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KYBERNETIKA — VOLUME 52 (2016), NUMBER 1, PAGES 1-14

COMPUTING THE GREATEST X-EIGENVECTOR
OF A MATRIX IN MAX-MIN ALGEBRA

JAN PLAVKA

A vector z is said to be an eigenvector of a square max—min matrix A if A® x = z. An
eigenvector x of A is called the greatest X-eigenvector of A if x € X = {z; z < 2 < T} and
y < z for each eigenvector y € X. A max—min matrix A is called strongly X-robust if the
orbit z, AQ z, A>®=x, ... reaches the greatest X-eigenvector with any starting vector of X. We
suggest an O(n®) algorithm for computing the greatest X-eigenvector of A and study the strong
X-robustness. The necessary and sufficient conditions for strong X-robustness are introduced
and an efficient algorithm for verifying these conditions is described.
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Classification: 08A72, 90B35, 90C47

1. INTRODUCTION

Matrices in max—min algebra (the addition and the multiplication are formally replaced
by operations of maximum and minimum) can be used in a range of practical prob-
lems related to scheduling, optimization, modeling of fuzzy discrete dynamic systems,
graph theory, knowledge engineering, cluster analysis, fuzzy systems and also related to
describing diagnosis of technical devices [2I] or medical diagnosis [18].

The research of max—min algebra can be motivated by adapting max—plus multi-
processor interaction systems [I]. In these systems we have n processors which work
in stages, and in the algebraic model of their interactive work, entry z;(k) of a vector
x(k), represents the state of processor ¢ after some stage k, and the entry a;; of a
matrix A encodes the influence of the work of processor j in the previous stage on
the work of processor ¢ in the current stage. For simplicity, the system is assumed
to be homogeneous, so that A does not change from stage to stage. Summing up all
the influence effects multiplied by the results of previous stages, we have z;(k + 1) =
&P Qi ®T; (k). The summation is often interpreted as waiting till all works of the system
are finished and all the necessary influence constraints are satisfied.

Thus the orbit 2, A®z,... A* @z, where A* = A®...® A, represents the evolution
of such a system. Regarding the orbits, one wishes to know the set of starting vectors
from which a steady state of multi-processor interaction systems (an eigenvector of A;
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A ® x = z) can be achieved. The set of starting vectors from which a system reaches
an eigenvector (the greatest eigenvector) of A after a finite number of stages, in general,
contains the set of all eigenvectors, but it can be an interval vector X = [z, %] := {z; z <
x < T} and also as big as the whole space.

In the present paper, we consider a generalized version of the problem to compute the
greatest eigenvector of A (see [2]) belonging to an interval vector X (called the greatest
X-eigenvector of A). In Theorem 5.8, which is the main result of the paper, we show
that under a certain natural condition, the greatest X-eigenvector of A can be computed
by an O(n?) algorithm.

The next section will be occupied by some definitions and notation of the max-min
algebra, leading to the discussion of the greatest X-eigenvector of the matrix A and
strong X-robustness of A. Section 5 is devoted to the main result characterizing strong
X -robust matrices with an orbit of A.

Let us conclude with a brief overview of the works on max-min algebra to which
this paper is related. The paper [2] deals with the problem of computing the greatest
eigenvector of a given max-min matrix. The concepts of robustness (an eigenvector of A
is reached with any starting vector) and strong robustness (the greatest eigenvector of A
is reached with any starting vector) in max-min algebra were introduced and studied in
[14] and [16]. Following that work, some equivalent conditions and efficient algorithms
were presented in [I0, 11l 16]. In particular, see [I6] for some polynomial procedures
checking the weak robustness (an eigenvector is reached only if a starting vector is an
eigenvector of A) in max-min algebra.

2. PRELIMINARIES

Let (B, <) be a bounded linearly ordered set with the least element in B denoted by O
and the greatest one by I. The set of naturals (naturals with zero) is denoted by N (Np).
For given naturals n,m € N, we use the notations N and M for the set of all smaller
or equal natural numbers, i.e., N ={1,2, ..., n} and M = {1, 2, ..., m}, respectively.
The set of n x m matrices over B is denoted by B(n,m), specially the set of n x 1 vectors
over B is denoted by B(n).

