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INCOMPARABILITY WITH RESPECT TO
THE TRIANGULAR ORDER

EMEL Asict AND FUNDA KARAGAL

In this paper, we define the set of incomparable elements with respect to the triangular
order for any t-norm on a bounded lattice. By means of the triangular order, an equivalence
relation on the class of t-norms on a bounded lattice is defined and this equivalence is deeply
investigated. Finally, we discuss some properties of this equivalence.
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1. INTRODUCTION

Triangular norms were originally studied in the framework of probabilistic metric spaces
[20, 211, 22| 23] aiming at an extension of the triangle inequality. Later on, they turned
out to be interpretations of the conjuction in many-valued logics [6], in particular in
fuzzy logics, where the unit interval serves as set of truth values.

In [18], it was defined a natural order for semigroups. Similarly, in [§], a partial order
defined by means of t-norms on a bounded lattice was introduced. For any elements x,y
of a bounded lattice L

x 2ry = T y)=a for some l € L,

where T'is a t-norm. This order <7 is called a t-partial order of T'. Moreover, the authors
have investigated connections between the natural order < on L and the T-partial order
<t on L.

In [8], it was obtained that < implies the natural order < but its converse needs
not be true. It was showed that a partially ordered set is not a lattice with respect to
=r. Some sets were determined which, under some special conditions, are lattices with
respect to =<r. For more details on t-norms on bounded lattices, we refer to [3] @ [10]
111, 13, [15, [16] (17, 19].

In [12], by means of the T-partial order, an equivalence relation on the class of t-norms
was given and the equivalence classes linked to some special t-norms were characterized.
In [7], an equivalence relation on the class of the t-norms on [0,1] was defined. It was
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16 E. ASICI AND F. KARACAL

showed that the equivalence class of the weakest t-norm Tp on [0, 1] contains a t-norm
which was different from T)p.

In [I], with the help of any t-norm T on [0,1], it was obtained that the family
(Tx)xe(0,1y of t-norms on [0,1]. If T was a divisible t-norm, then it was obtained that
([0,1], Z7,) was a lattice.

In the present paper, we introduce the set of incomparable elements with respect to
the t-order for any t-norm on a bounded lattice (L,<,0,1). By defining such an set,
the set of incomparable elements with respect to the t-order for any t-norm on [0, 1]
is extended to a more general form. The main aim is to investigate some properties
of this set. The paper is organized as follows. We shortly recall some basic notions in
Section 2. In Section 3, we define the set of incomparable elements with respect to the
t-order for any t-norm on a bounded lattice (L, <,0,1) and we determine the sets of
incomparable elements w.r.t. t-order of the infimum t-norm 7 and the weakest t-norm
Tw. In Section 4, we define an equivalence on the class of t-norms on a bounded lattice
(L,<,0,1). We determine the equivalence class of the infimum t-norm T, when L is
a chain. Thus, we obtain that, in the case of L = [0,1], all continuous t-norms are
equivalent. Although, we give some examples illustrating that left-continuous t-norms
need not be equivalent, in general. We show by an example that the left- continuity of
any of the t-norms in the equivalence class does not imply the left-continuity for another
t-norm in the equivalence class. In [I], it was shown that “T} and T are two t-norms
on [0,1] such that for all 2 € [0,1], Zp, @ = Zp,,® if and only if the t-norms 7} and T;
are equivalent under the relation ~ in (2)”. In this study, by an example we show that
this proposition only provides a sufficient and not a necessary condition for the relation

ﬂL in (3)

2. NOTATIONS, DEFINITIONS AND A REVIEW OF PREVIOUS RESULTS

Definition 2.1. (Klement et al. [I4]) A triangular norm (t-norm for short) is a binary
operation T" on the unit interval [0, 1], i.e., a function T : [0,1]*> — [0, 1], such that for
all ,y, z € [0,1] the following four axioms are satisfied:

[
(T1) T(wy) = T(y,2) (commutativity)
(T2) T(x,T(y,2)) =T(T(x,y),2) (associativity)
(T3) T(x,y) <T(x,z) whenever y < z (monotonicity)
(T4) T(z,1)= (boundary condition)

Example 2.2. (Klement et al. [14]) The following are the four basic t-norms T, Tp, 11, Tp

given by, respectively:
Tar(x,y) = min(z,y)
Tp(z,y) =z y
Tr(z,y) = max(z +y — 1,0)
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0, if (z,y) € [0,1]%,
min(x,y), otherwise.

