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Abstract. The problem of uniqueness of an entire or a meromorphic function when it
shares a value or a small function with its derivative became popular among the researchers
after the work of Rubel and Yang (1977). Several authors extended the problem to higher
order derivatives. Since a linear differential polynomial is a natural extension of a derivative,
in the paper we study the uniqueness of a meromorphic function that shares one small
function CM with a linear differential polynomial, and prove the following result: Let f
be a nonconstant meromorphic function and L a nonconstant linear differential polynomial
generated by f. Suppose that a = a(z) (# 0, 00) is a small function of f. If f—a and L —a
share 0 CM and

(k+ DN(r,00; f) + N(r, 0; f) + Ni(r,05 f') < NT(r, f') + S(r, )
for some real constant A € (0,1), then f —a = (1 + ¢/a)(L — a), where c is a constant and
1+c¢/a#0.
Keywords: meromorphic function; differential polynomial; small function; sharing
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1. INTRODUCTION, DEFINITIONS AND RESULTS

Let f, g be nonconstant meromorphic functions defined in the open complex
plane C. For a € CU {0} we say that f, g share the value a CM (counting
multiplicities) if f, g have the same a-points with the same multiplicities, and we say
that f, g share the value a IM (ignoring multiplicities) if f, g have the same a-points
but the multiplicities are not taken into account.
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We refer the reader to [6] for the standard notation and definitions of the value
distribution theory. However, in the following we explain some notation used in the

paper.
Definition 1.1. For a meromorphic function f and for a € C U {oo} and for
a positive integer k
(i) N(r,a; f) (N@(r,a; f)) denotes the counting function (reduced counting func-
tion) of those a-points of f whose multiplicities are not less than k;

(i) Ngy(r,a; f) (Ngy(r,a; f)) denotes the counting function (reduced counting func-
tion) of those a-points of f whose multiplicities are not greater than k;

_ k. __
(iil) Ng(r,a; f) denotes the sum N(r,a; f) + EQN(j(r,a; -
=

Clearly Ni(r,a; f) = N(r,a; f) and Ni(r,a; f) < kN(r,a; f).

Rubel-Yang [10], Mues-Steinmetz [9], Gundersen [5], Yang [12] and others consid-
ered the uniqueness problem of entire functions when their first and kth derivatives
share two values CM or IM.

Briick [4] considered the uniqueness problem of an entire function when it shares
a single value CM with its first derivative and proved the following theorem.

Theorem A ([4]). Let f be a nonconstant entire function. If f and f’ share the
value 1 CM and N (r,0; f') = S(r, f), then f — 1 = ¢(f' — 1), where ¢ is a nonzero

constant.
Yang [11] considered an entire function of finite order and proved the following

result.

Theorem B ([11]). Let f be a nonconstant entire function of finite order and let
a (# 0) be a finite constant. If f, f(*) share the value a CM, then f —a = c¢(f*) —a),
where c is a nonzero constant and k (> 1) is an integer.

Zhang [14] extended Theorem A to meromorphic functions and proved the follow-
ing results.

Theorem C ([14]). Let f be a nonconstant meromorphic function. If f and f’
share 1 CM and if

2N (r, 00 f) + 2N (r,0; ') < AT(r, f') + S(r, f)

for some constant A € (0,1), then f —1 = ¢(f’ — 1), where c is a nonzero constant.



Theorem D ([14]). Let f be a nonconstant meromorphic function. If f and f*)
share 1 CM and if

ON(r,00; f) + N(r,0; ) + N(r,0; f By < XT(r, fF)) + S(r, f#))

for some constant \ € (0,1), then f —1 = ¢(f*) —1), where c is a nonzero constant.

Let f be a nonconstant meromorphic function in C. A meromorphic function
a = a(z), defined in C, is called a small function of f if T'(r,a) = S(r, f), where
S(r, f) denotes any quantity satisfying S(r, f)/T(r,f) — 0 as r — oo, possibly
outside a set of finite linear measure.

Yu [13] considered the uniqueness problem of an entire function or a meromorphic
function when it shares one small function with its derivative. The next two theorems
are the results of Yu [13].

Theorem E ([13]). Let f be a nonconstant entire function and let a = a(z)
(£ 0,00) be a small function of f. If f —a and f*) — a share the value 0 CM and
5(0; f) > 3/4, then f = f*) where k is a positive integer.

