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K Y B E R N E T I K A — V O L U M E 5 2 ( 2 0 1 6 ) , N U M B E R 1 , P A G E S 1 5 – 2 7

INCOMPARABILITY WITH RESPECT TO
THE TRIANGULAR ORDER

Emel Aşıcı and Funda Karaçal

In this paper, we define the set of incomparable elements with respect to the triangular
order for any t-norm on a bounded lattice. By means of the triangular order, an equivalence
relation on the class of t-norms on a bounded lattice is defined and this equivalence is deeply
investigated. Finally, we discuss some properties of this equivalence.
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1. INTRODUCTION

Triangular norms were originally studied in the framework of probabilistic metric spaces
[20, 21, 22, 23] aiming at an extension of the triangle inequality. Later on, they turned
out to be interpretations of the conjuction in many-valued logics [6], in particular in
fuzzy logics, where the unit interval serves as set of truth values.

In [18], it was defined a natural order for semigroups. Similarly, in [8], a partial order
defined by means of t-norms on a bounded lattice was introduced. For any elements x, y
of a bounded lattice L

x �T y :⇔ T (`, y) = x for some ` ∈ L,

where T is a t-norm. This order �T is called a t-partial order of T . Moreover, the authors
have investigated connections between the natural order ≤ on L and the T -partial order
�T on L.

In [8], it was obtained that �T implies the natural order ≤ but its converse needs
not be true. It was showed that a partially ordered set is not a lattice with respect to
�T . Some sets were determined which, under some special conditions, are lattices with
respect to �T . For more details on t-norms on bounded lattices, we refer to [3, 9, 10,
11, 13, 15, 16, 17, 19].

In [12], by means of the T -partial order, an equivalence relation on the class of t-norms
was given and the equivalence classes linked to some special t-norms were characterized.
In [7], an equivalence relation on the class of the t-norms on [0, 1] was defined. It was
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showed that the equivalence class of the weakest t-norm TD on [0, 1] contains a t-norm
which was different from TD.

In [1], with the help of any t-norm T on [0, 1], it was obtained that the family
(Tλ)λ∈(0,1) of t-norms on [0, 1]. If T was a divisible t-norm, then it was obtained that
([0, 1],�Tλ) was a lattice.

In the present paper, we introduce the set of incomparable elements with respect to
the t-order for any t-norm on a bounded lattice (L,≤, 0, 1). By defining such an set,
the set of incomparable elements with respect to the t-order for any t-norm on [0, 1]
is extended to a more general form. The main aim is to investigate some properties
of this set. The paper is organized as follows. We shortly recall some basic notions in
Section 2. In Section 3, we define the set of incomparable elements with respect to the
t-order for any t-norm on a bounded lattice (L,≤, 0, 1) and we determine the sets of
incomparable elements w.r.t. t-order of the infimum t-norm T∧ and the weakest t-norm
TW . In Section 4, we define an equivalence on the class of t-norms on a bounded lattice
(L,≤, 0, 1). We determine the equivalence class of the infimum t-norm T∧ when L is
a chain. Thus, we obtain that, in the case of L = [0, 1], all continuous t-norms are
equivalent. Although, we give some examples illustrating that left-continuous t-norms
need not be equivalent, in general. We show by an example that the left- continuity of
any of the t-norms in the equivalence class does not imply the left-continuity for another
t-norm in the equivalence class. In [1], it was shown that “T1 and T2 are two t-norms
on [0, 1] such that for all x ∈ [0, 1], IT1

(x) = IT2
(x) if and only if the t-norms T1 and T2

are equivalent under the relation ∼ in (2)”. In this study, by an example we show that
this proposition only provides a sufficient and not a necessary condition for the relation
βL in (3).

