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PSEUDOSYMMETRIC AND WEYL-PSEUDOSYMMETRIC

(κ, µ)-CONTACT METRIC MANIFOLDS

N. Malekzadeh, E. Abedi, and U.C. De

Abstract. In this paper we classify pseudosymmetric and Ricci-pseudo-
symmetric (κ, µ)-contact metric manifolds in the sense of Deszcz. Next we
characterize Weyl-pseudosymmetric (κ, µ)-contact metric manifolds.

1. Introduction

Chaki [5] and Deszcz [11] introduced two different concept of a pseudosym-
metric manifold. In both senses various properties of pseudosymmetric mani-
folds have been studied ([5]–[10]). We shall study properties of pseudosymmetric,
Ricci-pseudosymmetric and Weyl-pseudostymmetric manifolds in the sense of
Deszcz.

A Riemannian manifold is called semisymmetric if R(X,Y ) · R = 0 where
X, Y ∈ χ(M), [24]. Deszcz [11] generalized the concept of semisymmetry and
introduced pseudosymmetric manifolds. Let (Mn, g), n ≥ 3 be a Riemannian
manifold. We denote by ∇, R and τ the Levi–Civita connection, the curvature
tensor and the scalar curvature of (M, g), respectively. We define endomorphism
X ∧ Y for arbitrary vector field Z, (0, k)-tensor T and (1, k)-tensor T1, k ≥ 1, by

(1) (X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y ,

(2)

(
(X ∧ Y ) · T

)
(X1, X2, . . . , Xk) = −T

(
(X ∧ Y )X1, X2, . . . , Xk

)
− · · · − T

(
X1, . . . , Xk−1, (X ∧ Y )Xk

)
,

and

(3)

(
(X ∧ Y ) · T1

)
(X1, X2, . . . , Xk) = (X ∧ Y )T1(X1, X2, . . . , Xk)

− T1
(
(X ∧ Y )X1, X2, . . . , Xk

)
− · · · − T1(X1, . . . , Xk−1, (X ∧ Y )Xk) ,
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respectively. For a (0, k)-tensor field T , the (0, k+ 2) tensor fields R ·T and Q(g, T )
are defined by ([1], [11])

(4)

(R · T )(X1, . . . , Xk;X,Y ) =
(
R(X,Y ) · T

)
(X1, . . . , Xk)

= −T
(
R(X,Y )X1, X2, . . . , Xk

)
− · · · − T

(
X1, . . . , Xk−1, R(X,Y )Xk

)
,

and

(5)
Q(g, T )(X1, . . . , Xk;X,Y ) = −T

(
(X ∧ Y )X1, X2, . . . , Xk

)
− · · · − T

(
X1, . . . , Xk−1, (X ∧ Y )Xk

)
.

A Riemannian manifold M is said to be pseudosymmetric if the tensors R ·R and
Q(g,R) are linearly dependent at every point of M , i.e.

(6) R ·R = LRQ(g,R) .

This is equivalent to

(7)
(
R(X,Y ) ·R

)
(U, V,W ) = LR

[(
(X ∧ Y ) ·R

)
(U, V,W )

]
holding on the set UR = {x ∈M : Q(g,R) 6= 0 at x}, where LR is some function
on UR, [11]. The manifold M is called pseudosymmetric of constant type if L is
constant. Particularly if LR = 0 then M is a semisymmetric manifold. The manifold
M is said to be locally symmetric if ∇R = 0. Obviously locally symmetric spaces
are semisymmetric, [25].

Let S denote the Ricci tensor of M2n+1. The Ricci operator Q is the symmetric
endomorphism on the tangent space given by

(8) S(X,Y ) = g(QX,Y ) .

If the tensors R · S and Q(g, S) are linearly dependent at every point of M , i.e.

(9) R · S = LSQ(g, S) ,

then M is called Ricci-pseudosymmetric. This is equivalent to

(10)
(
R(X,Y ) · S

)
(Z,W ) = LS

[(
(X ∧ Y ) · S

)
(Z,W )

]
holds on the set US = {x ∈ M : S − τ

ng 6= 0 at x}, for some function LS on US
([7], [19]). We note that US ⊂ UR and on 3-dimensional Riemannian manifolds we
have US = UR. Every pseudosymmetric manifold is Ricci-pseudosymmetric but the
converse statement is not true.

The Weyl conformal curvature operator C is defined by

(11) C(X,Y )Z = R(X,Y )Z− 1
2n− 1

{
(X∧QY )Z+(QX∧Y )Z− τ

2n (X∧Y )Z
}
.

