
Kybernetika

Pavel Boček; Miroslav Šiman
Directional quantile regression in Octave (and MATLAB)

Kybernetika, Vol. 52 (2016), No. 1, 28–51

Persistent URL: http://dml.cz/dmlcz/144861

Terms of use:
© Institute of Information Theory and Automation AS CR, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

http://dml.cz/dmlcz/144861
http://dml.cz

K Y B E R N E T I K A — V O L U M E 5 2 (2 0 1 6) , N U M B E R 1 , P A G E S 2 8 – 5 1

DIRECTIONAL QUANTILE REGRESSION
IN OCTAVE (AND MATLAB)

Pavel Boček and Miroslav Šiman

Although many words have been written about two recent directional (regression) quantile
concepts, their applications, and the algorithms for computing associated (regression) quantile
regions, their software implementation is still not widely available, which, of course, severely
hinders the dissemination of both methods. Wanting to partly fill in the gap here, we provide
all the codes needed for computing and plotting the multivariate (regression) quantile regions
in Octave and MATLAB, describe their use in detail, and explain their output with a few
carefully designed examples.

Keywords: quantile regression, multivariate quantile, regression quantile, directional
quantile, halfspace depth, regression depth, depth contour, Octave, MATLAB

Classification: 62-04, 65C60, 62H05, 62J99

1. INTRODUCTION

Two recent concepts of multivariate (regression) quantiles define directional (regression)
quantiles as hyperplanes and (regression) quantile regions as intersections of certain in-
duced directional (regression) quantile halfspaces. Those concepts have been elaborated
in a long series of articles including [8, 9, 10, 16, 17, 18], and [23], and they have already
found some practical applications in [15] and [24]; see also [4, 13], and [14] for other
articles dealing with similar ideas. As the two concepts generalize the standard quantile
regression of [12] and [11] to the multiple-response setup, they are very likely to once
become as popular and widespread as their single-response predecessor.

Our primary aim is to equip practitioners with a collection of m-files (the moQuantile
toolbox is available online at http://simu0292.utia.cas.cz/modQR) for Octave [7] and
MATLAB [21] with the free SeDuMi [22] optimization toolbox so that they could employ
directional multiple-output quantile regression on a daily basis. We did not have to start
our work from scratch as [17] and [18] had already resolved the computational issues
involved in both methods by means of parametric programming and experimentally
implemented their algorithms in MATLAB. Their provisional codes are not officially
available for download any more as they ceased to work in later versions of MATLAB
(and they never worked in Octave). They nevertheless served as a starting point for
our project. We have reworked them, corrected them, improved them, simplified them,

DOI: 10.14736/kyb-2016-1-0028

http://simu0292.utia.cas.cz/modQR
http://doi.org/10.14736/kyb-2016-1-0028

Directional quantile regression in Octave and MATLAB 29

annotated them, adjusted them to the latest versions of Octave and MATLAB, supple-
mented them with illustrative demo examples as well as with the tools for processing
their output, and now we describe them and provide them here with a topical tutorial to
answer the growing demand of our research community. Furthermore, we have already
translated them to R ([19]); see [2].

The single-response quantile regression has already become a widespread research tool
and as such it has been implemented in common statistical and econometric software by
means of general or special linear programming algorithms; see [11]. Nevertheless, our
toolbox has not much in common with all those software solutions as it avoids the single-
response case (where the parametric optimization using directions as parameters would
make little sense) and employs it only internally for initializing the computation. As far
as we know, the toolbox has no close software competitors in the general regression case
with multivariate responses except for its R translation mentioned above.

Before we focus our attention on the codes, let us briefly review the properties of
both directional (regression) quantile methods revealed in the aforementioned articles.
Although the methods are conceptually different, both are motivated by the standard
single-output quantile regression.

2. THEORY

For the sake of simplicity, we will further consider only the empirical case with n
m-dimensional responses Y i associated with p-dimensional regressors Xi = (1,Z>i)>,
i = 1, . . . , n > m + p − 1, and with positive weights wi(Y i,Zi) > 0, i = 1, . . . , n. The
location case (with p = 1) thus corresponds to empty vectors Zi, i = 1, . . . , n. We will
also assume that the random sample (Y >i ,Z

>
i)> ∈ Rm+p−1, i = 1, . . . , n, comes from a

continuous distribution. Then all the sample directional quantiles are uniquely defined
and the algorithms of [17] and [18] should theoretically work fine with probability one
for all but a finite number of quantile levels τ ’s. All the rare troublesome cases will be
ignored in our exposition. In the location case with unit weights, they unfortunately
include the popular choice τ = i/n, i = 0, 1, 2, . . . , n, as well (because these quantile
levels would then lead to infinitely many directional τ -quantiles).

Both methods define the directional (regression) quantile hyperplane

πτu =
{

(y>, z>)> ∈ Rm+p−1 : b>τuy − a>τux = 0, x = (1, z>)>
}

and its upper directional (regression) quantile halfspace

H+
τu =

{
(y>, z>)> ∈ Rm+p−1 : b>τuy − a>τux ≥ 0, x = (1, z>)>

}
for any direction u ∈ Rm \ {0} and for any quantile level τ ∈ (0, 1) by means of (the
solution to) the optimization problem

(a>τu, b
>
τu)> = argmin

(a>,b>)>

n∑
i=1

wiρτ (b>Y i − a>Xi)

subject to a method-specific constraint (b>u = 1 for Method 1 of [9] and b = u for
Method 2 of [16]) where ρτ (x) = x

(
τ − I(x < 0)

)
is the well-known quantile check

30 P. BOČEK AND M. ŠIMAN

function and

Ψτu =
n∑
i=1

wiρτ (b>τuY i − a>τuXi)

denotes the optimal value of the objective function computed from the residuals rτu,i =
b>τuY i − a>τuXi, i = 1, . . . , n. Typically, wi = 1, i = 1, . . . , n. Nevertheless, integer
weights may be useful for handling multiple identical observations, and kernel weights
asymptotically shrinking to zero lead to the local constant multivariate quantile regres-
sion of [8] for p = 1. The weighted case can be transformed to the unweighted one by
substitutions Y i := wiY i and Xi := wiXi because the computation does not employ
any special information about the first coordinate of Xi’s. The transformation changes
neither the quantile hyperplane coefficients nor the optimal value of the objective func-
tion, which is why we consider only unit weights hereinafter.

Next we can consider the finite set Πτ of all directional (regression) τ -quantile hy-
perplanes passing through exactly m+ p− 1 observations,

Πτ =
{
πτu : u ∈ Rm, ‖u‖ = 1, πτu contains m+ p− 1 observations

}
,

and use it to define at least two meaningful, convex, and polyhedral (regression) τ -
quantile regions, say exact (REτ) and approximate (RAτ):

REτ = ∩πτu∈Πτ
H+
τu and RAτ = convhull{(Y >i ,Z

>
i)> ∈ Rm+p−1 : (Y >i ,Z

>
i)> ∈ REτ }.

