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Abstract. The research on the robust principal component analysis has been attracting
much attention recently. Generally, the model assumes sparse noise and characterizes the
error term by the ℓ1-norm. However, the sparse noise has clustering effect in practice so
using a certain ℓp-norm simply is not appropriate for modeling. In this paper, we propose
a novel method based on sparse Bayesian learning principles and Markov random fields.
The method is proved to be very effective for low-rank matrix recovery and contiguous
outliers detection, by enforcing the low-rank constraint in a matrix factorization formulation
and incorporating the contiguity prior as a sparsity constraint. The experiments on both
synthetic data and some practical computer vision applications show that the novel method
proposed in this paper is competitive when compared with other state-of-the-art methods.
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1. Introduction

As a classic method for data analysis, the principal component analysis (PCA)

has a wide range of applications in science and engineering [11]. Motivated by recent

advances in low-rank matrix analysis [5], [6], [20], the so-called robust principal com-

ponent analysis (RPCA) [22] has been proposed to decompose a given data matrix

into a low-rank matrix and a sparse matrix. It can be mathematically described as

the following convex optimization problem:

(1.1) min
L,E

(‖L‖∗ + λ‖E‖1) s.t. Y = L+ E,

This work was partially supported by the National Natural Science Foundation of China
(Grant No. 61379014) and Tianjin Research Program of Application Foundation and
Advanced Technology (15JCYBJC21700).
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where Y ∈ R
m×n, L ∈ R

m×n, and E ∈ R
m×n denote the original data matrix, the

low-rank component, and the sparse component, respectively. The symbol ‖L‖∗ =∑
r
σr(L) denotes the nuclear norm of L, σr(L) (r = 1, 2, . . . ,min(m,n)) is the rth

singular value of L, ‖E‖1 =
∑
ij

|eij | denotes the ℓ1-norm of E and eij is the element

in the ith row and jth column of E.

Under the assumptions of certain noise sparsity and rank upper-bound, it has been

proved that one can exactly recover L and E from Y with overwhelming probabil-

ity [4]. RPCA has been successfully applied to many machine learning and computer

vision problems, such as video surveillance [22], face modeling [19], and subspace

clustering [17].

In practice, however, measurement noise exists everywhere within the matrix and

sometimes this dense (distributed) noise contribution cannot be ignored. Thus,

Zhou et al. [25] modified (1.1) to include the additive noise of this type, that is,

(1.2) min
L,E

(1
2
‖Y − L− E‖2F + λ1‖L‖∗ + λ2‖E‖1

)
s.t. Y = L+ E +N,

where N ∈ R
m×n denotes the dense noise, which has generally small magnitude but

dense support. The norm ‖Y −L−E‖F = ‖N‖F =
√∑

ij n
2
ij is the Frobenius norm

of N and nij is the element in the i
th row and jth column of N .

This paper presents a novel RPCA method based on sparse Bayesian learning

(SBL) principles and Markov random fields (MRFs), in which the low-rank matrix

and outlier support are estimated simultaneously. Starting from the low-rank fac-

torization of the unknown matrix, we employ independent sparsity priors on the

individual factors with a common sparsity profile which favors low-rank solutions.

Subsequently, we use the variational inference method to infer the posterior. In other

methods of RPCA, no prior knowledge on the spatial distribution of outliers has been

considered. Since the outlier support is modeled explicitly in our formulation, we

can naturally incorporate such contiguity prior using MRFs. The proposed method

gives competitive experimental results when compared with other state-of-the-art

methods.

2. Related work

Early attempts to solve the RPCA problem replace the ℓ2-norm error by some

robust losses. De la Torre & Black [7] utilized the Geman-McClure function in robust

statistics to improve the robustness of PCA; Ding et al. [9] used a smoothed R1-norm

to this end; Kwak [13] introduced the ℓ1-norm variance and designed an efficient
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algorithm to optimize it. These methods, however, are sensitive to initialization,

and only perform well on Laplacian-like noise.