2. NOTATIONS, DEFINITIONS AND A REVIEW OF PREVIOUS RESULTS

Definition 2.1. (Klement et al. [14]) A triangular norm (t-norm for short) is a binary
operation T on the unit interval [0, 1], i. e., a function T : [0, 1]2 → [0, 1], such that for
all x, y, z ∈ [0, 1] the following four axioms are satisfied:

(T1) T (x, y) = T (y, x) (commutativity)

(T2) T (x, T (y, z)) = T (T (x, y), z) (associativity)

(T3) T (x, y) ≤ T (x, z) whenever y ≤ z (monotonicity)

(T4) T (x, 1) = x (boundary condition)

Example 2.2. (Klement et al. [14]) The following are the four basic t-norms TM , TP , TL, TD
given by, respectively:

TM (x, y) = min(x, y)

TP (x, y) = x · y

TL(x, y) = max(x+ y − 1, 0)
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TD(x, y) =

{
0, if (x, y) ∈ [0, 1[2,
min(x, y), otherwise.

Also, t-norms on a bounded lattice (L,≤, 0, 1) are defined in similar way, and then
extremal t-norms T∧ and TW on L is defined as follows, respectively:

T∧(x, y) = x ∧ y,

TW (x, y) =


x, if y = 1,

y, if x = 1,

0, otherwise.

Especially we obtained that TW = TD and T∧ = TM for L = [0, 1].

Definition 2.3. (Klement et al. [14]) A function F : [0, 1]2 → [0, 1] is called continuous
if for all convergent sequences (xn)n∈N, (yn)n∈N ∈ [0, 1]N, the following holds

F
(

lim
n→∞

xn, lim
n→∞

yn

)
= lim
n→∞

F (xn, yn).

Definition 2.4. (Casasnovas and Mayor [5]) A t-norm T on L is divisible if the fol-
lowing condition holds:

∀x, y ∈ L with x ≤ y there is a z ∈ L such that x = T (y, z).

Proposition 2.5. (De Baets and Mesiar [4]) Let T be a t-norm on [0, 1]. T is divisible
if and only if T is continuous.

Definition 2.6. (Birkhoff [2]) Given a bounded lattice (L,≤, 0, 1) and a, b ∈ L, if a and
b are incomparable, in this case we use the notation a ‖ b.

Definition 2.7. (Karaçal and Kesicioğlu [8]) Let (L,≤, 0, 1) be a bounded lattice, T
be a t-norm on L. The order defined as following is called a t-order (triangular order)
for t-norm T .

x �T y :⇔ T (`, y) = x for some ` ∈ L. (1)

Proposition 2.8. (Karaçal and Kesicioğlu [8]) Let (L,≤, 0, 1) be a bounded lattice,
T be a t-norm on L. Then the binary relation �T is a partial order on L.

Proposition 2.9. (Karaçal and Kesicioğlu [8]) Let T be a t-norm on a bounded lattice
(L,≤, 0, 1). Then, if x �T y necessarily we have also x ≤ y.

Lemma 2.10. (Kesicioğlu et al. [12]) Let (L,≤, 0, 1) be a bounded lattice. For all
t-norms on L and all x ∈ L it holds that 0 �T x, x �T x and x �T 1.

Definition 2.11. (Kesicioğlu et al. [12]) Let T be a t-norm on [0, 1] and let KT be
defined by

KT = {x ∈ [0, 1] | for some y ∈ [0, 1], [x ≤ y and x �T y] or [y ≤ x and y �T x]}.

Definition 2.12. (Kesicioğlu et al. [12]) Let (L,≤, 0, 1) be a given bounded lattice.
Define a relation ∼ on the class of all t-norms on (L,≤, 0, 1) by T1 ∼ T2 if and only if
the T1-partial order coincides with the T2-partial order, that is

T1 ∼ T2 :⇔�T1=�T2 . (2)
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3. ABOUT THE SET KL
T ON ANY BOUNDED LATTICE

In this section, we study on the set of all incomparable elements with respect to the T
partial order �T with some t-norm T on a bounded lattice (L,≤, 0, 1).

Definition 3.1. Let T be a t-norm on a bounded lattice (L,≤, 0, 1) and let KL
T be

defined by

KL
T = {x ∈ L\{0, 1} | for some y ∈ L\{0, 1}, [x < y and x �T y] or

[y < x and y �T x] orx ‖ y}.

If L = [0, 1], then it is trivial to see that KT = KL
T .