In other words, REτ is defined as the intersection of all upper directional (regression)
τ -quantile halfspaces containing m + p − 1 observations in the bordering directional
(regression) quantile hyperplanes, and RAτ is the convex hull of all the observations
belonging to REτ . The borders of REτ and RAτ are sometimes called (exact) and approx-
imate τ -quantile contours, respectively. The sets Πτ , REτ , and RAτ do not depend on
the directional quantile method used. If REτ is difficult to obtain due to the very large
cardinality of Πτ , then RAτ can be used as its approximation because we can know the
observations in REτ even without the information about its vertices and facets. It is
also good to know that REτ must be non-empty (and thus contain at least one point of
Rm+p−1) for any τ ≤ 1/(m+ p). The z0-cuts of these regions for various z0 ∈ Rp−1,

REτ (z0) = {y ∈ Rm : (y>, z>0)> ∈ REτ } and RAτ (z0) = {y ∈ Rm : (y>, z>0)> ∈ RAτ },

prove especially useful for detecting heteroscedasticity in a general regression case.
In the location case with originally unit weights, Πτ consists of all those hyperplanes

passing through exactly m observations that cut off at most bnτc and at least dnτe−m
points from the data cloud. Consequently, the exact regions REτ must then coincide
with the corresponding halfspace depth regions and thus have all their properties, see,
e. g., [3, 6], and [20]. Their sure convexity makes them substantially different from
density contours in the case of multimodal distributions that may easily arise even
from very simple mixtures, see, e. g., [5]. We can also conclude that Πτ then always
contains enough material for computing m neighbouring exact contours simultaneously
if (m− 1)/n < τ < 0.5. This may simplify or speed up the computation of REτ and RAτ
for p = 1.

Directional quantile regression in Octave and MATLAB 31

How do the methods differ? Mainly in the optimization constraint and its con-
sequences. Method 1, introduced to the large statistical community in [9], uses the
constraint b>u = 1 that leads to the scalar Lagrange multiplier λτu equal to Ψτu. On
the other hand, Method 2 of [16] employs the constraint b = u, which results in the
Lagrange multiplier vector µb

τu linked to Ψτu through the formula Ψτu = µb>
τuu. But it

is still more or less the ordinary τ -quantile regression of all projections u>Y i’s on Xi’s.
The optimization problems involved in the two methods can be solved for all nonzero

u’s in Rm by means of parametric linear programming. It turns out that the space
Rm \ {0} of all directions can be segmented into blunt polyhedral cones where the
observations with zero residuals do not change and the solution has a simple form. In
each cone, this technique also produces the Lagrange multipliers (or, dual variables)
associated with residuals. The dual variables corresponding to positive and negative
residuals are boring as they always equal −τ and 1 − τ , respectively. On the other
hand, the Lagrange multiplier vector µr0

τu associated with zero residuals must have all
its data-dependent coordinates in (−τ, 1 − τ). They might be used not only like the
rank scores in the standard quantile regression, but also for defining halfspace depth of
individual observations as in (5.1) of [16].

As for Method 1, there must exist a finite conic segmentation Γ(τ) = {Cq(τ) : q =
1, . . . Nτ} of Rm such that each Cq(τ) is a non-degenerate closed convex polyhedral
cone, and bτu = bq,τ/dq,τ (u), aτu = aq,τ/dq,τ (u), λτu = λq,τ/dq,τ (u), (Ψτu =
λτu), and µr0

τu = Vq,τu/dq,τ (u) for any 0 6= u ∈ Cq(τ) where dq,τ (u) = b>q,τu and
bq,τ ∈ Rm, aq,τ ∈ Rp, λq,τ ∈ R, and Vq,τ ∈ R(m+p−1)×m are constant objects up to
their possible dependence on τ and q. In other words, all directions u inside Cq(τ) lead
to the same hyperplane coming through m+p−1 observations, up to the multiplicative
factor used for scaling its coefficients.

As for Method 2, there must exist a finite conic segmentation Γ(τ) = {Cq(τ) : q =
1, . . . , Nτ} of Rm such that each Cq(τ) is a non-degenerate closed convex polyhedral
cone and bτu = u, aτu = Aq,τu, µb

τu = µb
q,τ , (Ψτu = µb>

q,τu), and µr0
τu = µr0

q,τ for any
u ∈ Cq(τ) where Aq,τ ∈ Rp×m, µb

q,τ ∈ Rm, and µr0
q,τ ∈ Rp are u-independent entities in

each Cq(τ) though they may vary with τ and q. In other words, each interior direction u
of Cq(τ) corresponds to a different hyperplane passing through the same p observations.
Each τ -quantile hyperplane passing through m+p−1 observations must thus correspond
to a vertex direction of some Cq(τ). Such directions may also correspond to τ -quantile
hyperplanes having some of their coefficients zero and passing through less than m+p−1
observations. Two adjacent cones of Γ(τ) need not always differ in the p observations
fitted by the hyperplanes associated with their interior directions, but sometimes only
in the sign of one of the quantile hyperplane regression coefficients.

The segmentations Γ(τ)’s can be used for exact and efficient computation of many use-
ful statistics defined by means of projection pursuit such as projection depth, skewness,
kurtosis, and many other statistics based on the directional multipliers and quantile
hyperplane coefficients presented here; see [23]. As Γ(τ) = −Γ(1 − τ) and πτ(−u) =
π(1−τ)(u), we allow only τ ∈ [0, 0.5] hereinafter.

Before proceeding further, we should finally clarify our illuminating notation. That
is to say that we consistently use the same symbols for analogous but different entities
figuring in both methods (bτu, aτu, Ψτu, µr0

τu, Γ(τ), Nτ , etc.). It should be always clear

32 P. BOČEK AND M. ŠIMAN

which method they belong to unless it is irrelevant to the statement made about them.
In any case, we would like to point out that both the conic segmentation Γ(τ) and the
number of its conic segments Nτ also depend on the method employed.

Our toolbox primarily contains method-specific functions for computing all the im-
portant information about all the cones in Γ(τ) that then makes it possible to calculate
the optimal solution for any given u. These functions are complemented with some
auxiliary codes, instructional examples, and also with the function for computing the
τ -quantile contours. Let us have a close look at it.

3. IMPLEMENTATION

3.1. Description of the toolbox

The toolbox consists of

• one m-file for computing the (regression) quantile contours (evalContour.m);

• two method-specific m-files for solving the parametric programming problems in-
volved in Methods 1 and 2 (compContourM1u.m and compContourM2u.m), with:

– two method-specific auxiliary m-files for generating their default input struc-
ture CTechST driving the computation (getCTechSTM1u.m and getCTech-
STM2u.m),

– two method-specific m-files generating the output in the structure CharST
(getCharSTM1u.m and getCharSTM2u.m),

– two method-specific auxiliary m-files for finding their initial solutions (find-
OptimalBasisM1FromScratch.m and findOptimalBasisM2FromScratch.m),

– two auxiliary m-files for testing their input for correctness (checkArray.m and
checkCTechSTu.m),

– five auxiliary m-files for manipulating internal auxiliary lists (addItem.m,
addRow.m, delItem.m, findItem.m, and findRow.m);

• five m-files with instructional examples (ExampleA.m, ExampleB.m, ExampleC.m,
ExampleD.m, and ExampleE.m).