TD(xvy) = {

Also, t-norms on a bounded lattice (L, <,0,1) are defined in similar way, and then

) —

extremal t-norms T and Ty on L is defined as follows, respectively:
Ta(z,y) =z Ny,
z, ify=1,
Tw(z,y) =1y, ifz=1,
0, otherwise.
Especially we obtained that Ty = Tp and Th = Ty for L = [0, 1].
Definition 2.3. (Klement et al. [T4]) A function F : [0,1]?> — [0, 1] is called continuous

if for all convergent sequences (7, )nen, (Yn)nen € [0, 1]V, the following holds

F( lim z,, lim yn> = lim F(zp,yn).
Definition 2.4. (Casasnovas and Mayor [5]) A t-norm T on L is divisible if the fol-
lowing condition holds:

Vz,y € L with 2 < y there is a z € L such that z = T(y, 2).

Proposition 2.5. (De Baets and Mesiar [4]) Let T be a t-norm on [0, 1]. T is divisible
if and only if 7" is continuous.

Definition 2.6. (Birkhoff [2]) Given a bounded lattice (L, <,0,1) and a,b € L, if a and
b are incomparable, in this case we use the notation a || b.

Definition 2.7. (Karagal and Kesicioglu [§]) Let (L, <,0,1) be a bounded lattice, T'
be a t-norm on L. The order defined as following is called a t-order (triangular order)
for t-norm 7.

x3ry:=TWy) =z forsome {¢€L. (1)

Proposition 2.8. (Karagal and Kesicioglu [8]) Let (L,<,0,1) be a bounded lattice,
T be a t-norm on L. Then the binary relation <7 is a partial order on L.

Proposition 2.9. (Karagal and Kesicioglu [8]) Let T be a t-norm on a bounded lattice
(L,<,0,1). Then, if x <7 y necessarily we have also x < y.

Lemma 2.10. (Kesicioglu et al. [12]) Let (L,<,0,1) be a bounded lattice. For all
t-norms on L and all € L it holds that 0 <7 z, * <7 z and = <7 1.

Definition 2.11. (Kesicioglu et al. [12]) Let T be a t-norm on [0,1] and let K7 be
defined by

Kr ={z €0,1] | for some y € [0,1], [z <y and z Ar y]or [y <z andy Ar z]}.

Definition 2.12. (Kesicioglu et al. [12]) Let (L, <,0,1) be a given bounded lattice.
Define a relation ~ on the class of all t-norms on (L, <,0,1) by T} ~ T3 if and only if
the T-partial order coincides with the Ts-partial order, that is

Ty ~ Ty i &= ==, . (2)
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3. ABOUT THE SET K% ON ANY BOUNDED LATTICE

In this section, we study on the set of all incomparable elements with respect to the T
partial order <7 with some t-norm 7" on a bounded lattice (L, <,0,1).

Definition 3.1. Let T be a t-norm on a bounded lattice (L,<,0,1) and let KX be
defined by

K% = {z € I\{0,1} | for some y € L\{0,1}, [z <y and = A7 y]or

ly <z andy Ar z]orz || y}.
If L =[0,1], then it is trivial to see that Ky = Kk.

Proposition 3.2. Let (L,<,0,1) be a bounded lattice and T' be a t-norm on L. If
there exist two elements of L such that these are incomparable, then K% # (.

This result is obvious therefore we omit its proof.

Although the set K% # 0, it need not be the case that elements in L are incomparable.
Now, let us investigate the following example.

Example 3.3. Let T' be a t-norm on [0, 1] and the family (73)xe(o,1) of t-norms be
given by

0, T(x,y) < Xand z,y # 1,

T(xz,y), otherwise.