Proposition 3.2. Let (L,≤, 0, 1) be a bounded lattice and T be a t-norm on L. If
there exist two elements of L such that these are incomparable, then KL

T 6= ∅.

This result is obvious therefore we omit its proof.

Although the set KL
T 6= ∅, it need not be the case that elements in L are incomparable.

Now, let us investigate the following example.

Example 3.3. Let T be a t-norm on [0, 1] and the family (Tλ)λ∈(0,1) of t-norms be
given by

Tλ(x, y) =

{
0, T (x, y) ≤ λ and x, y 6= 1,
T (x, y), otherwise.

Observe that due to (Theorem 15 in [1]) the function Tλ is a t-norm. Then we have that
KTλ = (0, 1), but since L is a chain all elements are comparable.

Let us show that KTλ = (0, 1). Let x ∈ (0, 1).

• Firstly, let x ≤ λ and we choose 1 6= y > λ. Then, x < y and x �Tλ y. Indeed;
suppose that x �Tλ y. Then, there exists an element ` ∈ [0, 1] such that Tλ(y, `) = x.
Since x 6= 0, by the definition of Tλ, it is obtained that

x = Tλ(y, `) = T (y, `).

Since x 6= y, it is not possible ` = 1. Since ` 6= 1 and y 6= 1, again by the definition of
Tλ, it is obtained that

x = Tλ(y, `) = T (y, `) > λ,

a contradiction. Since for any x ≤ λ there exists an element y > λ such that x < y but
x �Tλ y, x ∈ KTλ .

• Secondly, let x > λ and we choose 0 6= y ≤ λ. Then, y < x and y �Tλ x. On the
contrary, we suppose that y �Tλ x. Then, there exists an element k ∈ [0, 1] such that
Tλ(x, k) = y. Since y 6= 0, by the definition of Tλ, it is obtained that

y = Tλ(x, k) = T (x, k).
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Since x 6= y, it is not possible that k = 1. Since k 6= 1 and x 6= 1, again by the definition
of Tλ, it is obtained that

y = Tλ(x, k) = T (x, k) > λ,

a contradiction. Since for any x > λ there exists an element y ≤ λ such that y < x but
y �Tλ x, x ∈ KTλ . So, it is obtained that (0, 1) ⊆ KTλ . Conversely, for any t-norm T ,
it is clear that KT ⊆ (0, 1). So, it is obtained that KTλ = (0, 1). But since L = [0, 1] is
a chain, all elements in L are comparable according to the natural order.

Definition 3.4. Let (L,≤, 0, 1) be a bounded lattice. The set IL is defined by

IL = {x ∈ L | ∃y ∈ L such that x ‖ y}.

Due to the definition of the set KL
T , it is obtained that IL ⊆ KL

T for any t-norm T
on L.

Remark 3.5. For any t-norm T on any bounded lattice L, if |L| = 3, then it is obtained
that KL

T = ∅.

Proposition 3.6. Let (L,≤, 0, 1) be a bounded lattice and |L| > 3. For the weakest
t-norm TW on L, KL

TW
= L\{0, 1}.

Proposition 3.7. Let (L,≤, 0, 1) be a bounded lattice. For the infimum t-norm T∧ on
L, KL

T∧
= IL.

Remark 3.8. The converse of Proposition 3.7 is not be true. That is, T is a t-norm on
L such that if KL

T = IL, then need not be T = T∧.

Definition 3.9. Let T be a t-norm on [0, 1], c ∈ [0, 1] and let IT (c↓), IT (c↑) defined by

IT (c↓) = {x ∈ (0, 1) | x < c and x �T c}

IT (c↑) = {y ∈ (0, 1) | c < y and c �T y}.

Note that IT (c) = IT (c↓) ∪ IT (c↑) for c ∈ [0, 1].

Lemma 3.10. Let T be a right continuous t-norm on [0, 1]. Then the set IT (x↓) for
x ∈ [0, 1] is either empty or infinite.

Lemma 3.11. Let T be a left continuous t-norm on [0, 1]. Then the set IT (x↑) for
x ∈ [0, 1] is either empty or infinite.