In recent years, low-rank matrix analysis methods have been rapidly developed.

Wright et al. [22] initially formulated the RPCA model as shown in (1.1). Some

variants have also been proposed, e.g., Xu et al. [23] used the ℓ12-norm to handle

data corrupted by column. The iterative thresholding method [4] was proposed to

solve the RPCA model but it converges very slow. To speed up the computation, Lin

et al. [15], [16] proposed the accelerated proximal gradient (APG) and the augmented

Lagrangian multiplier (ALM) methods. ALM leads to state-of-the-art performance

in terms of both speed and accuracy.

Besides, Bayesian approaches to RPCA have also been investigated. Ding et al. [8]

modeled the singular values of L and the entries of E with beta-Bernoulli priors,

using a Markov chain Monte Carlo (MCMC) sampling scheme to perform inference

(BRPCA). This method needs many sampling iterations to converge to a stationary

distribution, if at all, or may even get stuck at local optima. Babacan et al. [1]

adopted the automatic relevance determination (ARD) approach to model both L

and E, and utilized the variational Bayes method to do inference (VBLR). This

method is more computationally efficient. Zhao et al. [24] proposed a generative

RPCA model under the Bayesian framework by modeling data noise as a mixture

of Gaussian (MoG). Although MoG is able to fit a wide range of noises such as

Laplacian, Gaussian, sparse noise, and any combinations of them, it cannot effectively

model the dynamic background.

One problem closely related to RPCA is the low-rank matrix factorization

(LRMF). The principal component pursuit (PCP) [4] and the stable principal

component pursuit (SPCP) [25] utilized the nuclear norm for normalization. By us-

ing the nuclear norm, many extensions have been proposed subsequently, e.g., Zhou,

et al. [26] made the outliers contiguous1 using a graph cut algorithm (DECOLOR).

Wang et al. [21] proposed a full Bayesian approach to the robust matrix factorization

(BRMF). Besides the basic model, they also proposed an extension assuming that

the outliers exhibit spatial and temporal proximity (MBRMF). But all of them are

not robust to the scene of dynamic background in practice.

The rest of this paper is organized as follows. The Bayesian mixture model is pro-

posed in Section 3, followed by the algorithm based on SBL and MRFs in Section 4.

We present an analysis of the proposed method and empirical results with synthetic

and real data in Section 5, and finally draw a conclusion in Section 6.

1 Contiguous outliers refer to foreground objects or the sparse matrix here.
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3. Bayesian mixture model

3.1. Notations. Three norms of a matrix are used throughout this paper. The

symbol ‖X‖1 =
∑

ij |Xij | denotes the ℓ1-norm, ‖X‖F =
√∑

ij X
2
ij is the Frobenius

norm, ‖X‖∗ =
r∑

i=1

σi means the nuclear norm, where σi is the i
th singular value of

the matrix X .

We assume that the observed data matrix Y ∈ R
m×n is the superposition of three

parts: low-rank component L ∈ R
m×n, sparse component E ∈ R

m×n, and noise

term N ∈ R
m×n. E = Y ◦ S, where S ∈ {0, 1}m×n is a binary matrix denoting

the foreground support, and ◦ denotes the Hadamard product. We use PS(Y ) to

represent the orthogonal projection of a matrix Y onto the linear space supported

by S:

(3.1) Sij =

{
0 if Yij is background,

1 if Yij is foreground,
PS(Y )(i, j) =

{
0 if Sij = 0,

Yij if Sij = 1,

where PS⊥(Y ) is its complementary projection, i.e., PS(Y ) + PS⊥(Y ) = Y .

3.2. Low-rank component. Our modeling is based on the low-rank parametriza-

tion of the unknown matrix L (rank(L) = r), given by

(3.2) L = UV ′ =

k∑

j=1

u·jv
′
·j ,

where r 6 k 6 min(m,n). U and V are m × k and n × k matrices, respectively.