Generally, the method related to a method-specific m-file is indicated with M1 or M2 in
its filename, and Mi is used for both M1 and M2. The auxiliary files are not supposed
to be modified by the user.

All the codes should work both in Octave and MATLAB. Nevertheless, their outcomes
can vary because of the different initialization of the random number generators there,
which may affect the simulated input data (as in ExampleA.m to ExampleE.m) or the
starting cone(s), for example. The same input should nevertheless lead to the same sets
of distinct quantile hyperplanes. The examples ExampleA.m to ExampleE.m have been
tailored to Octave and thus it is their Octave output that is discussed further below.

All the main codes are richly annotated and should be comprehensible with the aid
of [17] and [18]. We strongly suggest the reader to study both of the technical articles

Directional quantile regression in Octave and MATLAB 33

before reading further and trying to understand the codes because the files compCon-
tourM1u.m and compContourM2u.m respectively follow the algorithms described there
to the last detail. The function evalContour.m mainly contains the vertex enumeration
for identifying contour vertices, also mentioned in the two articles.

All method-specific codes can be studied side by side because they have been inten-
tionally written in a way highlighting their similarities.

Although we cannot repeat here all the technical details, we can comment on the
theoretical computational complexity of the algorithms behind Method 1 and Method 2
for fixed m and p. The computational complexity, say Ci, of finding the initial solution
can be theoretically made as low as O(n) almost surely under some regularity conditions
according to Theorem 6.4 in [11]. The computational complexity of finding all the other
solutions from the first one can then be made as low as O(nNτ) in case of Method 1,
and also in case of Method 2 if m = 2 or if m > 2 and only relatively few cones have
more than O(1) vertices; see [1] for the optimal complexity of the convex hull algorithm
involved. Recall that Nτ denotes the number of cones in the conic segmentation Γ(τ)
that is closely linked to the number of all distinct τ -quantile hyperplanes.

Nevertheless, our implementation of the toolbox is not optimal. For example, it
uses inefficient SeDuMi solver for finding the initial solution because it is very reliable,
accurate, and already available for both Octave and MATLAB. It negatively affects
especially the computation of bivariate or extreme contours. The same reasons lead
us to employ the convex hull algorithm whose theoretical computational complexity is
unknown; see [1].

For the sake of clarity, we will further state predefined values in parentheses just after
the variable or field name.

3.2. Solving the parametric programming problems

The parametric program involved in the ith-method can be solved by compContour-
Miu.m with the following header:

COutST = compContourMiu(Tau, YMat, XMat, CTechST), i = 1, 2.

3.2.1. Input

Naturally, Tau corresponds to τ and YMat ∈ Rn×m (resp. XMat ∈ Rn×p) is a matrix
containing Y >j (resp. X>j) in its jth row, j = 1, . . . , n. All these three parameters are
numeric arrays. As far as the problem size is concerned, the program expects τ ∈ [0, 0.5],
n > m+p−1, and 2 ≤ m ≤ 6, and it should work reliably for problems characterized by
the triples (m,n, p) up to (2, 10000, 10), (3, 500, 5), and (4, 150, 3) where smaller values
of n and p are also permitted. In general, the computation becomes prone to numerical
errors and too time/memory consuming with increasing m, n, p, and τ .

The last input argument is a structure whose default value is generated by the
auxiliary function getCTechSTMiu without any input. If some input argument to
compContourMiu is provided, then all the preceding ones must be assigned as well.
If the last input argument is missing, then the default structure is used. If the third
argument is missing as well, then XMat is assumed to be the column unit vector of the
right length.

34 P. BOČEK AND M. ŠIMAN

There is no need to enter the last argument in most cases because the default setting
should usually work well. But let us describe it in detail anyway. The structure CTechST
contains some parameters controlling the computation. Its fields say the following:

ReportI (0): if some auxiliary information is reported on the screen to make the pro-
gess of the computation visible. Of course, it takes some execution time, especially
for m > 2. What is then displayed? The value of τ (Tau) (but only if it was in-
ternally changed from a problematic input value leading to integer nτ), the initial
L2-normed directional vector u0 used (U0Vec), the number of failures to find an
accurate initial solution by the SeDuMi solver (NNotFound), the number of found
accurate initial solutions with an inconvenient number of virtually zero coordinates
(NBad), and also the width of each layer of the breadth-first search algorithm if it
is employed.

OutSaveI (0): if the output is saved in file(s) on the disk. If not, then the output is
lost except for the results stored in COutST, which is especially useful for large
problems or simulations.

D2SpecI (1): if all the cones are passed through counter-clockwise when m = 2. Oth-
erwise, the computation runs in the same way as for m > 2. The default setting
should be preferred in most cases as it avoids some possible sources of errors.

BriefOutputI (1): if brief or verbose output information is computed. It always in-
cludes ConeID (the identification number of the cone), Nu (the number of negative
residuals corresponding to all the directions in the interior of the cone), and UVec
(the nonzero vertex or other vector u of the cone that is L2-normalized if both
m = 2 and CTechST.D2SpecI = 1, and L∞-normalized otherwise). In general, the
output rows depend both on the method and on the value of BriefOutputI:
Method 1:
1: [ConeID, Nu, UVec>, BDVec>, ADVec>, LambdaD] ∈ R∆,

∆ = 1 + 1 +m+m+ p+ 1,
0: [ConeID, Nu, UVec>, BDVec>, ADVec>, LambdaD, vec(VUMat)>, IZ>] ∈ R∆,

∆ = 1 + 1 +m+m+ p+ 1 + (m+ p− 1)m+ (m+ p− 1),
where BDVec, ADVec, LambdaD, and VUMat respectively stand for bq,τ , aq,τ ,
λq,τ , and Vq,τ from Section 2, for the q corresponding to ConeID.
Method 2:
1: [ConeID, Nu, UVec>, vec(ACOMat)>, MuBRow] ∈ R∆,

∆ = 1 + 1 +m+ pm+m,
0: [ConeID, Nu, UVec>, vec(ACOMat)>, MuBRow, MuR0Row, IZ>] ∈ R∆,

∆ = 1 + 1 +m+ pm+m+ p+ p,
where ACOMat, MuBRow, and MuR0Row respectively stand for Aq,τ , µb>

q,τ , and
µr0>
q,τ from Section 2, for the q corresponding to ConeID.

As for vector IZ (or IZ in the technical articles), it contains indices of the original
observations with zero residuals. Its coordinates match those of MuR0Row and
thus link the multipliers (or zero residuals) with concrete data points.