Theorem F ([13]). Let f be a nonentire meromorphic function and a = a(z)
(# 0,00) a small function of f. If

(i) f and a have no common pole,
(ii) f —a and f®) — a share the value 0 CM,
(iii) 46(0; f) + 2(8 + k)O(o0; f) > 19+ 2k,

then f = f*), where k is a positive integer.

In 2004, improving Theorem F, Liu and Gu [8] proved the following theorem.

Theorem G ([8]). Let f be a nonconstant meromorphic function and a = a(z)
(# 0,00) a small function of f. If f —a and f*) — a share the value 0 CM, f*)
and a = a(z) do not have any common pole of the same multiplicity and 26(0; f) +
40(o0; f) > 5, then f = f*), where k is a positive integer.

Al-Khaladi [3] observed by considering f(z) = 1+ exp(e®) and a(z) = ¢*/(e* — 1)
that in Theorem A it is not possible to replace the value 1 by a small function.
Instead, he proved the following result.



Theorem H ([3]). Let f be a nonconstant entire function satisfying N(r,0; f') =
S(r, f) and let a = a(z) (# 0,00) be a small function of f. If f—a and f’ —a share
0 CM, then f —a = (1+ ¢/a)(f' — a), where 1 + c/a = €, c is a constant and 3 is
an entire function.

In 2005 Al-Khaladi [2] considered the general order derivative of an entire function
and proved the following result.

Theorem I ([2]). Let f be a nonconstant entire function satisfying N (r, 0; f(*)) =
S(r, f) and let a = a(z) (# 0,00) be a small function of f. If f —a and f*) —aq
share 0 CM, then f —a = (14 Py_1/a)(f*®) —a), where 1 + Py_1/a = e®, P, is
a polynomial of degree at most k — 1 and [ is an entire function.

Recently Al-Khaladi [1] extended Theorem I to meromorphic functions and proved

the following theorem.

Theorem J ([1]). Let f be a nonconstant meromorphic function and let a = a(z)
(#0,00) be a small function of f. If f —a and f*) — a share 0 CM and

(k+1)N(r,00; f) + (k + 1)N(r, 0; f®) < XT(r, fB)) 4 S(r, f )

for some constant \ € (0,1), then f —a = (1 + Py_1/a)(f* — a), where Py_, is
a polynomial of degree at most k — 1 and 1 4+ Py_1/a # 0.

For a nonconstant meromorphic function f we denote by L = L(f) a linear differ-
ential polynomial of the form

L(f) = arfY +aof@ + ...+ ap f¥,

where a1, as,...,ax (# 0) are constants.
In the paper we prove the following theorem, which involves the sharing of a small
function by f and L.

Theorem 1.1. Let f be a nonconstant meromorphic function such that L is
nonconstant. Suppose that a = a(z) (£ 0,00) is a small function of f. If f —a and
L — a share 0 CM and

(k + )N (r,00; f) + N(r, 0 f') + Ni(r, 05 f') < XT(r, f') + S(r, f')

for some real constant A € (0,1), then f —a = (14c¢/a)(L —a), where c is a constant
and 1+ c¢/a £ 0.



2. LEMMAS
In this section we present some necessary lemmas.

Lemma 2.1 ([6], page 55, Theorem 3.1). Let f be a nonconstant meromorphic
function. Then

T(r,L) < (k+1)T(r )+ S(r, f).

Lemma 2.2. Let f be a nonconstant meromorphic function such that L is non-
constant. Suppose that a = a(z) (# 0,00) is a small function of f. If f — a and
L — a share 0 IM, then

T(r, ) < (g + o+ 2) T L)+ S0, ) < {h+ Dk +2)+ TG, 1) + (1, ).

Proof. By Milloux’s basic result [6], page 57, Theorem 3.2, we get
T(r, ) < N(r,00; f) + N(r,0; f) + N(r,1; L) = No(r,0; L") + S(r, f),

where No(r,0;L’) is the counting function of those zeros of L’ which are not the
1-points of L.

Now N(r,0;f) — No(r,0; L") < (k + 1)N(r,0; f) and (k + 1)N(r,00; f) <
N(r,o0; L) < T(r,L). Therefore

(2.1) T(r,f) <T(r,L)+ N(r,1; L) + (k+ 1)N(r,0; f) + S(r, f)

< (%ﬂ +1)T(r, L) + (b + DN (r,0; ) + S0, /),

Since L(f —a) = L(f) — 'k aja), we have T(r, L(f — a)) = T(r, L) + S(r, f).