Besides, we use ui· and u·j to denote the i
th row and the jth column of U , respectively.

Since a low-rank estimate of L is sought, most columns in U and V are set equal

to zero to achieve the column sparsity. To enforce this constraint, we associate the

columns of U and V with Gaussian priors of precisions αj , that is,

(3.3) u·j | α ∼ N (u·j | 0, α−1
j Im),

v·j | α ∼ N (v·j | 0, α−1
j In),

where Im denotes the m×m identity matrix.

In addition to (3.3), we incorporate the conjugate Gamma hyperprior on the pre-

cisions αj

(3.4) αj ∼ Gamma
(
a,

1

b

)
.
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The parameters a and b are regarded as deterministic and they are set to very small

values (e.g., 10−6) to obtain broad hyperpriors.

3.3. Noise component. We follow the standard assumption and incorporate

white Gaussian noise in the observation, such that

(3.5) nij | β ∼ N (nij | 0, β−1),

with β = 1/ε denoting the noise precision. The noise precision β is assigned the

noninformative Jeffrey’s prior

(3.6) p(β) = β−1,

which has been applied successfully in variable selection [1].

3.4. Formulation. To make the problem well-posed, we have the following mod-

els to describe it:

Bayesian model: Given observation Y = PS⊥(L+N), our objective is to estimate

the underlying background2 L as well as the foreground3 support S. The cardinality

of the set S⊥ is pmn, with p the fraction of observed coefficients. According to the

probabilistic interpretation above, the joint distribution is given by

(3.7) p(Y, U, V, α, β) = p(U | α)p(V | α)p(Y | U, V, β)p(α)p(β).

Equality (3.7) is abbreviated to p(Y,Θ) = p(Y | Θ)p(Θ), where Θ = {U, V, α, β}

represents all model parameters.

Ising model: The foreground is defined as any object that moves differently from

the background and that can be detected as outlier in the low-rank representation.

In other words, the sparse noise has a clustering effect. Thus, we prefer to detect

contiguous regions. The binary states of entries in foreground support S can be

naturally modeled by MRFs. Consider a graph G = (V , E), where V is the set of

vertices denoting all m×n pixels in the sequence and E is the set of edges connecting

spatially or temporally neighboring pixels. Then, the energy of S is given by the Ising

model [14]

(3.8)
∑

ij∈V

λijSij +
∑

(ij,xy)∈E

λij,xy|Sij − Sxy|.

2 Background refers to the background scene that needs to be reconstructed.
3 Foreground refers to the foreground objects that we intend to detect or track.
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For simplicity, we set λij = ξ and λij,xy = η, where ξ > 0 and η > 0 are positive

constants penalizing Sij = 1 and |Sij − Sxy|(ij,xy)∈E , respectively.

Signal model: The signal model [26] describes the formation of Y , for given L

and S. As we have assumed that nij ∼ N (0, β−1), nij should be the best fitting to

zero in the least-squares sense, when Sij = 0. Besides, in the other regions where

Sij = 1, the background scene is occluded by the foreground. Thus, Sij is not

constrained.

Combining the three models above, we propose a mixture model Bayesian-Ising-

Signal (BIS) to estimate L and S:

(3.9) min
L,S

(1
2
‖PS⊥(Y − L)‖2F + ξ‖S‖1 + η‖A vec(S)‖1

)

s.t. Y = PS⊥(L+N), L = UV ′, p(Y,Θ) = p(Y |Θ)p(Θ).

Here, A is the node-edge incidence matrix of G and vec(S) makes the matrix S

vectorized.

3.5. Relation to the RPCA. As discussed in [25], SPCP tries to find the de-

composition by minimizing the following energy:

(3.10) min
L,E

(1
2
‖Y − L− E‖2F + λ1rank(L) + λ2‖E‖0

)
.