Directional quantile regression in Octave and MATLAB 35

Even the output for BriefOutputI = 1 provides the information sufficient for
computing the contours as well as bτu, aτu, Ψτu, and λτu (Method 1) or µb

τu

(Method 2). If one also wants to know µr0
τu or all the observations on πτu inside

each cone, then he or she should set BriefOutputI = 0 and OutSaveI = 1 before the
computation in order to obtain the output file(s) with the required information.

Finally, we should probably point out a few not-so-obvious facts.

Firstly, both the codes work with the objective function presented here that is
n-times higher than the sample version of the population objective function in the
definition of directional quantiles of [9] and [16]. Consequently, all the multipliers
produced by the codes are n-times higher than those resulting from the original
definition.

Secondly, the set of all output vectors u’s generally consists not only of all the
cone vertices, but also of some additional directions pointing to the vertices of the
intersections of the cones with the artificial bounding box [−1, 1]m (and possibly
with the orthants). Such redundant vertices only contaminate the output and their
useless rows should be deleted from it before its further analysis.

Thirdly, the same cone may theoretically appear in the output more than once
under different ConeID identifiers, unless m = 2 and CTechST.D2SpecI = 1.

CubRegWiseI (1): if the directional space is divided into orthants investigated sep-
arately, which splits the problem to 2m smaller ones. This is helpful for solving
large problems with m > 2 although it also generates some artificial cones with a
facet in the orthant borders and may slow down the computation in some cases.

ArchAllFI (1): if the internal archive should contain all the past cone facet identifiers
or only those from the last few layers. The latter way may be faster and less
memory demanding but the former choice makes the computation more likely to
terminate successfully. This is why storing all facet identifiers is highly recom-
mended and even enforced by the program for m > 3.

(only for Method 2) SkipRedI (0): if the information from some cones is ignored,
namely from the cones whose all facets are already known except for those ar-
tificially induced. This skipping saves some time and space, and it still almost
surely preserves all vertices and information relevant to the contour computation.
Therefore, it might be useful for solving very large problems. On the other hand,
it makes the information in COutST regarding the inner points unreliable.

OutFilePrefS (’DQOutputMi ’): what is the prefix of possible output file names.
Their suffix is always .dqo. And in between, there is the number of the file padded
with zeros to form 6 digits. The default name of the first output file resulting from
Method 1 is thus DQOutputM1 000001.dqo.

SeDuMiPathS (”): the path to the SeDuMi directory. It is employed only when
SeDuMi cannot be found by the software.

36 P. BOČEK AND M. ŠIMAN

The fields CubRegWiseI, ArchAllFI, and possibly SkipRedI are relevant only if the
breadth-first search algorithm is used. They should be changed only when the default
setting of CTechST fails, i. e., in case of very large problems beyond dimension two.

See directly getCTechSTMiu.m for further details.

3.2.2. Fixed output

It still remains to describe the output structure COutST. Its fields contain useful sum-
mary statistics regarding the computation:

CharST: a user-defined output structure.

CTechSTMsgS (”): ” or a self-explaining warning message regarding CTechST.

ProbSizeMsgS (”): ” or a self-explaining warning message regarding the problem size.

CompErrMsgS (”): ” or a self-explaining error message regarding the computation.

TauMsgS (”): ” or a self-explaining warning message regarding the τ .

PosVec (0n): the vector of length n indicating the positions of individual observations
with respect to the (exact) τ -quantile region. PosVec(j) = 0/1/2 if the jth observa-
tion lies in the interior/border/exterior of that region, j = 1, . . . , n. This informa-
tion is reliable only after a successfully finished computation. If CTechST.SkipRedI
= 1, then PosVec correctly identifies only all the outer observations.

NDQFiles (0): the number of output files.

NumB (0): the number of (not necessarily different) optimal bases considered.

MaxLWidth (0): the maximum width of one layer.

NIniNone (0): the number of SeDuMi failures to find an accurate initial solution.

NIniBad (0): the number of found accurate initial solutions with an inconvenient num-
ber of virtually zero coordinates.

NSkipCone (0): the number of skipped (almost degenerate) cones whose facet vertices
could not be evaluated because no interior points sufficiently inside the cones
(needed for the vertex enumeration by means of convhulln) could be found.

If CTechST.CubRegWiseI = 1, then the last four fields are calculated over all the indi-
vidual orthants.

Furthermore, if CTechST.OutSaveI = 1, then the output files (with rows determined
by CTechST.BriefOutputI described above) are always saved to the working directory.

Directional quantile regression in Octave and MATLAB 37

3.2.3. User-defined output

The structure CharST is computed inside compContourMiu by means of getCharSTMiu
with the following header:

CharST = getCharSTMiu(Tau, N, M, P, BriefDQMat, CharST, IsFirst).

Naturally, Tau, N, M, and P stand for τ , n, m, and p, respectively. The function is first
called with BriefDQMat = [], CharST = [], and IsFirst = 1 to initialize CharST, and
then repeatedly with IsFirst = 0 for each (potential) output file content in BriefDQMat
to update CharST. (That is to say that BriefDQMat then successively contains the
rows of potential individual output file(s) corresponding to CTechST.BriefOutputI =
1). This function thus makes it possible to obtain all required information during the
run of compContourMiu without storing anything on the disk, i. e., without using the
external output files at all (which might otherwise occupy even many gigabytes of the
hard disk space in case of large multi-dimensional problems).

We provide a non-trivial suggestion for getCharSTMiu as a guidance for the users
to create their own modifications. By default, the output structure CharST has the
following fields:

NUESkip (0): the number of (skipped) hyperplanes corresponding to the directions
artificially induced by the [−1, 1]m bounding box.

NAZSkip (0): the number of (skipped) hyperplanes (not counted in NUESkip) with
at least one coordinate of aτu zero.

NBZSkip (0): the number of (skipped) hyperplanes (not counted in NUESkip) with
at least one coordinate of bτu zero.

(if m ≤ 4) HypMat ([]): the matrix with (m + p) columns where only the distinct
hyperplane coefficients (b>τu,a

>
τu)> not contributing to NUESkip, NAZSkip, and

NBZSkip are stored in rows after being normalized with ‖bτu‖ for Method 1,
rounded, and sorted lexicographically.

CharMaxMat (all elements -Inf): the matrix with maxima of certain directional
statistics over all the hyperplanes in HypMat (before the normalization of their
coefficients) and corresponding cone vertices. Each row contains one such maxi-
mum in the last coordinate and one of the directions where it is attained in the
preceding ones.

CharMinMat (all elements Inf): the matrix containing minima of certain direc-
tional statistics over all the hyperplanes in HypMat (before the normalization
of their coefficients) and corresponding cone vertices. Each row contains one such
minimum in the last coordinate and one of the directions where it is attained in
the preceding ones.