If C = 0, n ≥ 3, then M is called conformally flat. If the tensors R ·C and Q(g, C)
are linearly dependent, then M is called Weyl-pseudosymmetric. This is equivalent
to the statement that

(R · C)(U, V,W,X, Y ) = LC
[(

(X ∧ Y ) · C
)
(U, V )W

]
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holds on the set UC = {x ∈ M : C 6= 0 at x}, where LC is defined on UC . If
R · C = 0, then M is called Weyl-semisymmetric. If ∇C = 0, then M is called
conformally symmetric ([21], [23]).

3-dimensional pseudosymmetric spaces of constant type have been studied by
Kowalski and Sekizawa ([16]–[17]). Conformally flat pseudosymmetric spaces of
constant type were classified by Hashimoto and Sekizawa for dimension three,
[14] and by Calvaruso for dimensions > 2, [4]. In dimension three, Cho and
Inoguchi studied pseudosymmetric contact homogeneous manifolds, [6]. Cho et al.
treated the conditions that 3-dimensional trans-Sasakians, non-Sasakian generalized
(κ, µ)-spaces and quasi-Sasakians manifolds be pseudosymmetric, [1]. Belkhelfa et
al. obtained some results on pseudosymmetric Sasakian space forms, [1]. Finally
some classes of pseudosymmetric contact metric 3-manifolds have been studied by
Gouli-Andreou and Moutafi ([12], [13]).

Papantoniou classified semisymmetric (κ, µ)-contact metric manifolds ([22,
Theorem 3.4]). As a generalization, in this paper, we study pseudosymmetric
(κ, µ)-contact metric manifolds.

This paper is organized as follows. After some preliminaries on (κ, µ)-contact me-
tric manifolds, in Section 3 we study pseudosymmetric and Ricci-pseudosymmetric
(κ, µ)-contact metric manifolds. Next in Section 4, we characterize Weyl-pseudo-
symmetric (κ, µ)-contact metric manifolds.

2. Preliminaries

A contact manifold is an odd-dimensional C∞ manifold M2n+1 equipped with
a global 1-form η such that η ∧ (dη)n 6= 0 everywhere. Since dη is of rank 2n, there
exists a unique vector field ξ on M2n+1 satisfying η(ξ) = 1 and dη(ξ,X) = 0 for
any X ∈ χ(M) is called the Reeb vector field or characteristic vector field of η.
A Riemannian metric g is said to be an associated metric if there exists a (1,1)
tensor field ϕ such that

dη(X,Y ) = g(X,ϕY ), η(X) = g(X, ξ), ϕ2 = −I + η ⊗ ξ .

The structure (ϕ, ξ, η, g) is called a contact metric structure and a manifold M2n+1

with a contact metric structure is said to be a contact metric manifold. Given a
contact metric structure (ϕ, ξ, η, g), we define a (1, 1) tensor field h by h = (1/2)Lξϕ
where L denotes the operator of Lie differentiation. A contact metric manifold for
which ξ is a Killing vector field is called a K-contact manifold. It is well known that
a contact manifold is K-contact if and only if h = 0. A contact metric manifold is
said to be a Sasakian manifold if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X

in which case

(12) R(X,Y )ξ = η(Y )X − η(X)Y .

Note that a Sasakian manifold is K-contact, but the converse holds only if
dimM = 3.
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A contact manifold is said to be η-Einstein if the Ricci operator Q satisfies the
condition

(13) Q = a Id +bη ⊗ ξ ,

where a and b are smooth functions on M2n+1.
The sectional curvature K(ξ,X) of a plane section spanned by ξ and a vector

X orthogonal to ξ is called a ξ-sectional curvature, while the sectional curvature
K(X,ϕX) is called a ϕ-sectional curvature.

The (κ, µ)-nullity distribution of a contact metric manifold M(ϕ, ξ, η, g) is a
distribution, [3]

N(κ, µ) : p→ Np(κ, µ) =
{
W ∈ TpM | R(X,Y )W

= κ[g(Y,W )X−g(X,W )Y ]+µ[g(Y,W )hX−g(X,W )hY ]
}
,

where κ, µ are real constants. Hence if the characteristic vector field ξ belongs to
the (κ, µ)-nullity distribution, then we have

(14) R(X,Y )ξ = κ
{
η(Y )X − η(X)Y

}
+ µ

{
η(Y )hX − η(X)hY

}
.