We must have Eij = Yij − Lij to minimize (3.10) when Eij 6= 0. Noticing that

‖E‖0 = ‖S‖1 and replacing rank(L) with ‖L‖∗, (3.10) has the same minimizer with

the following energy:

(3.11) min
L,S

(1
2
‖PS⊥(Y − L)‖2F + λ1‖L‖∗ + λ2‖S‖1

)
.

Lemma 3.1. For any matrix L ∈ R
m×n, the following holds [18]:

(3.12) ‖L‖∗ = argmin
U,V,L=UV ′

1

2
(‖U‖2F + ‖V ‖2F ).

If rank(L) = k 6 min(m,n), then the minimum above is attained at a factor decom-

position L = Um×kV
′
n×k.
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Theorem 3.2. The solution space of (3.11) is contained in that of (3.9) given the

outlier support Ŝ.

P r o o f. By treating U , V as model parameters and α, β as hyperparameters with

fixed values, we use maximum a posterior (MAP) estimation to compute U and V .

From the Bayes’ rule, (3.9) can be written as

(3.13) log p(U, V | Y, α, β) = log p(Y, U, V, α, β)− log p(Y, α, β)

= −
β

2
‖PŜ⊥(Y − UV ′)‖2F −

α

2
(‖U‖2F + ‖V ‖2F ) + C,

where C is a constant term independent of U and V . Obviously, the problem of max-

imizing log p(U, V |Y, α, β) w.r.t. U and V is equivalent to the following minimization

problem:

(3.14) min
U,V

(1
2
‖PŜ⊥(Y − UV ′)‖2F +

λ

2
(‖U‖2F + ‖V ‖2F )

)
,

where λ = α/β.

Suppose L is a solution to (3.11) with rank(L) = k and λ = λ1, we can find Um×k

and Vn×k satisfying L = UV ′. Then we have

(3.15) argmin
U,V

(1
2
‖PŜ⊥(Y − UV ′)‖2F +

λ

2
(‖U‖2F + ‖V ‖2F )

)

= argmin
U,V

(1
2
‖PŜ⊥(Y − UV ′)‖2F + λ1‖UV ′‖∗

)

= argmin
L,rank(L)=k

(1
2
‖PŜ⊥(Y − L)‖2F + λ1‖L‖∗

)
.

�

3.6. Relation to the truncated SVD. By considering the SVD, any matrix of

rank k can be decomposed in the form

(3.16) L = Ũ S̃Ṽ ′ =

k∑

i=1

ũiσiṽ
′
i,

where Ũ and Ṽ are m × k and n × k matrices with orthogonal columns, and S̃ is

a k × k diagonal matrix of the nonzero singular values.

According to the truncated SVD [10], the low-rank matrix L is approximated by

a lower-rank matrix

(3.17) L =

s∑

i=1

ũiσiṽ
T
i ,
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where s < k = rankL. The problem of (3.17) is equivalent to the following mini-

mization problem:

(3.18) min
L

‖Y − L‖F s.t. rank(L) 6 s,

where ‖·‖F denotes the Frobenius norm. However, (3.18) is NP-hard and no known

polynomial-time algorithms exist. A popular technique is to utilize convex relaxation

based on the nuclear norm [4]. To make the optimization tractable, (3.18) is relaxed

by replacing rank(L) with ‖L‖∗, given by

(3.19) min
L

(1
2
‖Y − L‖2F + λ1‖L‖∗

)
s.t. Y = L+N,

where ‖·‖∗ means the nuclear norm.

Furthermore, the sparse matrix E is not included in this model. We can derive

the form of model (1.2) by adding the term ‖E‖1 to (3.19).

4. Algorithm

The objective function defined in (3.9) is convex with continuous and discrete

variables. Hence, we adopt an alternating algorithm that separates the energy min-

imization over L and S into two steps. L-step is a low-rank matrix estimation

problem, and S-step is a combinatorial optimization problem. It turns out that the

optimal solutions of L-step and S-step can be computed efficiently.