38 P. BOČEK AND M. ŠIMAN

Concerning Method 1:

CharMaxMat = CharMinMat =

u> max ‖bτu‖
u> max Ψτu

u> max (Ψτu/‖bτu‖)
u> max ‖(a(2)

τu, . . . , a
(p)
τu)>‖

u> max
(
‖(a(2)

τu, . . . , a
(p)
τu)>‖/‖bτu‖

)
u> max |a(2)

τu|
u> max

(
|a(2)
τu|/‖bτu‖

)
· · · · · ·
u> max |a(p)

τu |
u> max

(
|a(p)
τu |/‖bτu‖

)




u> min ‖bτu‖
u> min Ψτu

u> min (Ψτu/‖bτu‖)
u> min ‖(a(2)

τu, . . . , a
(p)
τu)>‖

u> min
(
‖(a(2)

τu, . . . , a
(p)
τu)>‖/‖bτu‖

)



and Method 2:

CharMaxMat = CharMinMat =

u> max Ψτu

u> max ‖µb
τu‖

u> max ‖(a(2)
τu, . . . , a

(p)
τu)>‖

u> max |a(2)
τu|

· · · · · ·
u> max |a(p)

τu |


 u> min Ψτu

u> min ‖µb
τu‖

u> min ‖(a(2)
τu, . . . , a

(p)
τu)>‖



where u in each matrix row stands for one of the directions where the corresponding
maximum or minimum is attained. The last rows are included only if p ≥ 2. Ordinary
users interested solely in the quantile contours will need only HypMat. They need
not change the default functions if they do not intend to experiment with five- or six-
dimensional responses.

3.3. Computing the contours

If AAMat is a matrix with two to six columns and BBVec is a vector with the same num-
ber of rows, then the set of inequalities AAMat*z ≤ BBVec defines a convex polyhedral
region whose approximate volume, vertices, and facets can be computed by

CST = evalContour(AAMat, BBVec) or CST = evalContour(AAMat, BBVec, IPVec)

where IPVec is a point known to be well in the interior of the region. It is always
beneficial to enter a known point IPVec as the last argument, especially in terms of
speed.

The fields of structure CST contain useful summary statistics regarding the region:

Status (0): the indicator of problems during the computation:

Directional quantile regression in Octave and MATLAB 39

0: no problem,

2: the contour seems virtually empty,

3: a (SeDuMi) numerical failure,

4: the number of input parameters is too low,

5: AAMat is not a numerical matrix with two to six columns,

6: BBVec is not a numerical column vector of the same length as the first column
of AAMat,

7: IPVec is not a numerical column vector of the same length as the first row of
AAMat.

TVVMat ([]): the lexicographically sorted matrix with clearly distinct contour vertices
in rows.

TKKMat ([]): the matrix with clearly distinct elementary facets of the contour in
rows. Each facet is described with the indices of its vertices, referring to the rows
of TVVMat.

Vol (NaN): the (approximate) volume of the contour.

NumF (NaN): the number of clearly distinct contour facets.

NumV (NaN): the number of clearly distinct contour vertices.

3.4. Installation instructions

1. Install Octave 3.5/MATLAB 8.1 (or higher versions). Both the programs already
contain the important function convhulln employed in our codes.

2. Install the latest (free) SeDuMi optimization toolbox for both Octave and MAT-
LAB, available online at http://sedumi.ie.lehigh.edu/downloads.

3. Unzip the toolbox presented here directly into your working directory or into
another directory in the search path of your Octave/MATLAB installation.

4. EXAMPLES

We also include five examples, represented by the codes ExampleA.m to ExampleE.m.
They should guide the reader through the most common applications. They focus on the
essential functionality of the main programs and avoid unnecessary or fancy features,
which makes them short and easy to read. Their graphical output is stored into their
parent directory. This section discusses their output in Octave. Their output in MAT-
LAB would be different because the random number generator there produces different
simulated input data.

Example A illustrates the use of compContourMiu.m and evalContour.m in a regres-
sion context with n = 7 bivariate responses and one nontrivial regressor (n = 7, m = 2,
p = 2, and τ = 0.20). Any statistical analysis of such a small data set is meaningless and
we include it only because its output is very short. The text output displayed by Octave

http://sedumi.ie.lehigh.edu/downloads

40 P. BOČEK AND M. ŠIMAN

is presented here for compContourM1u.m and compContourM2u.m, always followed by
that of evalContour.m:

Method No 1:

COutST =
scalar structure containing the fields:
CTechSTMsgS =
ProbSizeMsgS =
CompErrMsgS =
TauMsgS =
CharST =
scalar structure containing the fields:
CharMaxMat =
-0.837374420 0.546629740 2.895248060
-0.659121770 0.752036230 1.105585410
-0.540682670 0.841226630 1.094840420
-0.837374420 0.546629740 3.327051810
0.986986650 0.160802210 2.064405560
-0.837374420 0.546629740 3.327051810
0.986986650 0.160802210 2.064405560

CharMinMat =
-0.540682670 0.841226630 1.000039340
-0.942461970 -0.334313390 0.372737430
-0.942461970 -0.334313390 0.308246970
0.732940810 -0.680292410 0.461377320
0.629025890 -0.777384350 0.349268630

NUESkip = 0
NAZSkip = 0
NBZSkip = 0
HypMat =
-8.93050240e-01 4.49956970e-01 -3.39140000e-04 8.74947530e-01
-8.02212740e-01 -5.97038290e-01 -5.84490000e-04 1.14914223e+00
-5.91437940e-01 -8.06350520e-01 -5.33270000e-04 9.80044430e-01
-5.48122800e-01 8.36397870e-01 -5.42734580e-01 1.29187840e+00
-4.35098120e-01 -9.00383040e-01 -4.78160000e-04 8.32409880e-01
2.62337890e-01 9.64976080e-01 -8.61964480e-01 -1.67005702e+00
6.35270430e-01 7.72289760e-01 -3.34994120e-01 -1.41359070e+00
8.46269490e-01 5.32755060e-01 -7.53303400e-01 -2.06440556e+00
9.74871140e-01 2.22769540e-01 -6.10782640e-01 -1.15067004e+00
9.99348660e-01 -3.60868200e-02 -4.52277280e-01 -3.49268630e-01

PosVec =
2
1
0
2

Directional quantile regression in Octave and MATLAB 41

1
1
2

NDQFiles = 1
NumB = 11
MaxLWidth = 1
NIniNone = 0
NIniBad = 0
NSkipCone = 0

CST =
scalar structure containing the fields:
Status = 0
TVVMat =
-0.657944300 -0.205188100 0.566423300
-0.583601100 -0.538160800 0.319304900
-0.307763400 0.485896000 -0.364132000
0.988159900 0.308462700 -0.849585000

TKKMat =
3 4 1
4 2 1
2 3 1
3 2 4

Vol = 0.0907320785783836
NumF = 4
NumV = 4

and

Method No 2:

COutST =
scalar structure containing the fields:
CTechSTMsgS =
ProbSizeMsgS =
CompErrMsgS =
TauMsgS =
CharST =
scalar structure containing the fields:
CharMaxMat =
-0.548122800 0.836397870 1.094840420
-0.548122800 0.836397870 1.105585410
0.846269490 0.532755060 2.064405560
0.846269490 0.532755060 2.064405560

CharMinMat =
-0.5914379401 -0.8063505200 0.3082469700
-0.8022127400 -0.5970382900 0.3727374300

42 P. BOČEK AND M. ŠIMAN

0.9993486600 -0.0360868200 0.3492686300
NUESkip = 0
NAZSkip = 4
NBZSkip = 8
HypMat =
-8.93050240e-01 4.49956970e-01 -3.39140000e-04 8.74947530e-01
-8.02212740e-01 -5.97038290e-01 -5.84490000e-04 1.14914223e+00
-5.91437940e-01 -8.06350520e-01 -5.33270000e-04 9.80044430e-01
-5.48122800e-01 8.36397870e-01 -5.42734580e-01 1.29187840e+00
-4.35098120e-01 -9.00383040e-01 -4.78160000e-04 8.32409880e-01
2.62337890e-01 9.64976080e-01 -8.61964480e-01 -1.67005702e+00
6.35270430e-01 7.72289760e-01 -3.34994120e-01 -1.41359070e+00
8.46269490e-01 5.32755060e-01 -7.53303400e-01 -2.06440556e+00
9.74871140e-01 2.22769540e-01 -6.10782640e-01 -1.15067004e+00
9.99348660e-01 -3.60868200e-02 -4.52277280e-01 -3.49268630e-01

PosVec =
2
1
0
2
1
1
2

NDQFiles = 1
NumB = 17
MaxLWidth = 1
NIniNone = 0
NIniBad = 0
NSkipCone = 0

CST =
scalar structure containing the fields:
Status = 0
TVVMat =
-0.657944300 -0.205188100 0.566423300
-0.583601100 -0.538160800 0.319304900
-0.307763400 0.485896000 -0.364132000
0.988159900 0.308462700 -0.849585000

TKKMat =
3 4 1
4 2 1
2 3 1
3 2 4

Vol = 0.0907320785783836
NumF = 4
NumV = 4

Directional quantile regression in Octave and MATLAB 43

It is immediately apparent from COutST in both cases that:

• there are no warning and error messages (CTechSTMsgS, ProbSizeMsgS, CompEr-
rMsgS, TauMsgS). The input was therefore correct and the computation probably
ended successfully.

• there would be only one output file (NDQFiles).

• there have been no problems with finding the initial solution(s) starting the algo-
rithm (NIniNone, NIniBad).

• the analyzed problem was very small in size (NumB, MaxLWidth).

• no (virtually) degenerate cones have been encountered during the computation
(NSKipCone), which increases the reliability of produced results.

• there are three observations outside the quantile region, three in its boundary, and
the third one lies in its interior (PosVec).

The (sub)structure CharST of COutST also provides useful information:

• that ten distinct quantile hyperplanes with m + p − 1 observations have been
found. Their coefficient vectors (b>τu,a

>
τu)> are normalized with ‖bτu‖ if Method

1 is used, rounded, sorted lexicographically, and finally recorded in the rows of
HypMat. The last row thus roughly corresponds to the hyperplane 0.999y1 −
0.036y2 + 0.452 + 0.349x = 0.

• that Method 1 results in no misleading hyperplanes (NUESkip) or potentially
problematic hyperplanes with zero coefficients (NAZSkip, NBZSkip) to exlude
from HypMat. Method 2 may lead to nonzero NAZSkip or NBZSkip in principle
and thus there is no need to worry about that.

• the maxima (CharMaxMat) and minima (CharMinMat) of some statistics over all
the hyperplanes of HypMat (before the normalization with ‖bτu‖ used for Method
1) and corresponding cone vertices. For example, max ‖bτu‖

.= 2.895 in Method
1 corresponds (e. g.) to u

.= (−0.837, 0.547)>. Such statistics might be useful for
statistical inference according to [9] and [16].

Note that the output in HypMat, CharMaxMat, and CharMinMat is rounded. It is also
worth pointing out that the last columns of CharMaxMat or CharMinMat contain some
quantities common to both methods. It follows from the fact that both Method 1 and
Method 2 should lead to the same HypMat.

Finally, the output structure CST of evalContour.m reveals some information about
the resulting (regression) quantile region such as

• that it has 4 vertices (NumV), rounded, lexicographically sorted, and stored in the
rows of TVVMat. The last vertex is thus roughly (0.988, 0.308,−0.850)>.

• that it has 4 elementary facets (NumF), stored in the rows of TKKMat. The last
facet is thus defined by its corner vertices in the last three rows of TVVMat.

44 P. BOČEK AND M. ŠIMAN

• that its (approximate) volume is equal to 0.09.

The code of ExampleA.m also shows how HypMat and PosVec might be used to
find the input parameters AAMat, BBVec, and IPVec of evalContour.m and how the
regression quantile contour can be plotted; see Figure 1 for the graphical output.

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

x

y1

y2

x

Fig. 1. (Octave output) This figure presents the regression quantile

region with four vertices (red circles) that can be obtained by both

Method 1 and Method 2 for n = 7, m = 2, p = 2, and τ = 0.2 from n

observations (blue squares) driven by the model where

(Y1, Y2)> ∼ U([−1, 1]2) is independent of X ∼ U([−1, 1]). See

ExampleA.m for all the technical details.

As both Method 1 and Method 2 should lead to the same graphical output, we employ
only the former in the subsequent examples. The latter would be used if we changed
compContourM1u to compContourM2u and getCTechSTM1u to getCTechSTM2u ev-
erywhere in the codes.

Example B (with ExampleB.m) should teach the reader how a bunch of location
quantile contours can be computed efficiently from the innermost one outwards, i. e.,
from the highest τ to the lowest. For the sake of simplicity, three τ -contours, τ ∈
{0.3579, 0.1357, 0.0135}, are computed from n = 1357 independent bivariate observa-
tions with unit weights (and uniformly distributed in [−1, 1]2) in three different ways
leading to the same graphical output; see Figure 2.

Firstly, each contour is computed from the whole dataset in a straightforward way.
Secondly, when one contour is computed, then all its nInt original interior points are

replaced with their average as a single point with weight nInt and the next contour is

Directional quantile regression in Octave and MATLAB 45

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

y
2

y1

Fig. 2. (Octave output) This figure plots three 2D (green) location

τ -quantile contours, τ = 0.3579, 0.1357, and 0.0135, obtained from

n = 1357 (red) bivariate independent random points coming from the

model (Y1, Y2)> ∼ U([−1, 1]2). They were computed in three ways

leading to the same graphical output: (a) directly from the original

data, (b) by using weights and replacing the observations surely in the

interior of the computed contour with a single pseudo-observation,

and (c) by changing τ and deleting the observations surely in the

interior of the computed contour. The last two tricks are discussed in

detail in the text and based on computing the contours from the

innermost one outwards. They might lead to substantial speed

benefits in cases of very large data sets and/or m-variate responses,

m ≥ 3. See ExampleB.m for all the technical details.

