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Abstract. The paper deals with very weak solutions u € 6 + Wol’r(ﬂ), max{l,p — 1} <
r < p < n, to boundary value problems of the p-harmonic equation

» { —div(|Vu(z)|P2Vu(z)) =0, =€Q,

u(z) = 0(z), x € 0N.

We show that, under the assumption @ € W19(Q), ¢ > r, any very weak solution u to the
boundary value problem () is integrable with

0+ L7 (©Q) for g <mn,

weak

u€q O0+L () for ¢g=nandany 7 < oo,

weak
0+ L>(Q) for ¢ > n,
provided that r is sufficiently close to p.

Keywords: integrability; very weak solution; boundary value problem; p-harmonic equa-
tion

MSC 2010: 35325, 35D30

1. INTRODUCTION AND PRELIMINARY LEMMAS

Throughout this paper 2 will stand for a bounded regular domain in R™, n > 2.
By a regular domain we understand any domain of finite measure for which the esti-
mates (2.4) and (2.5) below for the Hodge decomposition are satisfied, see [11], [12].
A Lipschitz domain, for example, is regular.
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Let 1 < p < n. We shall examine the boundary value problem of the p-harmonic
equation

(1.1) { —div(|Vu(z)[P~2Vu(z)) =0, =€,

u(z) = 6(x), x € 09,

where 0(z) € W14(Q), ¢ > r.
This paper deals with very weak solutions to (1.1).

Definition 1.1. A function u € 6 + WOM(Q), max{1l,p — 1} < r < p, is called
a very weak solution to the boundary value problem (1.1) if

(1.2) / (IVulP=2Vu, V) dz =0
Q

holds true for all p € Wol’r/(r_p'H)(Q).

Recall that a function u € 6 + VVO1 P(Q) is called a weak solution to the boundary
value problem (1.1) if (1.2) holds true for all ¢ € W, *(Q). This is what we call the
natural setting of problem (1.1). The words very weak in Definition 1.1 mean that
the integrable exponent r of u can be smaller than the natural one p. We refer the
readers to [11], Theorem 1, page 602, and [9], Theorems 1 and 2, page 251, for some
results related to very weak solutions to the p-harmonic equation, although up to
now, the existence and uniqueness of such solutions remain unclear.

In this paper we will need the definition of weak L!-spaces or Marcinkiewicz spaces
(see [2], Chapter 1, Section 2, [10], Chapter 2, Section 5 or [16], Chapter 2, Sec-
tion 18): for ¢t > 0, the weak L'-space, L% . (), consists of all measurable func-
tions f such that

€90 1f@)] > s} < &

for some positive constant k = k(f) and every s > 0, where |E| is the n-dimensional
Lebesgue measure of E. Note that if f € Lf () for some t > 1, then f € L™(Q)
for every 1 < 7 < t.

Integrability property is important in the regularity theories of nonlinear elliptic
PDEs and systems, see [1], [3]-[8], [17]-[19], [21], [22]. In [14], [15], the authors
considered regularity properties of the p-harmonic type equations with r sufficiently
close to p. In [9], Greco et al. were concerned with the nonhomogeneous p-harmonic
equation

—div(|Vu(z) [P~ ?Vu(z)) = —div,

and obtained an estimate for the operator H which carries a given vector function f
into the gradient field Vu. In the present paper, we consider very weak solutions
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to boundary value problems of (1.1). The main result of this paper is the following
theorem.

Theorem 1.1. Let § € W9(Q), g > r. There exists g = £¢(n, p) > 0 such that
for every very weak solution u € 0 + Wol’r(Q), max{1l,p— 1} < r < p < n, to the

boundary value problem (1.1), we have
0+ Lg:eak(Q) for ¢ < n,

(1.3) we g O+LT . (Q) forq=n and any T < 00,

weak

0+ L>(Q) for g > n,
provided that [p — r| < &g.