Jj=1
Now replacing f by f —a in (2.1) and noting that f — a and L — a share 0 IM we
get
1 —
T(r,f—a) < (k‘—-i-l + 1)T(7“7 LY+ (k+1)N(r,0; f —a) + S(r, f)
and so

(2.2) T(r, f) < (%H k4 2)T(, L)+ 5(r, )

By Lemma 2.1 we get
(2:3) T(r,L) < (k+1)T(r, ')+ S(r, f).

Now the lemma follows from (2.2) and (2.3). O



Lemma 2.3 ([6], page 47, Theorem 2.5). Let f be a nonconstant meromorphic
function and a1, as, a3 three distinct small functions of f. Then

T(r,f) < N(r,0; f —a1) + N(r,0; f —az) + N(r,0; f —a3z) + S(r, f).

Lemma 2.4 ([7]). Let f be a nonconstant meromorphic function and k a positive
integer. If f and f*) share 1 IM and f*) = (Af 4+ B)/(Cf + D), where A, B, C, D
are constants, then (f*) —1)/(f — 1) is a nonzero constant.

3. PROOF OF THEOREM 1.1

Proof. Let h=(f —a)/(L —a). Then f —a = h(L — a) and differentiating we
get

(3.1) [ —ad = (hL) — (ha)'.

We now consider the following cases.
Case I: Let o’ £ 0. We put

(hL)" _ (ha)'

(3.2) W= e

If zo is a zero of f' —a’ with a’(z0) # 0, 0o, then we get from (3.1) that W(z) = 0.
Let W # 0. Then

(3.3) N(r0;f —a') < N(r,0; W)+ S(r, f) <T(r, W)+ S(r, f)
=N W)+m(r,W)+ S(r,f) = N(r, W)+ S(r, f).

From (3.2) we get

(1) L (ha) a
(3.4) W= T e W

Let 21 be a pole of f with multiplicity p such that a(z1) # 0,00 and a’(z1) # 0.
Then 2 is a pole of hL with multiplicity p and a pole of L/ f’ with multiplicity k& — 1.
Hence 27 is a pole of W with multiplicity at most k.

Let 25 be a zero of f’ with multiplicity ¢ such that a(z3) # 0,00 and a’(22) # 0.
If g < k—1 and L(z2) # 0, then 2z is a pole of (hL)'/(RL) - L/f’ with multiplicity
g < k—1. Also, if ¢ <k —1 and 2z is a zero of L with multiplicity ¢ (> 1), then 2z
is a pole of (hL)'/(hL) - L/f" with multiplicity ¢ — (t —1) < g < k—1.
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If ¢ > k, then 2 is a pole of L/ f’ with multiplicity k¥ — 1 and a pole of (hL)"/(hL)
with multiplicity 1. Hence 25 is a pole of (hL)'/(hL) - L/ f' with multiplicity k.
Therefore from (3.4) we get

(3.5) N(r,W) < kN(r,00; f) + Ni(r,0; f') + S(r, f).
From (3.3) and (3.5) we obtain
(3.6) N(r,0; f" = a') <kN(r,00; f) + Ni(r,0; f') + S(r, ).

Since by Lemma 2.1 and Lemma 2.2, ' = a/(z) is a small function of f’ and
S(r, f) is interchangeable with S(r, ), we get by Lemma 2.3 and (3.6)

N(r,0; f' —a') + N(r,0; f') + N(r,00; f') + S(r, f)
(k+1)N(r,00; f) + N(r,0; f') + Ni(r, 0; f') + S(r, f),

which contradicts the hypothesis.
Therefore W = 0 and so by (3.1) and (3.2) we get (f' — a')(ha) = (f' —d')d’.
Since f' # a’, we have (ha)’ = o’ and so ha = a + ¢, where c is a constant. Hence

f—a=h(L—a)= (1+§)(L—a),

where 1+ ¢/a # 0.
Case II: Let ’ = 0 so that a is a constant. We now consider the following subcases.
Subcase (i): Let k > 2. From (3.1) we get

f%:mLy—aM:h{mfy—a%}

and so
(hL) h_’ 1

1
n o np Yh
We put F = f', G = (hL) /(hf') and b= ah'/h. Then

1 b
3.7 —=G - —=.
(3.7) . 7
Differentiating (3.7) we obtain
A A N



Eliminating 1/h from (3.7) and (3.8) we get
A , B
(3.9) = G+ GE’

where A=b-h'/h+b —b-F'/F.