46 P. BOČEK AND M. ŠIMAN

computed from such a reduced dataset for the other τ in turn. This approach should
lead to the same hyperplane coefficients as the first one with Method 2 because it keeps
the gradient conditions unchanged. We are grateful to Prof. Roger Koenker for kindly
pointing us to this possibility.

Thirdly, when one contour is computed from nc observations, then all its nInt interior
points are deleted and the remaining points are used for computing the other contour
in turn, but with corresponding τ modified to τmod = τn/(nc − nInt). The procedure
starts with n = nc and proceeds recursively. It still leads to the same contours as the
first approach, but it changes the information provided with them.

We think that these tricks might be found useful especially when m > 2, the dataset
is large, and the contours are numerous. Unfortunately, they are guaranteed to work
correctly only in the location case where the quantile contours are necessarily nested
and no quantile crossing occurs.

Example C, associated with ExampleC.m and Figure 3, demonstrates the use of affine
equivariance for computing a τ -quantile contour. It is computed for τ = 0.20 from n = 21
trivariate independent random points uniformly distributed in [0, 1]3 in two equivalent
ways: (a) directly from the original data, and (b) from the data standardized to the
[−1, 1]3 cube by scaling and shifting the resulting vertices in line with the rules of affine
equivariance. The latter approach can be analogously extended even to the regression
case. It decreases the probability of numerical errors because our codes are tailored to
datasets of such range, and as such it is heartily recommended. The standardization
might also be done by means of some robust estimates of the center and the variance
matrix, for example, or in any other meaningful way.

Example D might be found useful by those wishing to implement parametric multi-
variate quantile regression. It computes and displays x0-cuts (i. e., z0-cuts for z0 =
(x0, x

2
0)>), x0 = −0.8,−0.6, . . . , 0.8, of the parametric regression τ -quantile region,

τ = 0.35, obtained for regressors 1, X, and X2 from n = 9 999 bivariate random points
coming from the model (Y1, Y2)> = (X,X2)>+ ε with independent X ∼ U([−1, 1]) and
ε ∼ U([−1, 1]2). See Figure 4 and ExampleD.m.

Example E concludes our exposition with local(ly) constant (nonparametric) regres-
sion τ -quantile cuts obtained for the same τ and x0’s and from the same dataset as in
Example D with the aid of normal kernel weights with bandwidth 0.4. Note that here
we have to compute a τ -quantile region for each x0 while the parametric regression in
Example D requires only one τ -quantile region for all x0’s. The nonparametric cuts are
slightly prolonged due to the relatively high bandwidth and owing to the local constant
character of the regression. See Figure 5 and ExampleE.m.

5. COMMON PROBLEMS

At the end, we would like to list a few common problems and the ways to overcome
them:

bad data the data points are in a bad position (e. g., they are not in general posi-
tion). This often happens when rounded or inherently discrete-valued observations
are processed, when dummy variables are used in multivariate quantile regression
models, or when a bad random number generator is used for simulating the obser-

Directional quantile regression in Octave and MATLAB 47

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

10

0.2

0.4

0.6

0.8

1

x

y1

y2

x

Fig. 3. (Octave output) This figure displays one 3D (triangulated)

location τ -quantile contour, τ = 0.20, obtained from n = 21 trivariate

independent random points coming from the model

(Y1, Y2, Y3)> ∼ U([0, 1]3). It was computed in two ways leading to the

same graphical output: (a) directly from the original data, and (b)

from standardized data by means of affine equivariance. Both ways

correctly lead to the same results and rightly indicate (red) interior,

(green) bordery and (blue) exterior points of the τ -quantile region

that are marked with squares in the former case and with circles in

the latter. See ExampleC.m for all the technical details.

vations. Such a problem can sometimes be prevented by perturbing the data with
some random noise of a reasonably small magnitude before the computation. Fur-
thermore, a few identical observations may be replaced with one of them, weighted
by the total number of its occurrences.

bad tau the τ leads to problems. The computation may fail for a finite number of
problematic τ ’s, e. g., if τn is an integer in the location case. There the τ ’s cor-
respond to the cases where the sample quantiles are not uniquely defined. This
situation may happen easily for τ ’s in a fractional form or with only a few decimal
digits. It may also occur unexpectedly when the number of observations automat-
ically changes during the computation of several contours such as in Example B.
If this problem (almost) arises, then it can be fixed by perturbing τ with a tiny
number in the right direction. Similar strategy is also adopted by the codes comp-
ContourMiu.m, but only in the location case and with a warning output message

48 P. BOČEK AND M. ŠIMAN

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y
2

y1

Fig. 4. (Octave output) Given τ = 0.35 and x0 = −0.8,−0.6, . . . , 0.8,

this figure shows (green) x0-cuts of the parametric regression

τ -quantile region obtained for regressors 1, X, and X2 from n = 9 999

(red) bivariate random points coming from the model

(Y1, Y2)> = (X,X2)> + ε with independent X ∼ U([−1, 1]) and

ε ∼ U([−1, 1]2). The cuts lighten with increasing x0 and the points

darken with decreasing regressor values. See ExampleD.m for all the

technical details.

explaining it. If the perturbation is small enough, then the quantile contours may
remain the same though the other output usually changes. This might confuse
some users if they did not notice the automatic perturbation.

bad scale if the data set far exceeds the unit (hyper)sphere, then the computation
may fail easily because the programs have been optimized for individual responses
and regressors drawn from the interval [−1, 1]. This problem can be avoided by
changing the units of the observations or by employing affine equivariance as in
Example C.

Similar problems often arise when non-uniform weights are used to transform prop-
erly scaled data before the computation, for example when the local(ly) constant
regression quantiles are computed. Then the weights should be scaled conveniently
and the observations with virtually zero weights should be excluded from the com-

Directional quantile regression in Octave and MATLAB 49

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y
2

y1

Fig. 5. (Octave output) This figure uses the same settings as

Example D and Figure 4. It displays x0-cuts through the local

constant (i. e., nonparametric) regression τ -quantile regions obtained

for each x0 with the aid of normal kernel weights corresponding to

bandwidth 0.4. See ExampleE.m for all the technical details.

putation. This would have been necessary in Example E if we had decided to use
much smaller bandwidth than 0.4.

bad expectations the computation and its output may differ from our expectations.
For example, not all people immediately realize that the computation may take
hours or fail even for moderately sized data sets in R3, that HypMat is not always
present in COutST.CharST by default, that the computed quantile contour may
be empty, or that the regression quantile contours need not be nested or bounded.

bad interpretation the results are interpreted erroneously. The quantile level τ is not
directly linked to the probability content of the τ -quantile regions. The parametric
multivariate quantile regression models should also include as regressors all the
variables influencing the dispersion of response coordinates. And even if such
models are miraculously specified correctly, there is still no reason to interpret
the cuts of the resulting regression quantile regions as conditional multivariate
quantiles, maybe except for some very special cases. Such an interpretation would

50 P. BOČEK AND M. ŠIMAN

be somehow justified only if the nonparametric regression quantiles of [8] were
used, as in Example E.