4.1. Estimation of the low-rank matrix L.

4.1.1. Variational Bayesian inference. In this work, we use the variational

Bayes (VB) [2] method to infer the posterior approximation for each latent variable.

Let Θ be the vector of all latent variables such that Θ = {U, V, α, β}. VB seeks

an approximation distribution q(Θ) to the true posterior p(Θ | Y ) by solving the

following variational optimization:

(4.1) min
q∈C

KL(q ‖ p) = −

∫
q(Θ) ln

p(Θ | Y )

q(Θ)
dΘ,

where KL(q ‖ p) denotes KL divergence between q(Θ) and p(Θ | Y ), and C denotes

the set of probability densities with certain restrictions to make the minimization

tractable. Taking q(Θ) =
∏
k

q(Θk), the closed-form solution to q(Θk), with other

factors fixed, can be attained by:

(4.2) q∗(Θk) =
exp{〈ln p(Θ, Y )〉Θ\Θk

}∫
exp{〈ln p(Θ, Y )〉Θ\Θk

} dΘk
,
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where 〈·〉 denotes the expectation, and Θ\Θk denotes the set of Θ with Θk removed.

Problem (4.1) can be solved by alternatively calculating (4.2).

4.1.2. Inference for Bayesian model. Estimation of factors U and V . With

some algebra, it follows from (4.2) that the approximation to the posterior distribu-

tion of U and V decomposes as independent distributions of their rows. By combining

the priors in (3.3), the posterior density of ui· is given by

(4.3) q(ui·) = N (ui· | 〈ui·〉,Σ
u
i )

with mean and covariance

(4.4) 〈ui·〉 = 〈β〉yi·〈Vi〉Σ
u
i ,

Σu
i = (〈β〉〈V ′

i Vi〉+ Λ)−1,

where Λ = diag(〈α〉) and the matrix Vi contains only the j
th rows of V for (i, j) ∈ S⊥,

such that

(4.5) 〈V ′
i Vi〉 =

∑

j : (i,j)∈S⊥

〈v′j·vj·〉 =
∑

j : (i,j)∈S⊥

(〈v′j·〉〈vj·〉+Σv
j )

with Σv
j denoting the posterior covariance of the j

th row of V . Additionally, the row

vector yi· contains the observed entries in the i
th row of Y . Similarly, the posterior

approximation of vj· is given by a normal distribution

(4.6) q(vj·) = N (vj· | 〈vj·〉,Σ
v
j )

with prameters

(4.7) 〈vj·〉 = 〈β〉y′·j〈Uj〉Σ
v
j ,

Σv
j = (〈β〉〈U ′

jUj〉+ Λ)−1,

where y·j contains the observed entries in the j
th column of Y , and Uj contains the

ith row of U for (i, j) ∈ S⊥. It can be seen that the covariances Σv
i of the estimate

of V are incorporated in the estimation of U (and vice versa).

Estimation of hyperparameters α. By combining p(U |α), p(V |α), and p(αi), the

posterior density of αi becomes a Gamma distribution

(4.8) q(αi) ∝ α
a−1+(m+n)/2
i exp

(
−αi

2b+ 〈u′
·iu·i〉+ 〈v′·iv·i〉

2

)
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with mean

(4.9) 〈αi〉 =
2a+m+ n

2b+ 〈u′
·iu·i〉+ 〈v′·iv·i〉

.

The required expectations are given by

〈u′
·iu·i〉 = 〈u·i〉

′〈u·i〉+
∑

j

(Σu
j )ii,(4.10)

〈v′·iv·i〉 = 〈v·i〉
′〈v·i〉+

∑

j

(Σv
j )ii.(4.11)

Estimation of noise precision β. Finally, the posterior approximation of the noise

precision assumes a Gamma distribution with mean

(4.12) 〈β〉 =
pmn

〈‖Y − PS⊥(UV ′)‖2F 〉
,

where

(4.13) 〈‖Y − PS⊥(UV ′)‖2F 〉 = ‖Y − PS⊥(〈U〉〈V 〉′)‖2F

+
∑

j

(
Tr(〈ui·〉

′〈ui·〉Σ
v
j ) + Tr

(
〈vj·〉

′〈vj·〉
∑

i

Σu
i

)

+Tr

(∑

i

Σu
i Σ

v
j

))
, (i, j) ∈ S⊥.