T)\(l',y) = {

Observe that due to (Theorem 15 in [I]) the function T is a t-norm. Then we have that
Kp, =(0,1), but since L is a chain all elements are comparable.
Let us show that K7, = (0,1). Let = € (0,1).

e Firstly, let 2 < X\ and we choose 1 # y > X. Then, z < y and z A1, y. Indeed;
suppose that @ <7, y. Then, there exists an element ¢ € [0,1] such that Th(y,¢) = =.
Since x # 0, by the definition of T), it is obtained that

T = T)\(y7é) = T(y,ﬂ)

Since = # y, it is not possible £ = 1. Since ¢ # 1 and y # 1, again by the definition of
T), it is obtained that
x=Tx(y,0) =T (y,£) > A,

a contradiction. Since for any x < A there exists an element y > A such that = < y but
T ﬁTA Y, T € KTX'

e Secondly, let © > X and we choose 0 # y < A. Then, y < z and y A1, . On the
contrary, we suppose that y <7, x. Then, there exists an element k € [0, 1] such that
Tx(x,k) =y. Since y # 0, by the definition of T}, it is obtained that

y="T(z, k) =T(x,k).
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Since x # y, it is not possible that k = 1. Since k # 1 and x # 1, again by the definition
of T}, it is obtained that
y="T\(z,k) =T(x,k) > A,

a contradiction. Since for any x > A there exists an element y < A such that y < x but
y A1y @, x € Kr,. So, it is obtained that (0,1) C Kr,. Conversely, for any t-norm T,
it is clear that K C (0,1). So, it is obtained that Kp, = (0,1). But since L = [0,1] is
a chain, all elements in L are comparable according to the natural order.
Definition 3.4. Let (L, <,0,1) be a bounded lattice. The set I, is defined by

I, ={xz € L| Jy € L such that z || y}.

Due to the definition of the set Kk, it is obtained that I;, C KX for any t-norm T
on L.

Remark 3.5. For any t-norm T on any bounded lattice L, if |L| = 3, then it is obtained
that K% = 0.

Proposition 3.6. Let (L, <,0,1) be a bounded lattice and |L| > 3. For the weakest
t-norm Ty on L, K = L\{0,1}.

Proposition 3.7. Let (L, <,0,1) be a bounded lattice. For the infimum t-norm T on
L, K%A =1I.

Remark 3.8. The converse of Proposition [3.7]is not be true. That is, T" is a t-norm on
L such that if K% = I, then need not be T'= Th.

Definition 3.9. Let T be a t-norm on [0, 1], ¢ € [0,1] and let Zp Y| 7,7 defined by
Y = {z € (0,1)| z < c and = 47 ¢}
D = {y € (0,1) | ¢ < y and ¢ 47 y}.
Note that Zp© = 7D U Zp D for ¢ € [0, 1].

Lemma 3.10. Let T be a right continuous t-norm on [0,1]. Then the set Zp®Y for
z € [0,1] is either empty or infinite.

Lemma 3.11. Let T be a left continuous t-norm on [0,1]. Then the set 0@ for
x € [0,1] is either empty or infinite.

Corollary 3.12. Let T be a right continuous t-norm on [0,1] and the set Zp®H £ .
Then the set Zr®) is infinite.

Corollary 3.13. Let T be a left continuous t-norm on [0,1] and the set Zrp"" # 0.
Then the set Zp® is infinite.
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Lemma 3.14. Let T be a t-norm on [0,1]. T is continuous t-norm if and only if
Zr@Y = 0 and Zp*D = @ for all € [0,1].

Corollary 3.15. Let T be a t-norm on [0,1]. T is continuous t-norm if and only if
T = for all = € [0,1].

Definition 3.16. Let T be a t-norm on (L, <,0,1) and let I%(C) for a ¢ € L be defined
by
I%(C) = {z € L\{0,1} | x is incomparable to ¢ according to =<r}.

Proposition 3.17. Let T be a t-norm on (L,<,0,1). If there exist elements 2 and y
in L such that these are incomparable, then I%(z) # () and I%(y) £ ().

The converse of Proposition is not be true. To illustrate this claim we shall give
the following example.