Corollary 3.12. Let T be a right continuous t-norm on [0, 1] and the set IT (x↓) 6= ∅.
Then the set IT (x) is infinite.

Corollary 3.13. Let T be a left continuous t-norm on [0, 1] and the set IT (x↑) 6= ∅.
Then the set IT (x) is infinite.
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Lemma 3.14. Let T be a t-norm on [0, 1]. T is continuous t-norm if and only if
IT (x↓) = ∅ and IT (x↑) = ∅ for all x ∈ [0, 1].

Corollary 3.15. Let T be a t-norm on [0, 1]. T is continuous t-norm if and only if
IT (x) = ∅ for all x ∈ [0, 1].

Definition 3.16. Let T be a t-norm on (L,≤, 0, 1) and let ILT
(c) for a c ∈ L be defined

by

ILT
(c)

= {x ∈ L\{0, 1} | x is incomparable to c according to �T }.

Proposition 3.17. Let T be a t-norm on (L,≤, 0, 1). If there exist elements x and y

in L such that these are incomparable, then ILT
(x) 6= ∅ and ILT

(y) 6= ∅.

The converse of Proposition 3.17 is not be true. To illustrate this claim we shall give
the following example.

Example 3.18. Consider the t-norm of Example 3.3. We obtain that

a1) ITλ
(x) = {y ∈ (0, 1) | x 6= y} for x ∈ (0, λ]

a2) ITλ
(x) = {y ∈ (0, λ] | x 6= y} for x ∈ (λ, 1).

Since L is a chain all elements are comparable.

Now we want to show this claim.

a1) It is trivial that ITλ
(x) ⊆ (0, 1). Conversely, y ∈ (0, 1) be arbitrary such that x 6= y

for x ∈ (0, λ]. Let us show that y ∈ ITλ
(x). Suppose that y /∈ ITλ

(x). That is, y < x and
y �Tλ x or x < y and x �Tλ y.

• Let y < x and y �Tλ x. Then, there exists an elements k ∈ [0, 1] such that Tλ(x, k) = y.
Since y 6= 0, by the definition of Tλ, we obtain that y = Tλ(x, k) = T (x, k). Since x 6= 1
and k 6= 1, we have that y > λ, a contradiction. So it is obtained that y �Tλ x, that is
y ∈ ITλ

(x). Similarly it can be show that x < y and x �Tλ y. Consequently we obtained
that ITλ

(x) = {y ∈ (0, 1) | x 6= y} for x ∈ (0, λ].

a2) Similarly it is obtained that {y ∈ (0, λ] | x 6= y} for x ∈ (λ, 1).

Lemma 3.19. Let T be a t-norm on (L,≤, 0, 1). Then KL
T =

⋃
x∈L ILT

(x).

This result is obvious therefore we omit its proof.

Proposition 3.20. Let T1 and T2 be two t-norms on a bounded lattice (L,≤, 0, 1).
Then for all x ∈ L, ILT1

(x) = ILT2

(x) if and only if the t-norms T1 and T2 are equivalent
under ∼ in (2).
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4. ABOUT AN EQUIVALENCE RELATION ON THE CLASS OF T-NORMS ON
ANY BOUNDED LATTICE

The above introduced set KL
T on any bounded lattice allows us to introduce the next

equivalence relation on the class of all t-norms on (L,≤, 0, 1).

Definition 4.1. Let (L,≤, 0, 1) be a bounded lattice. Define a relation βL on the class
of all t-norms on (L,≤, 0, 1) by T1βLT2,

T1βLT2 :⇔ KL
T1

= KL
T2
. (3)

The next result is obvious.

Lemma 4.2. The relation βL given in Definition 4.1 is an equivalence relation.

Definition 4.3. For a given t-norm T on a bounded lattice (L,≤, 0, 1), we denote by
T the βL equivalence class linked to T , i. e.,

T = {T ′ | T ′ is a t-norm on L and KL
T = KL

T ′}.