The max—min algebra is a triple (B, ®,®), where a & b = max(a,b) and a ® b =
min(a, b).

The operations @, ® are extended to the matrix-vector algebra over B by the direct
analogy to the conventional linear algebra. If each entry of a matrix A € B(n,n) (a
vector x € B(n)) is equal to O we shall denote it as A = O (z = O).

The greatest common divisor and the least common multiple of a set S C N is denoted
by ged S and lem S| respectively.

For A € B(n,n), C € B(n,n) we write A < C' (A < C) if a;; < ¢;; (aij < ¢i;) holds
true for all 4, j € N. Similarly, for x = (21,...,2,)7 € B(n) and y = (y1,...,yn)" €
B(n) we write x <y (v <y) if x; <y; (z; <y;) for each i € N.

The rth power of a matrix A is denoted by A" with elements aj;.

By digraph we understand a pair G = (Vg, E¢), where Vg is a non-empty finite set,
called the node set, and Eg C Vg X Vg, called the arc set. A digraph G’ is a subdigraph
of G, if Vg C Vg and Egr C Eg. A path in G is the sequence of nodes p = (vg, v1, - .., v;)
such that (vg_1,v) € Eg for all k =1,2,...,1 (denoted as (vo, v;)-path). The number
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I(p) > 0 is called the length of p. If vy = vy, then p is called a cycle. A cycle is elementary
if all nodes except the terminal node are distinct. A digraph is called strongly connected
if any two distinct nodes of G are contained in a common cycle.

By a strongly connected component K of G = (N, E) we mean a subdigraph K gen-
erated by a non-empty subset K C N such that any two distinct nodes i,j € K are
contained in a common cycle and K is the maximal subset with this property. A strongly
connected component K of a digraph is called non-trivial, if there is a cycle of positive
length in K. For any non-trivial strongly connected component K the period of K is de-
fined as per K = ged {{(c); cis acycle in K, I(c) > 0}. If K is trivial, then per £ = 1.

There is a well-known connection between the entries in powers of matrices and
paths in associated digraphs: the (i,7)th entry af; in A is equal to the maximum of
weights of paths from Pfj, where 731-’3- is the set of all paths of length k beginning at
node ¢ and ending at node j. If P;; denotes the set of all paths from ¢ to j, then
aj; = max{afj; k=1,2,...} is the maximum weight of a path from P;; and a}; is the
maximum weight of a cycle containing node j.

For a given matrix A € B(n,n), the number A € B and the n-tuple x € B(n) are the
so-called eigenvalue of A and eigenvector of A, respectively, if A®x = A ® x.

The eigenspace V (A, \) is defined as the set of all eigenvectors of A with associated
eigenvalue A, i.e., V(A,\) ={z € B(n); Az =A®x}.
In case A = I let us denote V (A4, I) by abbreviation V(A).

Define the greatest eigenvector z*(A) corresponding to a matrix A and the eigenvalue
Ias z"(4) = D,evay

In [2] it was stated that the greatest eigenvector z*(A) exists for every matrix A, its
entries are given by the formula z7(A4) = P, aj; ® aj; and 2*(A) can be computed by
an O(n?) iterative procedure.

For every matrix A € B(n,n) denote

ci(A) = Paij, c(A) =) ci(A), c*(A) =(c(A),...,c(A)T € B(n).

JEN i€EN

3. ORBIT PERIODICITY

The notions of an orbit of A generated by x and known properties of the orbit periodicity
are introduced in this section.

Definition 3.1. For any A € B(n,n) and = € B(n) the orbit of A generated by x is the
vector sequence O(A, x) = (z(r);r € Ng) whose initial vector is 2:(0) = 2 and successive
members are defined by the formula z(r + 1) = A ® x(r).