Example 3.18. Consider the t-norm of Example 3.3] We obtain that
@) Ir,™ = {y € (0,1) | =4y} for z € (0,
a2) I, @ = {y € (0,\] | z #y} for z € (A, 1).

Since L is a chain all elements are comparable.

Now we want to show this claim.

ay) It is trivial that Zp, @ c (0,1). Conversely, y € (0,1) be arbitrary such that = # y
for z € (0, A]. Let us show that y € Zp, @), Suppose that y ¢ Ip, @), That is, y < z and
y 2r, zorx<yandx =g y.

e Lety < x and y =<7, x. Then, there exists an elements k € [0, 1] such that T)(z, k) = y.
Since y # 0, by the definition of Ty, we obtain that y = Ty (z, k) = T(x, k). Since x # 1
and k # 1, we have that y > ), a contradiction. So it is obtained that y A1, x, that is

y €Iy, @), Similarly it can be show that © < y and <7, y. Consequently we obtained
that Zp, @ = {y € (0,1) |  # y} for z € (0, \].

az) Similarly it is obtained that {y € (0,\] | z # y} for x € (A, 1).

Lemma 3.19. Let T be a t-norm on (L, <,0,1). Then K% =J,; I%(I).

This result is obvious therefore we omit its proof.

Proposition 3.20. Let 77 and T3 be two t-norms on a bounded lattice (L, <,0,1).

Then for all z € L, Ik, = - 1%, @) if and only if the t-norms 77 and T3, are equivalent
under ~ in (2).
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4. ABOUT AN EQUIVALENCE RELATION ON THE CLASS OF T-NORMS ON
ANY BOUNDED LATTICE

The above introduced set K% on any bounded lattice allows us to introduce the next
equivalence relation on the class of all t-norms on (L, <,0,1).

Definition 4.1. Let (L, <,0,1) be a bounded lattice. Define a relation 5, on the class
of all t-norms on (L, <,0,1) by 115175,

T\6LTs & Ki = KF, . (3)
The next result is obvious.

Lemma 4.2. The relation g, given in Definition is an equivalence relation.

Definition 4.3. For a given t-norm 7" on a bounded lattice (L, <,0,1), we denote by
T the (1, equivalence class linked to T, i.e.,

T={T'"| T isatnormon L and K% = K%}

In [12], it was shown that an equivalence class of the infimum t-norm T on L under
the relation ~ in (2) is the set of all divisible t-norms on L. But according to the
relation S, in (3), an equivalence class of the infimum t-norm 7T, on L is not the set of
all divisible t-norms on L. To illustrate this claim we shall give the following example.

Example 4.4. Consider the bounded lattice (L, <,0, 1) with L = {0, a, b, ¢, 1} as shown
in Fig. 1.

(0]

Fig. 1. The order < on L.

We consider Tx and Ty t-norms on L. It is trivial that KF = {a,b,c} and K =
{a,b,c}. So we have that K%A = K%W. By the definition of the relation £, in (3), the
t-norms Tx and Ty are equivalent, i.e., ThBr, Ty . But the weakest t-norm Ty is not
divisible t-norm on L. Suppose that Ty, is divisible t-norm. It is trivial b < ¢. Since Ty
is divisible t-norm, there exists an element ¢ € L such that b = T'(c,¢). If £ € {0,a,b,c},
then it is obtained that b = 0, a contradiction. If ¢ = 1, then we have that b = ¢, a
contradiction. So, the weakest t-norm Ty is not divisible t-norm on L.



22 E. ASICI AND F. KARACAL

Naturally, one can think when an equivalence class of the infimum t-norm T, on L
under the relation £z, in (3), is the set of all divisible t-norms on L. As an answer to
this question, let us investigate the following Proposition.

Proposition 4.5. If L is a chain, then an equivalence class of the infimum t-norm T'a
on L under the relation 8y, in (3), is the set of all divisible t-norms on L.