A contact metric manifold satisfying (14) is called a (κ, µ)-contact metric manifold.
If M be a (κ, µ)-contact metric manifold, then the following relations hold, [3]:

S(X, ξ) = 2nkη(X) ,(15)

Qξ = 2nkξ ,(16)

h2 = (k − 1)ϕ2 ,(17)

R(ξ,X)Y = κ{g(X,Y )ξ − η(Y )X}+ µ{g(hX, Y )ξ − η(Y )hX} ,(18)

(19)
S(X,Y ) = [2(n− 1)− nµ]g(X,Y ) + [2(n− 1) + µ]g(hX, Y )

+ [2(1− n) + n(2κ+ µ)]η(X)η(Y ) ,

τ = 2n(2(n− 1) + κ− nµ) ,(20)

Qϕ− ϕQ = 2[2(n− 1) + µ]hϕ .(21)

We note that if M2n+1 be a (κ, µ)-contact metric manifold, then κ ≤ 1, [3]. When
κ < 1, the nonzero eigenvalues of h are ±

√
1− κ each with multiplicity n. Let λ and

D denote the positive eigenvalue of h and the distribution Ker η respectively. Then
M2n+1 admits three mutually orthogonal and integrable distributions D(0), D(λ)
and D(−λ) defined by the eigenspaces of h, [26]. We easily check that Sasakian
manifolds are contact (κ, µ)-manifolds with κ = 1 and h = 0, [3]. In particular, if
µ = 0, then we obtain the condition of k-nullity distribution introduced by Tanno,
[26].
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3. Pseudosymmetric and Ricci-pseudosymmetric
(κ, µ)-manifolds

We know that [2] if M2n+1 be a contact metric manifold and RXY ξ = 0 for all
vector fields X and Y , then M2n+1 is locally isometric to the Riemannian product
of a flat (n+ 1)-dimensional manifold and an n-dimensional manifold of positive
constant curvature 4.

In [3] Blair et al. studied the condition of (κ, µ)-nullity distribution on a contact
manifold and obtained the following theorem.

Theorem 1. Let M2n+1(ϕ, ξ, η, g) be a contact manifold with ξ belonging to the
(κ, µ)-nullity distribution. If κ < 1, then for any X orthogonal to ξ the following
formulas hold:

1. The ξ-sectional curvature K(X, ξ) is given by

K(X, ξ) = κ+ µg(hX,X) =
{
κ+ λµ if X ∈ D(λ)
κ+ λµ if X ∈ D(−λ)

2. The sectional curvature of a plan section {X,Y } normal to ξ is given by

(22) K(X,Y ) =


i) 2(1 + λ)− µ if X,Y ∈ D(λ)
ii) − (κ+ µ)[g(X,ϕY )]2 for any unit vectors

X ∈ D(λ), Y ∈ D(−λ)
iii) 2(1− λ)− µ if X,Y ∈ D(−λ), n > 1 .

Pseudosymmetric contact 3-manifold were studied in [6] and following result
obtained.

Theorem 2. Contact Riemannian 3-manifolds such that Qϕ = ϕQ are pseudo-
symmetric. In particular, every Sasakian 3-manifold is a pseudosymmetric space of
constant type.

Firstly we give the following propositions.

Proposition 1. Let M2n+1 be a (κ, µ)-contact metric pseudosymmetric manifold.
Then for any unit vector fields X, Y ∈ χ(M) orthogonal to ξ and such that
g(X,Y ) = 0 we have:{

(κ− LR)g
(
X,R(X,Y )Y

)
+ µg

(
hX,R(X,Y )Y

)
− κ(κ− LR)

− µ(κ− LR)g(hY, Y )− κµg(hX,X)− µ2g(hX,X)g(hY, Y )
+ µ2g2(hX, Y )}ξ
− (κ− LR)g(R(X,Y )Y, ξ)X − µg(R(X,Y )Y, ξ)hX = 0 .(23)

Proof. Since M is pseudosymmetric then

(24)
(
R(ξ,X) ·R

)
(U, V )W = LR

[(
(ξ ∧X) ·R

)
(U, V )W

]
.



6 N. MALEKZADEH, E. ABEDI AND U.C. DE

Putting U = X and V = W = Y in (24) and using (3) and (4), we get
R(ξ,X) ·R(X,Y )Y −R(RξXX,Y )Y −R(X,RξXY )Y −R(X,Y )RξXY

= LR
{

(ξ ∧X) ·R(X,Y )Y −R
(
(ξ ∧X)X,Y

)
Y

−R
(
X, (ξ ∧X)Y

)
Y −R(X,Y )

(
(ξ ∧X)Y

)}
e .(25)

From (1) and (18) one can easily get the result. �

Proposition 2. Every pseudosymmetric Sasakian manifold with LR 6= 1 is of
constant curvature 1.