Definition 3.2. The sequence S = (5(r); r € N) is ultimately periodic if there is a
natural number p such that the following holds for some natural number R : S(k +p) =
S(k) for all k > R. The smallest natural number p with the above property is called
the period of S, denoted by per(S).
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Both operations in max—min algebra are idempotent, hence no new numbers are cre-
ated in the process of generating an orbit. Therefore any orbit in max—min algebra
contains only a finite number of different vectors. Thus an orbit is always ultimately
periodic. The same holds true for the power sequence (A*; k € N). Hence a power se-
quence and an orbit O(A, x) are always ultimately periodic sequences. Their periods will
be called the period of A and the orbit period of O(A, x), in notation per(A), per(A4,z).

Theorem 3.3. (Gavalec [5]) Let A € B(n,n) and « € B(n).

Then per(A) = xé%r?n) per(A, ).

Note that an O(n?) algorithm for finding per(A) is presented in [5].
A matrix (vector) is called binary if a;; € {O, I} (z; € {O,1I}) for each i,j € N.

Definition 3.4. Let A € B(n,n) be a binary matrix and = € B(n) be a binary vector.
Then by G(A) = (Vg(a), Eq(a)) we understand the digraph with Vigay = N, Ega) =
{(4,7); aij = I} and by G(A, x) we understand the corresponding node-weighted digraph
obtained from G(A) by appending weight z; to each node i (denoted by i€ if 2; = O
and il if x; = I).

A path in G(A4, ) is called an orbit path if the weight of its terminal node is I.

Definition 3.5. For A € B(n,n), x € B(n) and h € B, the threshold matriz Ay and
threshold vector x () corresponding to the threshold h is a binary matrix of the same
type as A and a binary vector of the same type as x, defined as follows:

I, ifaith, Iv if.’l?iZh,
a i = and X i = ]'
(am) )i {O, otherwise, ) {O, otherwise, .

respectively. The associated digraphs G(Apy) and G(A ), z(x)) will be called the thresh-
old digraphs corresponding to the threshold h.

Definition 3.6. Let k € N be a node of G(A), x1))- k is called removable if there is
anode j € N such that (j,k)-path is an orbit path in G(Ap), z()) with (z@)); = O.
If (x(n))x = O then k is removable by the definition.

Let G(A(n), z(n)) be the threshold digraph corresponding to the threshold h. Denote

G(A(ny, 7)) the digraph which arose from G (A, z(x)) by deleting all removable nodes.

Similarly as in [2], a node k € N is called precyclic in é(A(h), x(p)) if there is a path
p that is finished by a cycle, i.e., p = (k,v1,...,0¢,..., 045, 0¢). If k is lying on a cycle
then k is precyclic by the definition.

A characterization of G (A(ny, z(ny) and a description of precyclic node is necessary for
computing the greatest eigenvector belonging to an interval vector X. This extension
of the theory presented in [2] is done in the next section.
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4. INTERVAL VECTORS

In this section we shall deal with properties of the greatest eigenvector belonging to an
interval vector.

Similarly to [3, 4 [6] [7, 8l @] [T, 12} 13} 15 17] we define an interval vector X.

Definition 4.1. Let 2,7 € B(n), z < Z. An interval matrix X with bounds z and 7 is
defined as follows X = [z, Z] ={x €B(n); x <z <ZT}.

For a given A € B(n,n) and X C B(n) define the greatest X—eigenvector z*(A, X)
corresponding to a matrix A and an interval vector X as z*(A, X) = EBerA)mXx.
As it has been written, if X = B(n) then z*(A, X) exists for every matrix A (see [2],20]),
this is in a contrast with the case that X C B(n) for which z*(A, X)) exists if only if
V(AN X #0.

Now, we define an auxiliary eigenvector x®(A, X) of A belonging to X which allows
us to use properties of digraphs and to characterize the structure of the greatest X—
eigenvector x* (A4, X) corresponding to a matrix A and an interval vector X.