Note that we have restricted ourselves to the case r < n since otherwise any
function in W17 (Q) is in the space L!() for any ¢t < oo by the Sobolev embedding
theorem. Note also that very weak solutions u to the boundary value problem (1.1)
are taken from the Sobolev space W17 (£2). The embedding theorem guarantees that
the integrability of u reaches r*. Our result (1.3) improves such integrability. We
remark that the key point in the proof of Theorem 1.1 is the choice of appropriate
test functions. We will use the stability estimate of Hodge decomposition used in
[9], [11], [12], see (2.3)—(2.5) below.

In order to prove Theorem 1.1, we need the following two lemmas.

Lemma 1.1. For 1 < p< 2 and any X,Y € R", one has
(XP2X =YY, X =Y) > [X = Y|(IX =Y [+ [V = [y ).
Proof. It is no loss of generality to assume that X # Y. For 0 < ¢ < 1 we have

%th —tY +Y[P2(tX —tY +Y), X - Y)
=(p-2X —tY +YP"H{tX —tY +Y, X - Y)?
+ (X —tY + Y|P3 X - Y), X -Y).
This implies

(L4)  (XPX - [YP Y, X -Y)

1
d
:/ SHIEX =87 + YPX =Y +Y), X - V)t
0
1
:(p—z)/ X — Y + Y X — Y 4V, X — V)2 dt
0
1
+|X—Y|2/ (tX —tY + Y|P 2 dt.
0
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Note that

X —tY + Y|P tX —tY +V, X —YV)2 < tX —tY + Y|P3 X - Y2,
which together with (1.4) and the fact 1 < p < 2 implies

1
(X[P2X —|YPP2Y, X -Y) > (p—1)|X—Y|2/ KX —tY + Y|P 2dt
0
1
> (- DIX — VP2 / (X — Y|+ [V 2 at
0

1
P / A X — Y|+ V)P dt
0
=X -Y|((1X - Y[+ [Y))P~t = [Y]P7H).
This completes the proof of Lemma 1.1.

The following technical result can be found in [23], Lemma 4.1.

Lemma 1.2. Let so > 0 and let ¢: (sg,00) — [0,00) be a decreasing function

such that for every r, s with r > s > sq,

0r) < 5w (906))’,

where ¢, «, (B are positive constants. Then
(i) if B > 1 we have that ¢(so + d) = 0, where

d® — CQaﬁ/(ﬂfl)((b(SO))ﬂ*l;

(ii) if B < 1 we have that

#(s) < 2“/(1’@(01/(1’5) + (250) p(s0))s M,

where p = a/(1 — B).
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2. PROOF OF THEOREM 1.1

In the following, C(%,...,*) will denote a constant that depends only on the
quantities x, ..., *, whose value may vary from line to line.
For any L > 0 we take
u—0+L foru—60<—L,
(2.1) v=<0 for —L<u—0<1L,
u—0—L foru—6>1L,

so that, by our assumptions, we have v € VVO1 " (Q) and
(2.2) Vv = (Vu - Vf)) : 1{|u—9\>L}v

where 1p is the characteristic function for the set F, that is, g = 1 if x € FE
and 1p = 0 otherwise. We introduce the Hodge decomposition of the vector field
|VolP=2Vu € L7/ (r=P+1)(Q). Accordingly,

(2.3) IVo"PVy = Vo + h,

where ¢ is in VVO1 r/(r=p +1)(Q) and h is a divergence free vector field of class
Lr/r=p+1)(Q, R™). The reader is referred to [9], [11], [12] for estimates concerning
such decomposition. We have

(2.4) IVl (r—pr1) < C(n,p)|| Vol 1P
and
(2.5) ||h||7"/(7'—p+1) < C(n,p)|p — r|||vv||:*p+1.