In summary, the L-step proceeds by first estimating the rows of U and V using (4.4)

and (4.7), respectively, followed by the estimation of the precision αi using (4.9), and

the noise precision β using (4.12).

4.2. Estimation of the outlier support S. Note that Sij ∈ {0, 1}, the energy

in (3.9) can be rewritten over S for the low-rank matrix L̂ as follows:

(4.14)
1

2
‖PS⊥(Y − L̂)‖2F + ξ‖S‖1 + η‖A vec(S)‖1

=
1

2

∑

ij

(Yij − L̂ij)
2(1− Sij) + ξ

∑

ij

Sij + η‖A vec(S)‖1

=
∑

ij

(
ξ −

1

2
(Yij − L̂ij)

2
)
Sij + η‖A vec(S)‖1 + C,

where C = 1
2

∑
ij

(Yij − L̂ij)
2 is a constant when L̂ is fixed. The energy above is in

the standard form of the first-order MRFs with binary labels, which can be solved

exactly using graph cuts [3], [12].
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All steps of BIS are summarized in Algorithm 1.

Algorithm 1: BIS algorithm for RPCA

1. Input: Y ∈ R
m×n

2. Initialize: L̂, Ŝ, Û , V̂ , α, β randomly

3. repeat

4. repeat

5. L-step: L̂ = argmin
L

1
2‖P

⊥
Ŝ
(Y − L)‖2F

6. until convergence

7. S-step:

8. Ŝ = argmin
S

1
2‖PS⊥(Y − L̂)‖2F + ξ‖S‖1 + η‖A vec(S)‖1

9. until convergence

10. Ê = Y ◦ Ŝ

11. Output: L̂, Ê, Ŝ

4.3. Initialization and parameter tuning. Although randomly initializing the

matrix U and V generally provided satisfactory results, faster convergence and better

reconstruction performance can be achieved by carefully selecting the initial values.

During the implementation, we calculate the SVD of the matrix Y = USV ′ and

set U0 = US
1

2 and V0 = S
1

2 V ′. With this choice, the algorithm is initialized with

a full-rank matrix. The empirical results show negligible difference in performance

if a reasonable initial rank (larger than the true rank) is chosen, whereas the com-

putational complexity can be significantly reduced.

The parameter ξ in (3.9) controls the sparsity of the outlier support. From (4.14),

it can be seen that Ŝij is more likely to be 1 if
1
2 (Yij − L̂ij)

2 > ξ. Thus the choice

of ξ should depend on the noise level in images. Typically we set ξ = 4.5σ̂2, where

σ̂2 is estimated online by the variance of Yij − L̂ij . Since the estimation of L̂ and

σ̂ is biased at the beginning, we propose to start our algorithm with a relatively

large ξ, and then reduce ξ by a factor ε = 0.5 after each iteration until ξ = 4.5σ̂2.

In other words, the proposed algorithm here tolerates more error in model fitting

at the beginning, since the model itself is not accurate enough. With the model

estimation getting better and better, we decrease the threshold and declare more

and more outliers. In Section 5.1.3 it can be found that our method performs stably

when η ∈ [0.5ξ, 2.5ξ]. In the experiments, we set η = ξ for simulation and choose

optimal η for real sequences.

4.4. Convergence and computational complexity. With the properties of the

variational Bayes methods, the algorithm is guaranteed to converge to a local mini-

mum of the variational bound [2]. The complexity of the algorithm is O(mk3 +nk3)
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per iteration, where k is equal to the estimated rank at each iteration. For fixed

parameters, we also minimize a single lower-bound energy in each step. Therefore,

the algorithm must converge to a local minimum. For adaptive parameter tuning,

our strategy guarantees that the coefficients (ξ, η) keep decreasing for each change.