In [12], it was shown that an equivalence class of the infimum t-norm T∧ on L under
the relation ∼ in (2) is the set of all divisible t-norms on L. But according to the
relation βL in (3), an equivalence class of the infimum t-norm T∧ on L is not the set of
all divisible t-norms on L. To illustrate this claim we shall give the following example.

Example 4.4. Consider the bounded lattice (L,≤, 0, 1) with L = {0, a, b, c, 1} as shown
in Fig. 1.

0

c

1

a

b

Fig. 1. The order ≤ on L.

We consider T∧ and TW t-norms on L. It is trivial that KL
T∧

= {a, b, c} and KL
TW

=
{a, b, c}. So we have that KL

T∧
= KL

TW
. By the definition of the relation βL in (3), the

t-norms T∧ and TW are equivalent, i. e., T∧βLTW . But the weakest t-norm TW is not
divisible t-norm on L. Suppose that TW is divisible t-norm. It is trivial b < c. Since TW
is divisible t-norm, there exists an element ` ∈ L such that b = T (c, `). If ` ∈ {0, a, b, c},
then it is obtained that b = 0, a contradiction. If ` = 1, then we have that b = c, a
contradiction. So, the weakest t-norm TW is not divisible t-norm on L.
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Naturally, one can think when an equivalence class of the infimum t-norm T∧ on L
under the relation βL in (3), is the set of all divisible t-norms on L. As an answer to
this question, let us investigate the following Proposition.

Proposition 4.5. If L is a chain, then an equivalence class of the infimum t-norm T∧
on L under the relation βL in (3), is the set of all divisible t-norms on L.

P r o o f . Let T ′ ∈ T∧. Then we have that KL
T ′ = KL

T∧
according to the relation βL in

(3). Since L is a chain, it is obtained that KL
T∧

= ∅ from IL = ∅ by Proposition 3.7. So,
we have that KL

T ′ = ∅. Since L is a chain and KL
T ′ = ∅, it is obtained that x ≤ y and

x �T ′ y or y ≤ x and y �T ′ x for all x, y ∈ L. Without loss of generality, we assume
that x ≤ y and x �T ′ y. Then there exists an element ` ∈ L such that x = T ′(y, `). So,
it is obtained that T ′ is a divisible t-norm.

Conversely, let T ′ be a divisible t-norm on L. Now, we will show that T ′ ∈ T∧, that
is KL

T ′ = KL
T∧

. It is obtained that KL
T∧

= ∅ from IL = ∅ by Proposition 3.7. Let us
show that KL

T ′ = ∅. Suppose that KL
T ′ 6= ∅ and we choose x ∈ KL

T ′ . Since L is a chain,
for some y ∈ L \ {0, 1}, (x < y and x �T ′ y) or (y < x and y �T ′ x) by the definition
of KL

T . Firstly, let x < y. Since T ′ be a divisible t-norm, there exists m ∈ L such that
x = T ′(y,m). So, it is obtained that x �T ′ y, a contradiction. Similarly, if y < x, then
it can be easily verified that y �T ′ x, a contradiction. So, we have that KL

T ′ = ∅. Thus,
we have that KL

T ′ = KL
T∧

. This shows that T ′βLT∧, when T ′ is a divisible t-norm on L.
�

Corollary 4.6. The equivalence class of the minimum t-norm TM on [0, 1] according
to the relation βL in (3), is the set of all divisible t-norms on [0, 1].

Corollary 4.7. The equivalence class of the minimum t-norm TM on [0, 1] according
to the relation βL in (3), is the set of all continuous t-norms on [0, 1].

Remark 4.8. In Corollary 4.7, we have shown that any two continuous t-norms on
[0, 1] = L are equivalent under the relation βL in (3). Naturally, one can think whether
any two left-continuous t-norms are in the same equivalence class, i.e, any two left-
continuous t-norms are equivalent under the relation βL in (3). To illustrate that two
left-continuous t-norms may not be equivalent under the relation βL in (3) we shall give
the following example.