First we suppose that G = 0. Then hL = d, a nonzero constant. Putting h =
(f —a)/(L—a) we have L(f — a) = d(L — a). This implies that f is an entire
function. Therefore, h is an entire function having no zero. We now put h = e,
where « is an entire function.

Now f =a+h(L —a) = a+d—ae* and L = de™®. Also we see that L =
arf® +asf@® + ...+ apf® = P(a/)e®, where P(a) is a differential polynomial
in o/. Therefore P(a/)e® = de~® and so P(a')e?® = d. This implies 27 (r,e%) =
T(r,P(a’)) = S(r,e%), a contradiction. Hence G # 0.

Next we suppose that A = 0. Then from (3.9) we get G'/G+h'/h = 0. Integrating
we obtain Gh = K, where K is a nonzero constant. Hence (hL)' = K f’ and again
integration yields hL = K f + M, where M is a constant. Since f —a = hL — ah, we
get

(3.10) (1—K)f =a(l—h)+ M.

If K =1, from (3.10) we see that h is a constant. Hence f —a = (14 ¢/a)(L — a),
where we put h = 1 + ¢/a for some constant ¢ such that 1+ ¢/a # 0.

Let K # 1. Then from (3.10) we see that h is nonconstant. Since h is entire,
(3.10) implies that f is also entire. Therefore h = (f —a)/(L — a) has no zero. So
we can put h = e, where 3 is an entire function. Hence from (3.10) we get

poatM  ae?

C1-K 1-K
and so

f M Ka+M 4 a
11 L=K++—= - :
(3.11) Y TS
Also
(3.12) L = alf(l) + a2f(2) o+ akf(k) — Q(ﬂ')eﬂ,

where Q(f’) is a differential polynomial in S’
Since L is nonconstant, we see that Ka + M # 0. Hence from (3.11) and (3.12)
we get

_ Ka+M a

.28 B
Q(B")e* = Tk 1k




This implies by the first fundamental theorem
2T (r, ") < T(r,¢”) + T(r,Q(8")) + O(1) = T(r,e”) + S(r,¢”),

a contradiction.

Finally we suppose that A # 0. Now m(r, A) < 2m(r,b) + m(r,b') + m(r,h’'/h) +
m(r,F'/F) = S(r, f). Since A = a(h//h)? + a(h'/h) — W' /h - F'/F, we see that
N(r,00; A) < 2N(r,00; f) + N(r,0; f'). Hence

(3.13) T(r, A) < 2N(r,00; f) + N(r,0; f') + S(r, f).
Now from (3.9) and (3.13) we get

m(r, %) + m(r, G+ G%/)

T(r,A) + S(r, f)

2N (r,00; f) + N(r,0; f') + S(r, £).

(3.14) m(r, %)

NN N

Since A # 0, it is clear that b £ 0. Let 23 be a zero of F' with multiplicity ¢
(> k+1). Then z3 is a zero of b = af'/(f —a) — aL’/(L — a) with multiplicity at
least ¢ — k. Hence

N(Hl(r, %) - kﬁ(k+1(r, %) < N(r,0;b)

and so
Nt (r %) < kNG r, %) + N(r,0;b)
< kN (s (n %) +T(r,b) + O(1)
— kN (. %) + N(r,b) + S(r, f)
< KN (. %) + N(r, 00 f) + S(r, f)
So
o5 D) (D)

< Ni(r, 0. ') + N(r,00: ) + (1 f)-
Adding (3.14) and (3.15) and using the first fundamental theorem we get
T(r, f') < 3N(r,00: f) + Ni(r, 05 f') + N(r,0: f') + S(r, f),

which is a contradiction with the hypothesis for &£ > 2.



Subcase (ii): Let k =1. We put ¢ = f/a and R = L/a. Then g and R share the

value 1 CM. Let ) , R" R
2 2
HZ(%_ng_(ﬁ_R—l)'

We first suppose that H # 0. Since g and R share 1 CM, we get
N(r,H) = N(r, H) < N(r,00; f) + N(r,0; f') = Na(r,a; f) + Noo(r, 05 f2),
where N, (r,0; f®?)) denotes the reduced counting function of those zeros of f()

which are not the zeros of (f —a)f’.