Proof. Let 7" € Tx. Then we have that K%, = K%A according to the relation 3, in
(3). Since L is a chain, it is obtained that Kf = 0 from I1, = () by Proposition So,
we have that K% = ). Since L is a chain and K% = 0, it is obtained that z < y and
z 2 yory <z andy I x for all x,y € L. Without loss of generality, we assume
that x <y and & <7+ y. Then there exists an element ¢ € L such that © = T'(y, ¢). So,
it is obtained that 7" is a divisible t-norm.

Conversely, let T’ be a divisible t-norm on L. Now, we will show that T’ € T, that
is Ki» = K7, . Tt is obtained that K7 = () from I, = () by Proposition Let us
show that K% = (. Suppose that K%, # () and we choose © € K%,. Since L is a chain,
for some y € L\ {0,1}, (z <y and « A7+ y) or (y < z and y A x) by the definition
of Kk. Firstly, let x < y. Since T” be a divisible t-norm, there exists m € L such that
x =T'(y,m). So, it is obtained that * <7 y, a contradiction. Similarly, if y < z, then
it can be easily verified that y <7 x, a contradiction. So, we have that K%, = (. Thus,
we have that K%, = K%A. This shows that T”3,Tx, when T” is a divisible t-norm on L.

([l

Corollary 4.6. The equivalence class of the minimum t-norm Ty on [0, 1] according
to the relation 8, in (3), is the set of all divisible t-norms on [0, 1].

Corollary 4.7. The equivalence class of the minimum t-norm Tj; on [0, 1] according
to the relation B, in (3), is the set of all continuous t-norms on [0, 1].

Remark 4.8. In Corollary we have shown that any two continuous t-norms on
[0,1] = L are equivalent under the relation gy, in (3). Naturally, one can think whether
any two left-continuous t-norms are in the same equivalence class, i.e, any two left-
continuous t-norms are equivalent under the relation 3y, in (3). To illustrate that two
left-continuous t-norms may not be equivalent under the relation (7, in (3) we shall give
the following example.

Example 4.9. Consider the t-norms on [0, 1] defined as follows:

0, ifx+y<l,

min(z,y), otherwise,

TnM(x7y) = {

and
min(z,y), if max(z,y) € (%, 1],
T4('T7y): %’ lfxaye (%7%]a
0, otherwise.
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T"M and Ty are left continuous t-norms [16]. But since Kpnn = (0,1) and K, = (0, 2],
the t-norms 7™M and T} are not equivalent under gz, in (3).

In [1], it has been shown that Kr.x = (0,1). Now, we will show that Kz, = (0, 3].

e First, choose arbitrary x € (0, 2]. Let us show that = € Kr,.
(i) Let = € (0, %) and y = £. In this case, y < x but y Az, x. Suppose that y =7, .
Then, for some ¢ € [0, 1],

T4(mﬂ e) =Yy=

wl K

Thus, it follows y # i from = # %. Since y # 0 and y # %, it is obtained that
1
Ty(x, ) # 0 and Ty(z,l) # 1

By the definition of T}, we have that max(z,¢) € (3,1]. Again by the definition of T},
Ty(x,l) = min(x,f) = %. Since £ # x, it is obtained that £ = /. Whence we have
max(z, %) ¢ (2,1], a contradiction. Since for any = € (0,2
y =% € (0,1) such that ¥ <z but £ Ag, x, v € Kr,.

) there exists an element

(ii) Let # = 3 and 1 < y < 2. In this case, y < z but y A7, . Suppose that y =7, .
Then, there exists an element m € [0, 1],

Ty(z,m) = y.

By the definition of Ty, it is obtained that max(z,m) € (2, 1]. Again by the definition of
Ty, Ty(x,m) = min(xz, m) = y. Since x # y, it is obtained that y = m. It is obtained that
max(z,y) ¢ (2,1], a contradiction. Since for z = 2 there exists an element 1 <y < 3
such that y A7, 2, € Kr,. So, it is obtained that (0, 3] C Kr,.

e On the contrary let 2 € K, be arbitrary. We will show that z € (0, 2]. Suppose that
z ¢ (0,2]. Since z € Kr,, there exists an element y € (0,1) such that z < y and = A7, y
ory < z and y A7, x. Without loss of generality, we assume that < y and = A7, v.
Since < y, it must be min(z,y) = z. Since 2 < z < y, it must be max(z,y) € (2,1].
By the definition of Ty, we obtain that

z =min(z,y) = Tu(z,y).