Example 4.9. Consider the t-norms on [0, 1] defined as follows:

TnM (x, y) =

{
0, if x+ y ≤ 1,
min(x, y), otherwise,

and

T4(x, y) =


min(x, y), if max(x, y) ∈ ( 3

4 , 1],
1
4 , if x, y ∈ ( 1

4 ,
3
4 ],

0, otherwise.
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TnM and T4 are left continuous t-norms [16]. But since KTnM = (0, 1) and KT4 = (0, 3
4 ],

the t-norms TnM and T4 are not equivalent under βL in (3).
In [1], it has been shown that KTnM = (0, 1). Now, we will show that KT4 = (0, 3

4 ].

• First, choose arbitrary x ∈ (0, 3
4 ]. Let us show that x ∈ KT4 .

(i) Let x ∈ (0, 3
4 ) and y = x

3 . In this case, y < x but y �T4 x. Suppose that y �T4 x.
Then, for some ` ∈ [0, 1],

T4(x, `) = y =
x

3
.

Thus, it follows y 6= 1
4 from x 6= 3

4 . Since y 6= 0 and y 6= 1
4 , it is obtained that

T4(x, `) 6= 0 and T4(x, `) 6= 1
4
.

By the definition of T4, we have that max(x, `) ∈ ( 3
4 , 1]. Again by the definition of T4,

T4(x, `) = min(x, `) = x
3 . Since x

3 6= x, it is obtained that x
3 = `. Whence we have

max(x, x3 ) /∈ ( 3
4 , 1], a contradiction. Since for any x ∈ (0, 3

4 ) there exists an element
y = x

3 ∈ (0, 1) such that x
3 < x but x

3 �T4 x, x ∈ KT4 .

(ii) Let x = 3
4 and 1

4 < y < 3
4 . In this case, y < x but y �T4 x. Suppose that y �T4 x.

Then, there exists an element m ∈ [0, 1],

T4(x,m) = y.

By the definition of T4, it is obtained that max(x,m) ∈ ( 3
4 , 1]. Again by the definition of

T4, T4(x,m) = min(x,m) = y. Since x 6= y, it is obtained that y = m. It is obtained that
max(x, y) /∈ ( 3

4 , 1], a contradiction. Since for x = 3
4 there exists an element 1

4 < y < 3
4

such that y �T4
3
4 , x ∈ KT4 . So, it is obtained that (0, 3

4 ] ⊆ KT4 .

• On the contrary let x ∈ KT4 be arbitrary. We will show that x ∈ (0, 3
4 ]. Suppose that

x /∈ (0, 3
4 ]. Since x ∈ KT4 , there exists an element y ∈ (0, 1) such that x < y and x �T4 y

or y < x and y �T4 x. Without loss of generality, we assume that x < y and x �T4 y.
Since x < y, it must be min(x, y) = x. Since 3

4 < x < y, it must be max(x, y) ∈ ( 3
4 , 1].

By the definition of T4, we obtain that

x = min(x, y) = T4(x, y).

Then, it holds that x �T4 y, a contradiction. So, we have x ∈ (0, 3
4 ]. Thus, it is obtained

that KT4 ⊆ (0, 3
4 ]. Therefore it is obtained that KT4 = (0, 3

4 ]. Consequently, since
KTnM 6= KT4 , the t-norms TnM and T4 are not equivalent under βL in (3).

Remark 4.10. One may ask whether any t-norm equivalent to a left continuous t-norm
needs to be left-continuous, too. The following example shows that also this need not.

Example 4.11. Let T ? be a function on [0, 1] defined by

T ?(x, y) =

{
1
2 , if x, y = 1

2 ,

TnM (x, y), otherwise.



24 E. AŞICI AND F. KARAÇAL

The function T ? is a t-norm by [14]. We will show that this t-norm is equivalent to the
left-continuous t-norm TnM , but T ? is not left continuous t-norm.

To see that T ?βTnM , we must show KT? = KTnM . In [1], it has been shown that
KTnM = (0, 1). Now, we will show that KT? = (0, 1).

• First, choose arbitrary x ∈ (0, 1). Let us show that x ∈ KT?

(i) Let x < 1
2 and y = 1 − x. In this case x < y and x �T? y. Suppose that x �T? y.