Definition 4.2. For a given A € B(n,n) and X C B(n) define a vector z%(A4, X) =
(@P(A, X),...,22(A, X))T as follows

2P (A, X) = max{h € [z;,Tx); k is precyclic in G(A(h),f(h))}.

Notice that if there is k € N such that {h € [z, Tx]; k is precyclic in C;’(A(h),f(h))} =0
then 2 (4, X) does not exist.

Example 4.3. Let A and X = [z, T] have the forms

Neolid; el
s s W
w O O oo
[N e
133
Il
= W e
8|
Il
©O© O Ut o

Then needed digraphs are displayed in Figures 1-5.
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<

Fig. 1. G(A(5),£l7<5)) = G(A(5),m(5>).

@ @)

Q.i

Fig. 2. G(A(6),:L’(6)). Fig. 3. é(A(g),l‘(g)).

@? @)

Fig. 4. G(A(7),ZB(7)). Fig. 5. é(A(7),a7<7)).

By the definition of z} (4, X') we get that node 2 and node 3 are precyclic in G(A(5), T(5))
and nodes 1, 4 are precyclic in C;’(A(G), z@)). The graph C;’(Am, x(7)) (similarly as
G(A(g), x(g)) and G(A(g), x(9))) is acyclic and hence we get that (A4, X) = (6,5, 5, 6)7.

From now we shall suppose that x,? (A, X)) exists. Then from the last definition the
next lemma straightly follows.

Lemma 4.4. Let A and X be given. Then z < 2%(A, X) < 7.

Theorem 4.5. Let A and X be given. Then 2% (A, X) € V(A).

Proof. Consider an arbitrary but fixed & € N and suppose that k is precyclic in
G(Awmy, ) for h = x?(A,X). Then there is a path p = (k,v1,...,0¢,..., Vtts, Ut)
such that (vq,...,vits, ) is & cycle and each node v; € p is precyclic in G(A(h),i(h)).
Moreover 2 (4, X) > 27 (A, X) = h and ay,, > h. Hence we get

(A® %A, X)) = P ar; @ 2P (A, X) > ary, @ 2 (4, X) > 2 (4, X).
JEN
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To prove the reverse inequality suppose for a contrary that there is some index ¢ such
that axe @27 (A, X) > (A, X). Node ¢ is precyclic in G(A(h),f(h)) for h = 2§ (A, X),
i.e., there is a path p’ = ({,uq,...,us, ..., usts,ur). Then we can construct a new path
P = (k,l,uy, ... us, ..., Urys, uy) which guarantees that k is precyclic in CNY'(A(h/),E(h/))
for h' = ape ® x¥ (A, X). This is a contradiction with the definition of 27 (4, X). O

Theorem 4.6. Let A and X be given. Then (Vo € V(A) N X)[x < z%(A, X)].

Proof. Suppose that A, X and z € V(A)N X are given. Then (A ® x), = z, implies
that there is j; € N such that ap;, ® x;, = vy and agj, > xp A xj, > 2. For row index
J1 there is js such that aj;,;, ® z;, = x;, and aj,;, > x;, A x;, > zj. By repeating
the above process at most n times we obtain a path p = (k, j1, ..., Js, Js+1,--,Js), 1-€.,
k is precyclic in G(A(l.k),f(wk)). Notice that no node of p can be removable (if j; is
removable then there is a path p’ = (i1,...,is = ji) in G(A(z,), T(zy)) With i and L,
and hence inequality a;;,,, ® x; ., > x; contradicts the assumption that A ® z = x).
The assertion follows from the fact that 2} (A, X) is equal to the greatest h for which k
is precyclic in é(A(h),f(h)). O

In the last three assertions we have showed that ¥ (A, X)) is an eigenvector belonging
to X and fulfilling a maximality condition ((Vz € V(A) N X)[z < 2®(A, X)]. This is a
reason to formulate the next corollary.

Corollary 4.7. If V(A) N X # 0 then z*(A, X) = 29(4, X).

5. PROCEDURE FOR COMPUTING THE GREATEST X-EIGENVECTOR

The task to compute 2% (A4, X) more effectively is considered in this section.