In particular, ¢ can be used as a test function for the integral identity (1.2), namely

/ (IVulP~2Vu, |Vu — V|" P (Vu — V) dr = / (|Vu|P~2Vu, h) dz.
{lu—6|>L} {lu—6|>L}

This implies
(2.6) / (VulP 2V — [VOPP~2V0, |Vu — VO™ (Vu — V6)) de
{lu—0|>L}
- / (VulP~2Vu — [VOP-2V0, h) dz + / (IVOP-2V0, h) da
{lu—6|>L} {lu—6|>L}

_ / (V01P-2V0, [Vu — VO™ (Vu — VO)) dz = I + I + Is.
{lu—6|>L}
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Now we shall distinguish between two cases.
Case 1: p > 2. Since for any X,Y € R™ (see [20], page 72)

27|X — Y < (XX — [YP Y, X - V),

the left-hand side of (2.6) can be estimated as

(2.7) / ([VulP~2Vu — |[VO|P~2V0, |Vu — VO|" P (Vu — V0)) dz
{lu—6|>L}

> 22*13/ |Vu — VO|" dz.
{lu—0|>L}

We now estimate |I1], |I2| and |I3]. By an elementary inequality (see [13]): for
any X, Y € R" and € > 0,

(1+ 5)(|Y|+|X—Y|)€|X—Y| for £ > 0,
(28) |IXFX-YFY[<{ 1-
2¢(1+¢) —|—z—:)

and using Holder inequality, (2.5) and Young inequality, we obtain

—— | X —Y|}te for -1 < e <0,

(2.9) || = ‘/ (IVu|P~2Vu — |VO[P~2V0, h) dz
{lu—6|>L}

< (p—l)/ (V0] + [Vu — VO|)P~2|Vu — V6| |h| de
{lu—0|>L}

<2772 (p—1) </ |VO[P~2|Vu — V| |h| dz
{lu—0|>L}

+ / |Vu — V[P~ |h| dx)
{lu—01>L}

< 272(p = (VO 2IV = VOl Il
+ [V = VoI |All (- pr1))

<2772 (p = D)C(n,p)lp — r|(IVOIR 2 Vu = YOI+ + [|Vu — VO 7)
<272 (p = 1)C(n,p)lp = r|(C)VOII} + (1 + &)l Vu = VOI[7);
here and in the sequel, |||l = ||| {ju—6]>1}, We omit the subscript for the sake of

simplicity.
Using the Holder inequality, (2.5) and Young inequality again, |I2| and |I3] can be
estimated as

(2.10) |12|=‘/ (IVOP2V0, h) da </ V6P| de
{lu—6|>L} {lu—6|>L}

< AIVOIE IRl r—prry < Crsp)lp = [ VOIR™H [ Vu — VO
< C(n,p)lp = rl[CEVOII + el Vu = VO[],
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2.11) |Is] = ‘_/ (IV6]P~2V0, [V — VO™ (Vu — V6)) do
{lu—6|>L}

<

X

/ V611 [V — VO 7+ do < [VOI2 [V — Vo)
{lu—6]>L}
< Ce)|IVO[; + el Vu — V.
Combining (2.6)—(2.7), (2.9)—(2.11) we arrive at
(2.12) / [Vu=V6|"dz < C(n, p,e)[VO||; +(C(n, p)[p—r[+e)[[Vu—-VEI|;.
{lu—6|>L}

Case 2: 1 < p < 2. Lemma 1.1 yields
/ ([VuP=2Vu — |VO|P~2V0, |Vu — VO|"P(Vu — V) dz
{lu—0|>L}

> / |Vu — V" PTH((|Vu — VO] + |VO))P~ — |VOP~!) da.
{lu—6|>L}

This implies
(2.13) / Vu — Vo[ da
{lu—6|>L}

< / Vu — Vo7 (| — V| + V)P~ ) de
{lu—6|>L}

< / ([VulP~2Vu — |VO|P~2V0, |Vu — VO|"P(Vu — V0)) dz
{lu—01>L}

+ / Vu — VO PH Ve da
{lu—6]>L})