Thus, the energy in (3.9) decreases monotonically with the algorithm running.

5. Experiments

5.1. Simulation. In this section, we first demonstrate the performance of the

proposed method with some existing algorithms based on simulated data. The ob-

jective of this task is to recover background and estimate outlier entries at the same

time.

We generate the observed matrix Y by adding a foreground occlusion with support

S0 to a background matrix L0. The background matrix L0 with rank r is generated

as L0 = UV ′, where U and V are m× r and n× r matrices randomly sampled from

a standard normal distribution N (0, 1). We choose m = 100, n = 50 and r = 5 for

all experiments. Then, an object with width W = 40 is superposed on each column

of L0 and shifted downwards for 1 pixel per column. The intensity of this object is

independently sampled from a uniform distribution U(−c, c), where c is chosen to

be the largest magnitude of entries in L0. Moreover, i.i.d. Gaussian noise is added

to the original data with signal noise ratio (SNR)=10(dB).

We measure the accuracy of low-rank recovery by calculating the difference be-

tween L̂ and L0 for quantitative evaluation. The root mean square error (RMSE) is

used to measure the difference:

(5.1) RMSE =
‖L̂− L0‖F
‖L0‖F

.

Furthermore, we measure the accuracy of outlier detection by comparing Ŝ with S0.

F -measure that combines precision and recall is used to evaluate the results:

(5.2) F -measure = 2
precision · recall

precision + recall
,

where

(5.3) precision =
TP

TP + FP
, recall =

TP

TP + FN
,

where TP , FP , TN , and FN are the numbers of true positives, false positives, true

negatives, and false negatives, respectively. The higher the F -measure is, the better

the detection accuracy is.
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5.1.1. Comparison with state-of-the-art. The results obtained from different

methods are shown in Figure 1. BIS provides competitive performance in terms of

low-rank matrix recovery, which is followed by DECOLOR, PCP and ALM. As far

as outlier detection is concerned, BIS and DECOLOR obtain the best masks, not

only visually but also quantitatively, and other methods except BRPCA and VBLR

give reasonable results. BRPCA and VBLR totally fail in this task. Although PCP,

MBRMF and ALM perform well in detecting the outliers, they fail to recover the

low-rank matrix well. Quantitative results are shown in Table 1. It can be seen

that BIS outperforms other methods for both low-rank matrix recovery and outlier

detection.

Truth PCP DECOLOR MBRMF ALM BRPCA VBLR MoG BIS

Figure 1. Numerical experiments results. The underlying background images L0 and the
foreground support S0 are shown in Column 1. The corresponding results by
8 methods are presented from Column 2 to Column 9. The top panel is the
estimated background and the bottom is the foreground mask.

Methods PCP DECOLOR MBRMF ALM BRPCA VBLR MoG BIS

RMSE 0.578 0.252 0.742 0.579 0.940 0.999 0.879 0.069
F -measure 0.797 0.996 0.783 0.794 0.495 0.682 0.688 0.999

Table 1. Comparison of different methods in the numerical experiment. The first row shows
the recovery results based on RMSE and the second row shows the outlier detection
results based on the F -measure.

5.1.2. Quantitative evaluation. We perform random experiments with differ-

ent true rank, object width W and SNR. RMSE, F -measure and estimated rank as

functions of the true rank are shown in Figure 2(a), (b), (c). BIS gives the best re-

sult on the aspect of low-rank matrix recovery, which is followed by DECOLOR and

PCP. With respect to outlier detection, BIS and DECOLOR provide more accurate

estimates than other methods, and all other methods except for BRPCA give rea-

sonable results. Although ALM is a very attractive optimization-based method due

to its recovery performance and fast convergence, it does not estimate the correct