Then, it holds that <7, y, a contradiction. So, we have = € (0, %] Thus, it is obtained
that K7, C (0,3]. Therefore it is obtained that K7, = (0,2]. Consequently, since
Kpnu # Kr,, the t-norms 7™M and T, are not equivalent under 3z, in (3).

Remark 4.10. One may ask whether any t-norm equivalent to a left continuous t-norm
needs to be left-continuous, too. The following example shows that also this need not.

Example 4.11. Let T* be a function on [0, 1] defined by

1 - 1

5 ife,y=s3

T* T _ 2 ) 2
(@) {T"M (z,y), otherwise.
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The function T* is a t-norm by [I4]. We will show that this t-norm is equivalent to the
left-continuous t-norm 7™M, but T* is not left continuous t-norm.

To see that T*BT™M | we must show Kr« = Kpnu. In [I], it has been shown that
Kpnv = (0,1). Now, we will show that Kp- = (0,1).

e First, choose arbitrary = € (0, 1). Let us show that z € Kp«

(i) Let = < % and y = 1 — 2. In this case © < y and = A7« y. Suppose that z <7« y.
Then, there exists an element ¢ € [0, 1], it is obtained T*(y,¢) = z. Since x # %, we
have
T*(y,0) =T (y,0) = x

Since x # 0, by the definition of 7" we have that T"M(y,¢) = T"M(1 — z,0) =
min(l —z,£) =z and ¢ > z from 1 — x4+ ¢ > 1. Since z # 1 — z, it is obtained that
x = £, a contradiction. Since for x € (0,1) there exists an element y = 1 — z such that
z <ybutz Ay« y, x € Kp-.

(ii) Secondly, let # > 1 and y = 1 —x. Similarly it can be shown that y < z but y A7+ .
So, we have that x € Kp«.

(iii) The last one, let x = % It is shown that easily y A7« % for 0 <y < % So, we have
that € Kp«. Consequently it is obtained that (0,1) C Kp«.

e Conversely, for any t-norm 7', it is clear that Kpr C (0,1). So, it is obtained that
K7+ = (0,1). This means that 7™ and T* are equivalent under 3y, in (3).

Proposition [3.20] gives a sufficient and necessary condition for the t-norms 77 and T5
to be equivalent under the relation ~ in (2). But the following Proposition only provides
a sufficient and not a necessary condition for the relation Gy, in (3).

Proposition 4.12. Let T} and T3 be two t-norms on (L,<,0,1). If for all 2 € L,
1%, @ _ It (z), then the t-norms Ty and Ty are equivalent under 3y, in (3).

Proof. Let Ty and T be two t-norms on (L, <,0,1) and I%l @ _ Iﬁ(z) for all x € L.
By Lemma |3.19

Kk = |JTh “) and KE = U4 (@),
z€eL zeL

Since I, @ _ Iqliz(w) for all z € L, it is obtained that

L L (@) L () L
ki =zt " =J 18" = Kf,
z€L zeL

Then, we have that K%l = K%z. Whence, by the definition of the relation 8y, in (3), it
holds that T8, T5. Consequently, the t-norms 77 and T, are equivalent under 3y, in (3).
O

Remark 4.13. The converse of Proposition is not be true. Here is an example
illustrating the case that need not be true.
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Example 4.14. Consider the t-norm 7T : [0, 1] — [0, 1] defined by

T(oy) = {gy if (z,y) € [0,1)%,

min(x,y), otherwise,

and the t-norm Tp on [0,1]. Then, K7 = Kp, by [12]. The t-norms T and Tp are
equivalent under Gz, in (3) and we obtained that,

(i) a) Zr'™ ={ye(0,1) | y€[%,22] and xz# y} for z € (0, 3),
az) @ = {ye(0,1) | ye[5,1) and x #y} for x € [%, 1)

(ii) Irp, @ = {y € (0,1) |  #y} for z € (0,1).

Now, we want to show this claims.