Proof. Let X and Y be tangent vectors such that η(X) = η(Y ) = 0 and
g(X,Y ) = 0. Since M is Sasakian then κ = 1 and h = 0. Using (12) and (18)
in equation (25) and direct computations we get

(1− LR){η
(
R(X,Y )Y

)
X − g

(
X,R(X,Y )Y

)
ξ + g(X,X)g(Y, Y )ξ} = 0 .

Since LR 6= 1 then
(26) η

(
R(X,Y )Y

)
X − g

(
X,R(X,Y )Y

)
ξ + g(X,X)g(Y, Y )ξ = 0 .

Taking the inner product with ξ gives
(27) g

(
X,R(X,Y )Y

)
= g(X,X)g(Y, Y ) .

Then (M2n+1, g) is of constant ϕ-sectional curvature 1 and hence it is of constant
curvature 1, [19]. �

Theorem 3. Let M2n+1, n > 1 be a (κ, µ)-contact metric pseudosymmetric
manifold. Then M2n+1 is either

1) A Sasakian manifold of constant sectional curvature 1 if LR 6= 1 or
2) Locally isometric to the product of a flat (n + 1)-dimensional Euclidean

manifold and an n-dimensional manifold of constant curvature 4.

Proof. If κ = 1 then M is a Sasakian manifold and result get from Proposition 2.
Let κ < 1 and X, Y are orthonormal vectors of the distribution D(λ). Applying
the relation (23) for hX = λX, hY = λY we get
{(κ− LR + µλ)g

(
X,R(X,Y )Y

)
− κ(κ− LR)− µλ(κ− LR)− κµλ− µ2λ2}ξ

− (κ− LR + µλ)g
(
R(X,Y )Y, ξ

)
X = 0 .(28)

Considering ξ-component of (28) gives
(29) i) K(X,Y ) = κ+ λµ or ii) κ = −λµ+ LR .

Comparing part (i) of equations (22) and (29) gives
(30) µ = 1 + λ .

Let X, Y ∈ D(−λ) and g(X,Y ) = 0. Putting hX = −λX and hY = −λY in (23)
and taking the inner product with ξ we get
(31) i) K(X,Y ) = κ− λµ or ii) κ = λµ+ LR .

Comparing the equations (22)(iii) and (31)(i) we have
(32) i) µ = 1− λ or ii) λ = 1 .
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In the case X ∈ D(λ) and Y ∈ D(−λ) equation (23) is reduced to

{(κ− LR + µλ)g(X,R(X,Y )Y )− κ(κ− LR) + µλ(κ− LR)− κµλ+ µ2λ2}ξ
− (κ− LR + µλ)g(R(X,Y )Y, ξ)X = 0 ,(33)

from which taking the inner products with ξ we have

(34) i) K(X,Y ) = κ− λµ or κ = −λµ+ LR ,

while if X ∈ D(−λ) and Y ∈ D(λ) we similarly prove that

(35) i) K(X,Y ) = κ+ λµ or κ = λµ+ LR .

By the combination now of the equation (29)(ii), (30), (31)(ii), (32), (34) and (35)
we establish the following nine systems among the unknowns κ, λ, µ and LR.

1) {µ = 1− λ, µ = 1 + λ, λ = 0}
2) {κ = −λµ+ LR, κ = λµ+ LR, µ = 0, λ > 0}
3) {κ = −λµ+ LR, λ = 1, µ = 0}
4) {κ = −λµ+ LR, λ = 1, µ = LR}
5) {K(X,Y ) = κ+ λµ, K(X,Y ) = κ− λµ, µ = 1− λ, κ = −λµ+ LR}
6) {µ = 1 + λ, λ = 1, LR = ±2}
7) {µ = 1 + λ, K(X,Y ) = κ− λµ, K(X,Y ) = κ+ λµ}
8) {κ = −λµ+ LR, µ = 1− λ, K(X,Y ) = κ+ λµ}
9) {µ = 1 + λ, κ = λµ+ LR, K(X,Y ) = κ− λµ}

From the first system we get easily µ = 1 and since λ2 = 1 − κ we have κ = 1,
which is a contradiction, since we required that κ < 1.