Definition 5.1. Let A and X be given. We say that X is invariant under A if x € X
implies A x € X.

As A is order-preserving, the invariance of X under A admits the following simple
characterization.

Lemma 5.2. X is invariant under A if and only if z < Az AN ARZT <T.

Suppose that X is invariant under A and O(A4,7) = (T(r);r € Ng) and O(A,z) =
(z(r);r € Nyg) are orbits of A generated by T and z, respectively. Then for each k € Ny
we have the following:
Thk+1) =AM 97=A"2 (A7) < A" 27 =7(k). (2)
zk+)=A"or=A"(Az) > A" @z =2(k). (3)
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Lemma 5.3. Let X be invariant under A. Then
(Vk € No)[z(n) =T(n + k)], (4)

(Vk € No)[z(n) = z(n + k)]. (5)

Proof. According to (2) it is sufficient to prove that Z(n) < T(n+1). For the sake of a
contradiction assume that Z(n) £ Z(n+1), i.e., thereis i € N such that z;(n) > z;(n+1),
ie., (A"®T); > (A" @7);. Then there is s € N such that for each k € N the following
inequality holds true af, ® T, > a?,jl ® Ty, or equivalently, there is a path p € P such
that next formula

w(p) ®Ts = al, ®Ts > alt ' @ T > w(p) @ Ty,

holds for each & € N and each p € Pj;t'. Since I(p) = n then there is at least one
repeated node, i.e., p = p’ Uc and I(c) > 1. Now, we shall consider a path p” such that
p" =p'UcUc. Let I(p”) =v. Then v > n+ 1 and we get

Zi(v) > al, T, > w(p') @Ts = w(p) ®Ts = af, @Ts > aly* @ Ty, = T;(n + 1).

This is a contradiction with and follows.

To prove it is enough (by () to show that z(n) > z(n + 1). For the sake of a
contradiction assume that z(n) # z(n+1), i.e., thereisi € N such that z;(n) < z;(n+1)
or equivalently (A" ® z); < (A"*! ® z);. Then there is k € N such that for each s € N

the following inequality holds true af’, ® z, < a?kﬂ ® z;,, or again equivalently, there is

a path p € Pﬁjl such that next formula

w(p) @z, <af, @z, <t @y =w(p) @z

holds for each s € N and each p’ € P. Since l(p) = n + 1 then there is at least one

repeated node, i.e., p = pUc, where p € Pf,(cp) with {(p) < n and I(c) > 1. Now, we shall
consider a path p. It is clear that w(p) < w(p) and hence we get

2((f) = alfY) @ 2, > w(p) © zy > w(p) @z, = alf ' @z, > P alh @z, = z(n).
seEN

This is a contradiction with and follows. O

Corollary 5.4. Let X be invariant under A. Then {z(n),Z(n)} C V(4) N X.

Proof. The assertions follows from the facts that
Azn)=A® (A"®z)=A"" @z =z(n+1) = z(n),

AT(n)=A® (A"e7)=A"" @7 =%(n+1) =T(n).

Theorem 5.5. Let X be invariant under A. Then z% (A, X) = Z(n).
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Proof. Supposethat X isinvariant under A and 2% (A4, X) = (27 (4, X),...,2%(4, X))T.
Then by the definition of x?(A,X) there is a path p = p’ U ¢ (p is finished by c¢) in
(?(A(h),f(h)) for h = 2 (A, X) and w(p) = h. Consider now a path p”” = p'UcU---Uc
with I(p”) > n and w(p) = w(p”). Then we obtain

Ti(n) = TR(U(P") 2 w(p') = 2} (4, X).

Inverse inequality follows from the fact that a path p € Py; beginning in k contains a
cycle and Ty (n) = @j ap; @Tj = ap, @Tp = w(p) ®F;, i.e., k is precyclic in é(A(h),f(h))
for h = T (n). Hence 2%(A4, X) > z(n). O

5.1. Computing the greatest X-eigenvector — general case

In this subsection we shall analyze the conditions for computing z®(A, X) whereby X
is not invariant under A.