(i) a1) Let y € Zr® be arbitrary for z € (0, 1). By Lemma :2.10|, it must be z # y.

So, we will show that y € [§,2xz]. Suppose that y ¢ [£,2 ] Then it is obtained that
y < 5 or 2z < y. First we assume that y < 5. Since y =zx. —.7 and x # 1, 2 # 1, by
the definition of T', we obtain that y = . 2“ % = T(x, ) Then it holds that y 21 x,
a contradiction. So, this means that y > 7 < . Similarly let 2z < y. Since x = y. 2—“3 l and

y # 1, 22 # 1, by the definition of T', we obtaln that z =y - 22 . 5 = T(y, 2" ) Then,
it holds that z <7 y, a contradiction. So, it is obtained that y § 2z. We have that
€ [§,2z]. Therefore, Ir® c{ye(0,1) | ye [Z,22] and x # y} for z € (0, 3).

Conversely, y € (0,1) be arbitrary such that  # y and y € [£,2z] for z € (0, 3). Let

us show that y € Zr®). Suppose that y ¢ Zr®) . That is, y is comparable to = according
to =<p. Then, y < x and y <Xp x or x < y and = = y.

e Firstly, let y < « and y =7 x. Then, there exists an elements ¢ € [0,1] such that
T(x,¢) = y. Since x # y, it must be ¢ # 1. Since x # 1 and ¢ # 1, by the definition
of T, it is obtained that T'(z,¢) = y = %Z. Since § <y, we have that £ = Q?y >1,a
contradiction. So it is obtained that y A7 z, that is y € Ir®,

e Similarly, let < y and z <7 y. Then, for some ¢* € [0, 1], T(y, ¢*) = x. Since x # y,
it must be £* # 1. Since y # 1 and ¢* # 1, by the definition of T, it is obtained that
T(y,0*) =x = % Since y < 2z, we have that ¢* = 27“’ > 1, a contradiction. So it is
obtained that = ﬁT y, that is y € ZT(E). So, it is obtained that
{ye(0,1) | ye[3,22] and = #y} C Zr® for z € (0, 1). Consequently, we have that
Ir® = {ye(0,1) | ye [£,22] and x # y} for z € (0, 3).

az) Similarly, it can be show that Zp@® = {y € (0,1) | y € [5,1) and x # y} for
x € [% 1).

(i) Let y € (0,1) be arbitrary such that « # y for z € (0,1). Let us show that y € Zp,
Suppose that y ¢ Zr, (@) That is, y is comparable to z according to <r,. Then, y < x
and y 27, zor x <y and x =r, y.

e Firstly, let y <  and y <7, x. Then, for some m € [0,1], Tp(x, m) = y. Since x # y,
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it must be m # 1. Since x,m # 1, by the definition of T, it is obtained that y = 0, a
contradiction. So, we have that y < z and y Ar, z, that is y € Zp, @),

e Secondly, let < y and « <7, y. Then, for some k € [0, 1], Tp(y, k) = . Since z # v,
it must be k # 1. Since y,k # 1, by the definition of Tp, it is obtained that z = 0,
a contradiction. So, we have that z < y and x A7, y, that is y € Ir, @), Thus, we
have that {y € (0,1) | « # y} C Zr, ™. Conversely, for any t-norm T, it is clear that
Zr, ™ C (0,1) for z € [0,1]. Thus it is obtained that Zp, @ = {y € (0,1) | = # y} for
z € (0,1).

For example, since % =<7 %, it is obtained that % ¢ IT(%). But on the other hand
1

% € ITD(?»). So, it is obtained that IT(%) #+ ITD(%).

5. CONCLUSION

We have defined the set of incomparable elements with respect to the triangular order
for any t-norm on a bounded lattice (L, <,0,1). Also we have introduced and studied an
equivalence relation Sy, in (3) defined on the class of all t-norms on L. We have shown
that any two continuous t-norms on [0, 1] are equivalent by the introduced equivalence
relation. As shown by examples, all left-continuous t-norms on [0, 1] do not form an
equivalence class in our approach. Further we have shown when an equivalence class of
the infimum t-norm T on L, is the set of all divisible t-norms on L.
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