The systems 2, 3, 4 and 5 have as the only solution κ = 0, µ = 0, λ = 1, LR = 0.
Then RXY ξ = 0 for any X, Y ∈ χ(M) and M is locally isometric to the product
En+1(0)× Sn(4), [2]. We show that remainder systems can not occur.

In system 6, from λ = 1 we have µ = 0 and κ = 0. Using equation (34) (or (35))
and (22)(ii) we have [g(X,ϕY )]2 = −1 and this is a contradiction.

From system 7, one can get easily λµ = 0. But λ 6= 0 (since κ < 1) and then
µ = 0. Therefore λ = µ− 1 = −1 and this is a contradiction with λ > 0.

In two last systems for all X, Y ∈ χ(M) we have

(36) K(X,Y ) = LR .

Let Y = ϕX in (36) and comparing it with equation (22)(ii) we get

(37) LR = −(κ+ µ) ,

Replacing κ and µ of two last systems in (37) we get two equation

(38) (1− λ)2 = −2LR ,

and

(39) (1 + λ)2 = −2LR ,

respectively. Then in systems 8 and 9 LR ≤ 0.
In system 8, by virtue of κ = −λµ+ LR and κ = 1− λ2, we have

2λ2 − λ+ (LR − 1) = 0 .



8 N. MALEKZADEH, E. ABEDI AND U.C. DE

This quadratic equation has two roots λ = 1±
√

9− 8LR. If λ = 1 +
√

9− 8LR and
replacing it in (38) we get LR = 1.5 and if λ = 1−

√
9− 8LR, since λ is positive,

we get LR > 1. Then in the both case we get contradiction whit LR ≤ 0. The
roots of equation (39) in last system are λ = −1±

√
−2LR and since λ > 0 then

λ = −1 +
√
−2LR and hence µ =

√
−2LR. Substituting λ and µ in κ = λµ+ LR

and κ = 1− λ2 we get LR = −2 and then λ = 1, µ = 2 and κ = 0 which are not
acceptable since from (34) (or (35)) we get a contradiction from (22)(ii) and this
complete the proof. �

Theorem 4. Every 3-dimensional (κ, µ)-contact metric manifold is pseudosym-
metric manifold.

Proof. From the combination of the equations (34) and (35) we get four systems
with respect to the κ, λ, µ , LR and the sectional curvature K(X,Y ), from which
we have the following possibilities:

1) K(X,Y ) = κ , λµ = 0,
2) κ = LR , λµ = 0,
3) κ = λµ+ LR or κ = λµ− LR and K(X,Y ) = LR.

In two first cases we have λµ = 0. If µ = 0 then equation (21) leads to Qϕ = ϕQ
and result get from Theorem 2. If λ = 0 then M3 being a Sasakian manifold and
from Theorem 2 every Sasakian 3-manifold is a pseudosymmetric space of constant
type.

In the last case, let Y = ϕX then K(X,ϕX) = LR. On the other hand, from
(22)(ii) K(X,ϕX) = −(κ+ µ). Then LR = −(κ+ µ) and manifold is of constant
sectional curvature. Every Riemannian manifold of constant sectional curvature
is locally symmetric ([20] page 221) and then pseudosymmetric. Thus M3 is
pseudosymmetric manifold of constant type. �

Theorem 5. Let M2n+1 be a Ricci-pseudosymmetric (κ, µ)-contact metric mani-
fold. Then M2n+1 is either

(i) locally isometric to En+1 × Sn(4), or
(ii) an Einstein-Sasakian manifold if κ 6= LS, or
(iii) an η-Einstein manifold provided

2nκµ− (κ− LS)[2(n− 1) + µ]− µ[2(n− 1)− nµ] 6= 0.

Proof. (i) If κ = 0, µ = 0 then we have RXY ξ = 0 for any tangent vector fields X,
Y and hence M is locally isometric to En+1 × Sn(4), [2].

(ii) Let κ 6= 0.
Since M is a Ricci-pseudosymmetric (κ, µ)-contact metric manifold for any

X,Y, U, V ∈ χ(M) we have
(40)

(
R(X,Y ) · S

)
(U, V ) = LSQ(g, S)(U, V ;X,Y ) .

Then from (4) and (5) we can write
(41) −S

(
R(ξ,X)Y, Z

)
−S
(
Y,R(ξ,X)Z

)
= LS

[
−S
(
(ξ∧X)Y,Z

)
−S
(
Y, (ξ∧X)Z

)
.