Let A € B(n,n) and X C B(n) be given. Suppose that A®T £ T and V(A)NX # 0,
i.e., (A, X) exists. We look for the greatest vector # € X with the property that
z < A® T < Z. For this purpose Z will be constructed by the following algorithm.

Algorithm Invariant upper bound

Input. X, A.
Output. “yes” in variable gr if £ € X with the property that z < A ® = < T exists;
“no” in gr otherwise.

begin
1. 2:=7; M =0

2. = in z,; M={j €N; =2;};
mi= min {J m =}

3. While (3k € M)(3j € N)[ay; ® &; > &) do

if £y > x; then &; :==m A M = M U{j} else gr:="no";

(comment: if the condition A @ & < & is not fulfilled in row k, corresponding
variables & are modified)

4. M ={j€N; m>z,};

(comment: M consists of row indices for which A® & < & holds true)
5. If N\ M = () then gr:="yes” else go to 2;

end
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Example 5.6. Let A and X = [z, T] have the forms

111352 8 3 6
2 743256 3 7
1 274110 3 6
A=|2 25 4 2 6 4|, z=|3 |, z=]| 5
1143251 3 4
235 21 2 2 3 4
3266 2 6 4 3 7

The first run of the algorithm:
By applying step 1 of the algorithm put Z := %, M := 0 and
m:= min z;, =4, M={j€ N; m=2z;}={5,6
min 7, i )} = 5.6)
in step 2. Since agz®@I3 > T, put Tz :=m =4(>2z3), M ={j € Ny m=12,;} ={3,5,6}

and 7 = (6,7,4,5,4,4,7)7. In step 4 the set M = {j € N; m > %,} = {3,5,6}, in step
5 we obtain N \ M # ) and the algorithm goes on step 2.

The second run of the algorithm:
In step 2 we get
= min z; =5, M={j€N; m=2,} ={4}.
mi= min % {J m=i;} = {4}
Since the condition of step 3 is not fulfilled (A ® )4 < 4
step 5,ie, M ={j e N; m>&;} ={3,4,5,6}, N\ M #
step 2.

), we continue by step 4 and
() and the algorithm goes on

The third run of the algorithm:
In step 2 we get

= min i;=6 M={jeN, m=2i}={1}.
m jele{LMxJ 6, {jeN; m=z;}={1}
Step 3 produces the following a;7 ® &7y > &1, put &7 := m = 6(> z,), and & =
(6,7,4,5,4,4,6)T. Since M = {j € N; m > &;} = N\ {2}, the algorithm again
goes on step 2.

The fourth run of the algorithm:
In step 2 we get

= in z,=7 M={j€N; =z} =1{2}.
mi= min T {7 m=;} = {2}

Since the condition of step 3 is not fulfilled and M = N the algorithm terminates in
step 5 with the variable gr:="yes” and output & = (6,7,4,5,4,4,6)7.
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Theorem 5.7. Let A € B(n,n) and X C B(n) be given. Then the algorithm Invariant
upper bound is correct, its output is the greatest vector Z such that x < A® & < &
and its computational complexity is O(n?).

Proof. The algorithm finishes with the positive answer in step 5, where it has com-
puted the vector Z such that x < A® z < 7.

If Z does not exists (this corresponds to else branch of the algorithm in step 3) then
it is impossible to decrease &; on the level Z, if ar; ® T; > T) and T < z;. Further,
the smallest possible decrease of Z; in step 3 guarantees the maximality of £ € X with
property t < A® T < .

For the estimation of the computational complexity observe that the algorithm checks
for each coordinate Zj, at most n products ar; ® ; and compares it with Z; in step 3.
The number of operations in step 3 is O(n?) and in no other step it exceeds the bound
O(n), hence the overall complexity is O(n?). O

Now, we can summarize the above results and suggest an algorithm for computing
the greatest X—eigenvector of A.