Then, there exists an element ` ∈ [0, 1], it is obtained T ?(y, `) = x. Since x 6= 1
2 , we

have
T ?(y, `) = TnM (y, `) = x.

Since x 6= 0, by the definition of TnM , we have that TnM (y, `) = TnM (1 − x, `) =
min(1 − x, `) = x and ` > x from 1 − x + ` > 1. Since x 6= 1 − x, it is obtained that
x = `, a contradiction. Since for x ∈ (0, 1) there exists an element y = 1− x such that
x < y but x �T? y, x ∈ KT? .

(ii) Secondly, let x > 1
2 and y = 1−x. Similarly it can be shown that y < x but y �T? x.

So, we have that x ∈ KT? .

(iii) The last one, let x = 1
2 . It is shown that easily y �T?

1
2 for 0 < y < 1

2 . So, we have
that x ∈ KT? . Consequently it is obtained that (0, 1) ⊆ KT? .

• Conversely, for any t-norm T , it is clear that KT ⊆ (0, 1). So, it is obtained that
KT? = (0, 1). This means that TnM and T ? are equivalent under βL in (3).

Proposition 3.20 gives a sufficient and necessary condition for the t-norms T1 and T2

to be equivalent under the relation ∼ in (2). But the following Proposition only provides
a sufficient and not a necessary condition for the relation βL in (3).

Proposition 4.12. Let T1 and T2 be two t-norms on (L,≤, 0, 1). If for all x ∈ L,
ILT1

(x) = ILT2

(x), then the t-norms T1 and T2 are equivalent under βL in (3).

P r o o f . Let T1 and T2 be two t-norms on (L,≤, 0, 1) and ILT1

(x) = ILT2

(x) for all x ∈ L.
By Lemma 3.19,

KL
T1

=
⋃
x∈L
ILT1

(x)
andKL

T2
=
⋃
x∈L
ILT2

(x)
.

Since ILT1

(x) = ILT2

(x) for all x ∈ L, it is obtained that

KL
T1

=
⋃
x∈L
ILT1

(x)
=
⋃
x∈L
ILT2

(x)
= KL

T2
.

Then, we have that KL
T1

= KL
T2

. Whence, by the definition of the relation βL in (3), it
holds that T1βLT2. Consequently, the t-norms T1 and T2 are equivalent under βL in (3).

�

Remark 4.13. The converse of Proposition 4.12 is not be true. Here is an example
illustrating the case that need not be true.
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Example 4.14. Consider the t-norm T : [0, 1]2 → [0, 1] defined by

T (x, y) =

{
xy
2 , if (x, y) ∈ [0, 1)2,

min(x, y), otherwise,

and the t-norm TD on [0, 1]. Then, KT = KTD by [12]. The t-norms T and TD are
equivalent under βL in (3) and we obtained that,

(i) a1) IT (x) = {y ∈ (0, 1) | y ∈ [x2 , 2x] and x 6= y} for x ∈ (0, 1
2 ),

a2) IT (x) = {y ∈ (0, 1) | y ∈ [x2 , 1) and x 6= y} for x ∈ [ 12 , 1),

(ii) ITD
(x) = {y ∈ (0, 1) | x 6= y} for x ∈ (0, 1).

Now, we want to show this claims.

(i) a1) Let y ∈ IT (x) be arbitrary for x ∈ (0, 1
2 ). By Lemma 2.10, it must be x 6= y.

So, we will show that y ∈ [x2 , 2x]. Suppose that y /∈ [x2 , 2x]. Then, it is obtained that
y < x

2 or 2x < y. First we assume that y < x
2 . Since y = x. 2yx .

1
2 and x 6= 1, 2y

x 6= 1, by
the definition of T , we obtain that y = x. 2yx .

1
2 = T (x, 2y

x ). Then, it holds that y �T x,
a contradiction. So, this means that y ≥ x

2 . Similarly let 2x < y. Since x = y. 2xy .
1
2 and

y 6= 1, 2x
y 6= 1, by the definition of T , we obtain that x = y · 2x

y ·
1
2 = T (y, 2x

y ). Then,
it holds that x �T y, a contradiction. So, it is obtained that y ≤ 2x. We have that
y ∈ [x2 , 2x]. Therefore, IT (x) ⊆ {y ∈ (0, 1) | y ∈ [x2 , 2x] and x 6= y} for x ∈ (0, 1

2 ).