< / (IVulP=2Vu — |[VO|P~2V0, |Vu — VO|"P(Vu — V)) dz
{|lu—6|>L}

+5/ |Vu—V9|”"dx+C(5)/ V0" da.
{lu—6|>L} {lu—06|>L}

By (2.8) and (2.5), |I1| can be estimated as

(2.14) || = ‘/ (IVulP=2Vu — |[V6|P~2V0, h) d
{lu—0|>L}
3—p / .
Sy Vu — V0[P~ |h|dz
2772(p—1) {|u79\>L}| inl
3—p B
< m”vu—vem’) 1||h||7"/(r7p+1)
3—p

[ — _ i r
S 2 - 1>C(n7p)lp rl[|[Vu — Vo|;
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For the case 1 < p < 2, |I2| and |I3| can also be estimated by (2.10) and (2.11).
Combining (2.6), (2.13), (2.14), (2.10) and (2.11), we arrive at (2.12).

Let &g = 1/C(n,p). Then for |p — r| < g9 we have C(n,p)|p — r| < 1. Taking ¢
small enough, such that C(n, p)|p—r|+¢e < 1, then the second term on the right-hand
side of (2.12) can be absorbed by the left-hand side; thus we obtain

(2.15) / Vu— Vo™ dr < C(n,p)/ V6" da.
{|lu—6|>L} {lu—0|>L}

Since § € W4(Q), g > r, we obtain using the Holder inequality
r/q
(2.16) / |[VO|" dz < (/ |V dx) [{ju— 6] > L}|(@=")/a
{|lu—6|>L} {|lu—6|>L}
= VOl {u— 6] > L}|@=/.

We now turn our attention back to the function v € W, (Q). By the Sobolev
embedding theorem, and using (2.2), we have

(2.17) (/Q ol dx)w < Cln,r) (/Q |Vv|’“da:>1/r

1/r
_ Clnr) (/ V- Vo da:) .
{lu—0|>L}

Since |v| = (Ju — 0| — L) - 1{ju—g|>1}, We have

. 1/r~ 1/r*
(2.18) (/ (Ju— 0] — L)’ da:) - (/ ok da:) ,
{|lu—6|>L} Q

and for L > L,

(219)  (L-L)"

{|u—9|>i}|=/ (f-1) da

{lu—6|>L}

g/ C(u—6 -1y dxg/ (ju— 0] — L) da.
{lu—6|>L} {lu—6|>L}

By collecting (2.15)—(2.19), we deduce that
(L—=L)" {lu—6] > LI < Cn,r)|6ll[{|u— 6] > L}/,
Thus

~ 1 i
(2.20) Hlu—46] > L} < = r(1/r=1/q)

W(C("”)HHHJ {lu—6] > L}
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Let ¢(s) = [{lu = 0] > s}, a = 1%, C = (C(n,7)|[VO]4)", B = r*(1/r —1/q) and
so > 0. Then (2.20) becomes

B
(2:21) o) < ol

for L > L > 0.
For the case ¢ < n, one has 8 < 1. In this case, if s > 1, we get from Lemma 1.2
that
[{Ju— 6] > s} < Cla, B, s0)s ™",

where t = a/(1 — 8) = ¢*. For 0 < s < 1, one has
{lu—6] > s} <9 = [Q)s7s~7" < Qs

Thus u € 6+ LI (Q).

weak

For the case ¢ = n, one has § = 1. For any 7 < o0, (2.21) implies

o) < =2 o) = =<

C|Q|a/7’
< —= < =——
(L—L)*

— ML l—a/T L a/T < —= L lfa/‘r.
T T < o)
As above, we derive

u€ 0+ L. ().

weak

For the case ¢ > m, one has § > 1. Lemma 1.2 implies ¢(d) = 0 for some
d=d(a,B,so,r,||VO|lq). Thus |{|u— 6| > d}| =0, which means v — 0 < d a.e. in Q.
Therefore

u €6+ L>°(Q),

completing the proof of Theorem 1.1. O
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