As you have probably realized, τ denotes the quantile level and n stands for the number
of observations everywhere in this section.

ACKNOWLEDGMENTS

The research work of Pavel Boček and Miroslav Šiman was supported by the grant GA14-
07234S from the Czech Science Foundation. Miroslav Šiman would also like to thank Davy
Paindaveine, Marc Hallin, Claude Adan, Nancy de Munck, and Romy Genin for all the good
they did for him (and for all the good he could learn from them) during his stay at Université
Libre de Bruxelles.

(Received June 22, 2015)

R E F E R E N C E S

[1] C. B. Barber and H. Huhdanpaa: The quickhull algorithm for convex hulls. ACM Trans.
Math. Software 22 (1996), 469–483. DOI:10.1145/235815.235821

[2] P. Boček and M. Šiman: Directional quantile regression in R. Submitted, 2016.

[3] Z. Chen and D. E. Tyler: On the behavior of Tukey’s depth and median under
symmetric stable distributions. J. Statist. Planning Inference 122 (2004), 111–124.
DOI:10.1016/j.jspi.2003.06.017

[4] Y. Cheng and J. G. De Gooijer: On the uth geometric conditional quantile. J. Statist.
Planning Inference 137 (2007), 1914–1930. DOI:10.1016/j.jspi.2006.02.014

[5] Š. Došlá: Conditions for bimodality and multimodality of a mixture of two unimodal
densities. Kybernetika 45 (2009), 279–292.

[6] S. Dutta, A. K. Ghosh, and P. Chaudhuri: Some intriguing properties of Tukey’s half-space
depth. Bernoulli 17 (2011), 1420–1434. DOI:10.3150/10-bej322

[7] J. W. Eaton, D. Bateman, and S. Hauberg: GNU Octave Version 3.0.1 Manual: A High-
Level Interactive Language for Numerical Computations. CreateSpace Independent Pub-
lishing Platform, 2009.

[8] M. Hallin, Z. Lu, D. Paindaveine, and M. Šiman: Local bilinear multiple-output quan-
tile/depth regression. Bernoulli 21 (2015), 1435–1466. DOI:10.3150/14-bej610

[9] M. Hallin, D. Paindaveine, and M. Šiman: Multivariate quantiles and multiple-output
regression quantiles: From L1 optimization to halfspace depth. The Ann. Statist. 38
(2010), 635–669. DOI:10.1214/09-aos723

[10] M. Hallin, D. Paindaveine, and M. Šiman: Rejoinder. The Ann. Statist. 38 (2010), 694–
703. DOI:10.1214/09-aos723rej

[11] R. Koenker: Quantile Regression. Cambridge University Press, New York 2005.
DOI:10.1017/cbo9780511754098

[12] R. Koenker and G. J. Bassett: Regression quantiles. Econometrica 46 (1978), 33–50.
DOI:10.2307/1913643

[13] V. Koltchinskii: M -estimation, convexity and quantiles. The Ann. Statist. 25 (1997),
435–477. DOI:10.1214/aos/1031833659

http://dx.doi.org/10.1145/235815.235821
http://dx.doi.org/10.1016/j.jspi.2003.06.017
http://dx.doi.org/10.1016/j.jspi.2006.02.014
http://dx.doi.org/10.3150/10-bej322
http://dx.doi.org/10.3150/14-bej610
http://dx.doi.org/10.1214/09-aos723
http://dx.doi.org/10.1214/09-aos723rej
http://dx.doi.org/10.1017/cbo9780511754098
http://dx.doi.org/10.2307/1913643
http://dx.doi.org/10.1214/aos/1031833659

Directional quantile regression in Octave and MATLAB 51

[14] L. Kong and I. Mizera: Quantile tomography: Using quantiles with multivariate data.
Statist. Sinica 22 (2012), 1589–1610. DOI:10.5705/ss.2010.224

[15] I. W. McKeague, S. López-Pintado, M. Hallin, and M. Šiman: Analyzing growth
trajectories. J. Developmental Origins of Health and Disease 2 (2011), 322–329.
DOI:10.1017/s2040174411000572

[16] D. Paindaveine and M. Šiman: On directional multiple-output quantile regression. J.
Multivariate Anal. 102 (2011), 193–212. DOI:10.1016/j.jmva.2010.08.004

[17] D. Paindaveine and M. Šiman: Computing multiple-output regression quantile regions.
Comput. Statist. Data Anal. 56 (2012), 840–853. DOI:10.1016/j.csda.2010.11.014

[18] D. Paindaveine and M. Šiman: Computing multiple-output regression quantile regions
from projection quantiles. Computat. Statist. 27 (2012), 29–49. DOI:10.1007/s00180-011-
0231-y

[19] R Development Core Team: R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna 2008.

[20] P. J. Rousseeuw and I. Ruts: The depth function of a population distribution. Metrika 49
(1999), 213–244.

[21] The MathWorks, Inc.: MATLAB. Natick, Massachusetts 2013.

[22] J. F. Sturm : Using SeDuMi 1.02, a MATLAB Toolbox for Optimization over
Symmetric Cones Optimization Methods and Software 11–12 (1999), 625–653.
http://sedumi.ie.lehigh.edu/downloads

[23] M. Šiman: On exact computation of some statistics based on projection pursuit in
a general regression context. Comm. Statist. – Simul. Comput. 40 (2011), 948–956.
DOI:10.1080/03610918.2011.560730

[24] M. Šiman: Precision index in the multivariate context. Comm. Statist. – Theory and
Methods 43 (2014), 377–387. DOI:10.1080/03610926.2012.661509

Pavel Boček, Institute of Information Theory and Automation, The Czech Academy of
Sciences, Pod Vodárenskou věž́ı 4, Praha 8. Czech Republic.

e-mail: bocek@utia.cas.cz

Miroslav Šiman, Institute of Information Theory and Automation, The Czech Academy
of Sciences, Pod Vodárenskou věž́ı 4, Praha 8. Czech Republic.

http://dx.doi.org/10.5705/ss.2010.224
http://dx.doi.org/10.1017/s2040174411000572
http://dx.doi.org/10.1016/j.jmva.2010.08.004
http://dx.doi.org/10.1016/j.csda.2010.11.014
http://dx.doi.org/10.1007/s00180-011-0231-y
http://dx.doi.org/10.1007/s00180-011-0231-y
http://sedumi.ie.lehigh.edu/downloads
http://dx.doi.org/10.1080/03610918.2011.560730
http://dx.doi.org/10.1080/03610926.2012.661509

		webmaster@dml.cz
	2018-01-10T13:36:35+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document