rank in all cases. BIS correctly estimates the unknown rank and the sparsity level

where r 6 15 (under the condition of low-rank).
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From Figure 2(d), it can be seen that BIS keeps effective and stable asW increases

with r = 5 and SNR = 10. Moreover, the accuracy of low-rank matrix recovery drops

obviously when W > 40. The reason is that some background pixels are always

occluded when the foreground is too large, so they cannot be recovered even when

the foreground can be detected accurately.
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Figure 2. Quantitative evaluation. Top row: RMSE, F -measure and estimated rank as
functions of true rank, bottom row: RMSE and F -measure as functions of W ,
SNR and ω.

RMSE and F-measure as functions of SNR show the results under different noise

levels in Figure 2(e). As SNR increases with r = 5 and W = 40, the performance of

BIS keeps less affected, which demonstrates the robustness of our method.

5.1.3. Effect of the parameter η. Figure 2(f) demonstrates the effect of the

parameter η. It controls the strength of interaction between neighboring pixels.

It can be seen that the performance of our method keeps very stable when η ∈

[0.5ξ, 2.5ξ].
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5.2. Background modeling. Background modeling, subtracting background

from video sequences captured by a static camera, can be modeled as a low-rank

matrix analysis problem. Four commonly utilized video sequences, namely an in-

door scene (Hall), an outdoor scene (Pedestrian) and two dynamic background scenes

(Airport and WaterSurface), were adopted in our experiment. We compare the BIS

with other competing methods, namely PCP, DECOLOR, MBRMF, ALM, BRPCA,

VBLR and MoG. The last frame of each sequence and results are shown in Figure 3.

PCP DECOLOR MBRMF ALM BRPCA VBLR MoG BIS

Figure 3. Four subsequences of surveillance videos. The corresponding results by 8 methods
are presented from Column 1 to Column 8. The top panel is the estimated
background and the bottom is the detected outliers.

It can be seen that all the competing methods can extract the background from

videos with slight difference in visualization. The method proposed in this paper,

however, can extract more elaborate background and foreground information. More

specifically, our method can subtract the dynamic background (Airport and Water-

Surface) and remove the foreground noise (all subsequences).
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5.3. Face modeling. This experiment aims to test the effectiveness of BIS in

face modeling applications. The second subset of the Extended Yale B database,

consisting of 64 faces of one subject with size 192 × 168, was used to generate the

data matrix. The reconstructed faces by all methods are compared in Figure 4.

Original faces PCP DECOLOR MBRMF ALM BRPCA VBLR MoG BIS

Figure 4. From left to right: original faces, reconstructed faces and extracted noise by
8 methods. The heat-map images (blue = dark pixels, red = bright pixels) are
better seen in the electronic version by zooming on a computer screen.

The proposed method, as well as the other competing methods, is able to remove

the cast shadows and saturations in faces. BIS and BRPCA perform better on faces

with a large region. But BRPCA has not completely separated the reconstructed

face and noise with a small region. Such face images contain both significant cast

shadow and saturations noises, which correspond to the highly dark and bright areas

in the face, and camera/red noise which is much amplified in the dark areas. It is

very interesting that the proposed method is capable of accurately extracting these

two kinds of noise. The better noise fitting capability of the proposed method thus

leads to better face reconstruction performance.
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6. Conclusion

We proposed a novel RPCA method based on sparse Bayesian learning principles

and Markov random fields. Starting from the low-rank factorization of the unknown

matrix, we enforce a common sparsity profile on its underlying components using

a probabilistic formulation. The sparse component is modeled by incorporating

the contiguity prior as a sparsity constraint and exactly solved using graph cuts.

Moreover, we modeled the remaining unknown variables and observations within

the hierarchical Bayesian framework and developed inference methods based on the

variational inference method. The effectiveness of our method was demonstrated

by synthetic and real data. The proposed method outperforms previous methods

in terms of accurately recovering the low-rank structure and detecting contiguous

outliers from the observed data.
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