Algorithm Greatest X-eigenvector

Input. X, A.
Output. “yes” in variable gr if z%(A, X) € X exists; “no” in gr otherwise.
begin

1. If A® T £ T then compute Z by the algorithm Invariant upper bound; put
T =T

2. Compute Z(n) = A" ® T;
3. If < A" @ 7 then 2% (A, X) :=T(n) else 2%(A, X) does not exist;
end

Theorem 5.8. The algorithm Greatest X-eigenvector correctly computes 2% (A, X)
in O(n?) arithmetic operations.

Proof. To determine a complexity of the algorithm, recall first that computing Z by
the algorithm Invariant upper bound in step 1 needs O(n?) operations. The number
of operations for computing x(n) is n O(n?) = O(n?). Thus, the complexity of the whole
algorithm is O(n?). O

5.2. Applications of the greatest X-eigenvector

n this section we will analyze conditions for matrices under which multi-processor inter-
action systems reach the greatest steady state with any starting vector belonging to an
interval vector X.
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The set of starting vectors from which a multi-processor interaction system reaches
an eigenvector (the greatest eigenvector) of A after a finite number of stages, is called
attraction set (strongly attraction set) of A, see [T, [19] ([I4, [15]). In general, attraction
set (strongly attraction set) contains the set of all eigenvectors, the set of all eigenvectors
belonging to X but it can be also as big as the whole space. Let us denote the sets
attr(A) and attr*(A) as follows

attr(A) = {x € B(n); O(4,z) NV (A) # 0},

attr*(A) = {z € B(n);z"(A) € O(A,z)}.

The set attr(A) (attr*(A)) allows us to characterize matrices for which an eigenvector
(the greatest eigenvector) is reached with any starting vector. It is easy to see that
x*(A) > ¢*(A) holds true and z*(A) can not be reached with a vector z € B(n),
xz < c*(A).

Let us denote the set {x € B(n); z < ¢*(A4)} by M(A).

Definition 5.9. A € B(n,n) is called strongly robust if attr*(A) = B(n) \ M (A).
Theorem 5.10. (Plavka and Szab6 [I4]) Let A € B(n,n) be a matrix. Then A is

strongly robust if and only if 2*(A4) = ¢*(A) and G(A((4)) is a strongly connected
digraph with period equal to 1.

The concepts of strong robustness has been studied in [14], equivalent conditions and
efficient algorithms for interval cases have been presented in [15].

Now we will consider the interval version of the strongly attraction set.

Definition 5.11. Let A, X be given. Then the strongly attraction set attr*(A4, X) is

defined as follows
attr* (4, X) = {z € B(n); 2" (4, X) € O(A,z)}.

Definition 5.12. Let A, X be given. A is called strongly X-robust if X C attr*(A4, X).

Lemma 5.13. If A is strongly X-robust then (Vz € X)[per(4,z) = 1].

Proof. Suppose that A is strongly X-robust and z € X is an arbitrary vector. Then
there is k € N such that z(k) = 2*(A, X) and we obtain the following

z(k)=2"(A4,X)=Az" (A, X)=Acz(k)=x(k+1)
and the assertion follows. O

Theorem 5.14. Let A € B(n,n) and X be given. Then A is strongly X-robust if and
onlyif A"@z=2"(4,X)=A"Q®T.
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Proof. Suppose that A € B(n,n) and X are given and A" @ z = 2*(4, X) = A" ®7.
Then for an arbitrary vector € X we get (by monotonicity of ®) the following

(A, X)=A"R2z<A"@x < A"®T=12"(4,X).
The converse implication is trivial by Lemma [5.2] and Lemma [5.3] O

Notice that according to the last theorem the complexity of a procedure for checking
strong X -robustness of a given matrix A is O(n®) consisting of computing z*(A4, X) in
O(n3) steps and each of vectors z(1),...,z(n),Z(1),...,Z(n) in O(n?) operations. Thus
whole procedure has the computational complexity equal to O(n?) +2n O(n?) = O(n?).
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