk. We

divide the proof into two cases as follows:

Case 1. δkak 6 δ < ηk. In this case, obviously, e 6 3. Since

nk

mk
6 ak 6

nk

mk
+ 1 6 2

nk

mk
,
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this implies

(4.4) µ(U) 6 3ak
1

n1n2 . . . nk
6

6

n1n2 . . . nk−1mk
6 6

(

δk
nk

mk

)l

6 6(δkak)
l 6 6δl.

Case 2. max{δkak, ηk} 6 δ < δk−1ak−1.

(i) If mk−1 = nk−1, then ak−1 = 1. Hence U intersects two elements in Ak−1 at

most. If mk−1 < nk−1, then ak−1 > 2. Hence 2δk−1(ak−1 − 1) > ak−1δk−1 > δ.

Thus U intersects three elements in Ak−1 at most and hence e 6 3ak−1mk.

(ii) Since U intersects e elements in Ak, it follows that

δkak
2

(e − 2) 6 δ,
e − 2

2
ηk 6 (e− 1)ηk 6 δ,

namely, ((e − 2)/2)max{δkak, ηk} 6 δ, so

e 6
2δ

max{δkak, ηk}
+ 2 6

4δ

max{δkak, ηk}
.

Integrating (i) and (ii), we have

µ(U) 6 min
{

3ak−1mk,
4δ

max{δkak, ηk}

} ak
n1n2 . . . nk

6 4(mkak−1)
1−l

( δ

max{δkak, ηk}

)l ak
n1n2 . . . nk

= 4δl
akmka

1−l
k−1

n1n2 . . . nk(mk max{δkak, ηk})l
.

The second inequality above is established because

min {x, y} = (min {x, y})1−l(min {x, y})l 6 x1−lyl.

Since

δk−1 = nkδk + (mk − 1)ηk 6 mk

( nk

mk
δk + ηk

)

6 mk(akδk + ηk) 6 2mk max{δkak, ηk},

we have

µ(U) 6 4 · 2lδl
akmka

1−l
k−1

n1n2 . . . nk(δk−1)l
= 4 · 2lδl

ak−1akmk

n1n2 . . . nk(δk−1ak−1)l
(4.5)

6 16 · 2lδl
1

n1n2 . . . nk−2mk−1(δk−1ak−1)l
6 16 · 2lδl.

By Lemma 4.1, we have dimH F> l. By the arbitrariness of l, we have dimH F> l∗.

Hence we completed the proof of Theorem 4.2. �
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Lemma 4.3. Suppose t∗ 6 s 6 s∗, then there exists a sequence of positive

integers {mk}k>1 such that

(4.6) l∗ = s.

P r o o f. It suffices to show that when t∗ < s < s∗, the conclusion is established.

Let δk = c1c2 . . . ck, Nk = n1n2 . . . nk. By the definition of an {mk}-Moran set, for

any k > 1 we have 1 6 mk 6 nk. Since s < s∗ = lim inf
k→∞

lnNk/− ln δk, there exists

N > 0 such that for any k > N we have s 6 lnNk/− ln δk, namely, Nkδ
s
k > 1. Due

to s < 1, we get

(4.7) nk(Nkδ
s
k)

1/(s−1) 6 nk.

⊲ When k < N , we take mk ≡ 1;

⊲ when k > N and nk(Nkδ
s
k)

1/(s−1) 6 1, we take mk = [nk(Nkδ
s
k)

1/(s−1)] + 1;

⊲ when k > N and nk(Nkδ
s
k)

1/(s−1) > 1, we take mk = [nk(Nkδ
s
k)

1/(s−1)].

Hence by the above proof, the sequence of positive integers {mk}k>1 which we

have constructed satisfies 1 6 mk 6 nk.

And when k > N , we have mk − nk(Nkδ
s
k)

1/(s−1) 6 1. Hence

l∗ = lim inf
k→∞

lnNk−1mk

− ln δk
nk

mk

= lim inf
k→∞

lnNk−1nk(Nkδ
s
k)

1/(s−1)

− ln δknk · nk
−1(Nkδsk)

1/(s−1)

= lim inf
k→∞

lnNkNk
1/(s−1)δk

s/(s−1)

− ln δkδk
s/(1−s)Nk

1/(1−s)
= lim inf

k→∞

s lnNk · δk
(s− 1)−1 lnNk · δk

= s.

By Theorem 4.2 and Lemma 4.3, we can get Theorem 2.3 easily. �

Finally, we prove Theorem 2.4 as follows.

P r o o f of Theorem 2.4. It suffices to show that dimH E 6 t∗. For any t∗ < t < 1,

there exists a subsequence {ki}i>1 and a positive integer N such that for any i > N

we have n1n2 . . . nki−1(δki
nki

)t 6 1.

Obviously Aki
is a δki

nki
-cover of E; by the definition of Hausdorff measure,

Ht
δkinki

(E) 6
∑

σ∈Dki−1

mσ
∑

j=1

|Jσj |
t
6 mσn1n2 . . . nki−1(δki

nki
)t

6 mn1n2 . . . nki−1(δki
nki

)t 6 m,

where m = sup
σ∈D

mσ. As i → ∞, then δki
nki

6 δki−1 → 0. Thus we get that

Ht(E) 6 m < ∞. By the definition of Hausdorff dimension, we have dimH E 6 t, so

dimH E 6 t∗.

Hence we have completed the proof of Theorem 2.4. �
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