Conversely, y ∈ (0, 1) be arbitrary such that x 6= y and y ∈ [x2 , 2x] for x ∈ (0, 1
2 ). Let

us show that y ∈ IT (x). Suppose that y /∈ IT (x). That is, y is comparable to x according
to �T . Then, y < x and y �T x or x < y and x �T y.

• Firstly, let y < x and y �T x. Then, there exists an elements ` ∈ [0, 1] such that
T (x, `) = y. Since x 6= y, it must be ` 6= 1. Since x 6= 1 and ` 6= 1, by the definition
of T , it is obtained that T (x, `) = y = x`

2 . Since x
2 ≤ y, we have that ` = 2y

x ≥ 1, a
contradiction. So it is obtained that y �T x, that is y ∈ IT (x).

• Similarly, let x < y and x �T y. Then, for some `∗ ∈ [0, 1], T (y, `∗) = x. Since x 6= y,
it must be `∗ 6= 1. Since y 6= 1 and `∗ 6= 1, by the definition of T , it is obtained that
T (y, `∗) = x = y`∗

2 . Since y ≤ 2x, we have that `∗ = 2x
y ≥ 1, a contradiction. So it is

obtained that x �T y, that is y ∈ IT (x). So, it is obtained that
{y ∈ (0, 1) | y ∈ [x2 , 2x] and x 6= y} ⊆ IT (x) for x ∈ (0, 1

2 ). Consequently, we have that
IT (x) = {y ∈ (0, 1) | y ∈ [x2 , 2x] and x 6= y} for x ∈ (0, 1

2 ).

a2) Similarly, it can be show that IT (x) = {y ∈ (0, 1) | y ∈ [x2 , 1) and x 6= y} for
x ∈ [ 12 , 1).

(ii) Let y ∈ (0, 1) be arbitrary such that x 6= y for x ∈ (0, 1). Let us show that y ∈ ITD
(x).

Suppose that y /∈ ITD
(x). That is, y is comparable to x according to �TD . Then, y < x

and y �TD x or x < y and x �TD y.

• Firstly, let y < x and y �TD x. Then, for some m ∈ [0, 1], TD(x,m) = y. Since x 6= y,
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it must be m 6= 1. Since x,m 6= 1, by the definition of TD, it is obtained that y = 0, a
contradiction. So, we have that y < x and y �TD x, that is y ∈ ITD

(x).

• Secondly, let x < y and x �TD y. Then, for some k ∈ [0, 1], TD(y, k) = x. Since x 6= y,
it must be k 6= 1. Since y, k 6= 1, by the definition of TD, it is obtained that x = 0,
a contradiction. So, we have that x < y and x �TD y, that is y ∈ ITD

(x). Thus, we
have that {y ∈ (0, 1) | x 6= y} ⊆ ITD

(x). Conversely, for any t-norm T , it is clear that
ITD

(x) ⊆ (0, 1) for x ∈ [0, 1]. Thus it is obtained that ITD
(x) = {y ∈ (0, 1) | x 6= y} for

x ∈ (0, 1).
For example, since 1

3 �T
3
4 , it is obtained that 3

4 /∈ IT ( 1
3 ). But on the other hand

3
4 ∈ ITD

( 1
3 ). So, it is obtained that IT ( 1

3 ) 6= ITD
( 1
3 ).

5. CONCLUSION

We have defined the set of incomparable elements with respect to the triangular order
for any t-norm on a bounded lattice (L,≤, 0, 1). Also we have introduced and studied an
equivalence relation βL in (3) defined on the class of all t-norms on L. We have shown
that any two continuous t-norms on [0, 1] are equivalent by the introduced equivalence
relation. As shown by examples, all left-continuous t-norms on [0, 1] do not form an
equivalence class in our approach. Further we have shown when an equivalence class of
the infimum t-norm T∧ on L, is the set of all divisible t-norms on L.
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