Since g and R share the value 1 CM, it is easy to see that

Nyy(r,a; f) = Nyy(r,1;9) < N(r,0;H) < T(r, H) + O(1) = N(r, H) + S(r, f)
<N(r,00; f) + N(r,0; f) = Na(r, a5 f) + No(r,0; fP) + S(r, f)

and so

(3.16)  N(r,a;f) = Nyy(r,a; f) + Na(r,a; f)
< N(r,00; ) + N(r,05 f') + Nou(r, 0, f2) + S(r, f).

Now by the second fundamental theorem and (3.16) we get in view of the fact that
L —a and f — a share 0 CM:

T(r, f'Y=T(r, L)+ O(1)
< N(r,00; L) + N(r,0; L) + N(r,a; L) — N.(r,0; f?) + S(r, L)
= N(r, 00, f) + N(r,0: f') + N(r, a; f) = Nu(r,0; /%) + S(r, f')
< 2N (7, 005 f) + N (r,0; f') + Ni(r, 0; f) + S(r, f),

a contradiction with the hypothesis.

Therefore H = 0 and so integration yields R = (Ag + B)/(Cg + D), where A,
B, C, D are constants. Hence by Lemma 2.4 we get (g —1)/(R — 1) is a nonzero
constant. So we can put f—a = (14c¢/a)(L—a), where ¢ is a constant and 14c/a # 0.
This proves the theorem. O

10



1]
2]
3]
[4]
[5]
[6]
[7]
8]
[9]

[10]

[11]
[12]

[13]

[14]

References

A. H. H. Al-Khaladi: On meromorphic functions that share one small function with their
kth derivative. Result. Math. 57 (2010), 313-318.

A. H. H. Al-Khaladi: On entire functions which share one small function CM with their
kth derivative. Result. Math. 47 (2005), 1-5.

A. H. H. Al-Khaladi: On entire functions which share one small function CM with their
first derivative. Kodai Math. J. 27 (2004), 201-205.

R. Briick: On entire functions which share one value CM with their first derivative.
Result. Math. 80 (1996), 21-24.

G. G. Gundersen: Meromorphic functions that share finite values with their derivative.
J.Math. Anal. Appl. 75 (1980), 441-446.

W. K. Hayman: Meromorphic Functions. Oxford Mathematical Monographs 14, Claren-
don Press, Oxford, 1964.

I. Lahiri, A. Sarkar: Uniqueness of a meromorphic function and its derivative. JIPAM,
J.Inequal. Pure Appl. Math. (electronic only) 5 (2004), Article No. 20, 9 pages.

L. Liu, Y. Gu: Uniqueness of meromorphic functions that share one small function with
their derivatives. Kodai Math. J. 27 (2004), 272-279.

E. Mues, N. Steinmetz: Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen.
Manuscr. Math. 29 (1979), 195-206. (In German.)

L. A. Rubel, C. C. Yang: Values shared by an entire function and its derivative. Complex
Anal., Proc. Conf., Univ. Lexington, 1976 (J.D.Buckholtz et al., eds.). Lect. Notes
Math. 599, Springer, Berlin, 1977, pp. 101-103.

L.-Z. Yang: Solution of a differential equation and its applications. Kodai Math. J. 22
(1999), 458-464.

L.-Z. Yang: Entire functions that share finite values with their derivatives. Bull. Aust.
Math. Soc. 41 (1990), 337-342.

K.-W. Yu: On entire and meromorphic functions that share small functions with their
derivatives. JIPAM, J.Inequal. Pure Appl. Math. (electronic only) 4 (2003), Article
No. 21, 7 pages.

Q. C. Zhang: The uniqueness of meromorphic functions with their derivatives. Kodai
Math. J. 21 (1998), 179-184.

Authors’ addresses:  Indrajit Lahiri, Department of Mathematics, University of

Kalyani, Block-C, University Area, Kalyani-741235, Nadia, West Bengal, India, e-mail:
ilahiri@hotmail.com; Amit Sarkar, Ramnagar High School, P.O.-Kumari Ramnagar,
Ramnagar-741502, Nadia, West Bengal, India, e-mail: amit83sarkar@gmail.com.

11



		webmaster@dml.cz
	2020-07-01T19:12:40+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