Replacing Z with ξ and using (1), (15) and (14) one can get
(42) −2nκ(κ−LS)g(X,Y )−2nκµg(hX, Y )+(κ−LS)S(X,Y )+µS(hX, Y ) = 0.
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If µ = 0 then since κ 6= 0, LS , we get that the manifold is Einstein and then M is
a Sasakian manifold ([26] Theorem 5.2).

(iii) Suppose now that κ 6= 0, µ 6= 0. Then, using the equation (19) and (17),
κ ≤ 1, we have

S(hX, Y ) = [2(n− 1)− nµ]g(hX, Y )− (κ− 1)[2(n− 1) + µ]g(X,Y )
+ (κ− 1)[2(n− 1) + µ]η(X)η(Y ) .(43)

Replacing equation (43) in equation (42) gives

(44) {2nκµ− (κ− LS)[2(n− 1) + µ]− µ[2(n− 1)− nµ]} g(hX, Y )

= {−2nκ(κ− LS) + (κ− LS)[2(n− 1)− nµ]− µ(κ− 1)[2(n− 1) + µ]} g(X,Y )

+ {(κ− LS)[2(1− n) + n(2κ+ µ)] + µ(κ− 1)[2(n− 1) + µ]} η(X)η(Y ) .

From (19) and (44), we get

S(X,Y ) = αg(X,Y ) + βη(X)η(Y )

where

α = [2(n−1)+µ][−2nκ(κ−LS)+(κ−LS)[2(n−1)−nµ]−µ(κ−1)(2(n−1)+µ)]
2nκµ− (κ− LS)[2(n− 1) + µ]− µ[2(n− 1)− nµ]

+ [2(n− 1)− µn] .

β = [2(n− 1) + µ][(κ− LS)[2(1− n) + n(2κ+ µ) + µ(κ− 1)(2(n− 1) + µ)]
2nκµ− (κ− LS)[2(n− 1) + µ]− µ[2(n− 1)− nµ]

+ [2(1− n) + n(2κ+ µ)] .

So, the manifold is an η-Einstein manifold with constant coefficients and the proof
is complete. �

4. Weyl-pseudosymmetric (κ, µ)-contact metric manifolds

In the present section our aim is to find the characterization of (κ, µ)-contact
metric manifolds satisfying the condition R · C = LCQ(g, C).

Theorem 6. Let M2n+1, n > 1 be a non-Sasakian (κ, µ)-contact metric manifold.
If M is Weyl-pseudosymmetric manifold then either µ = 0 and then LC = κ or
µ = 2n−1

2n−2 holds on M .

Proof. Since M is a Weyl-pseudosymmetric then

(45)
(
R(X,Y ) · C

)
(U, V,W ) = LCQ(g, C)(U, V,W ;X,Y ) .
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Using (4) and (5) in (45) we can write
R(X,Y )C(U, V )W − C

(
R(X,Y )U, V

)
W − C

(
U,R(X,Y )V

)
W

− C(U, V )R(X,Y )W

= LC
[
(X ∧ Y )C(U, V )W − C

(
(X ∧ Y )U, V

)
W

− C
(
U, (X ∧ Y )V

)
W − C(U, V )(X ∧ Y )W

]
.(46)

Replacing X with ξ and Y with U in (46) we have
R(ξ, U)C(U, V )W − C

(
R(ξ, U)U, V

)
W − C

(
U,R(ξ, U)V

)
W

− C(U, V )R(ξ, U)W

= LC
[
(ξ ∧ U)C(U, V )W − C

(
(ξ ∧ U)U, V

)
W

− C
(
U, (ξ ∧ U)V

)
W − C(U, V )(ξ ∧ U)W

]
.(47)

Substituting (1) and (18) in (47) and taking the inner product with ξ, we get
(κ− LC)g

(
U,C(U, V )W

)
+ µg

(
hU,C(U, V )W

)
− (κ− LC)g(U,U)g

(
C(ξ, V )W, ξ

)
− µg(hU,U)g

(
C(ξ, V )W, ξ

)
+ µη(U)g

(
C(hU, V )W, ξ

)
− (κ−LC)g(U, V )g

(
C(U, ξ)W, ξ

)
−µg(hU, V )g

(
C(U, ξ)W, ξ

)
+ µη(V )g

(
C(U, hU)W, ξ

)
+ (κ− LC)η(W )g

(
C(U, V )U, ξ

)
+ µη(W )g

(
C(U, V )hU, ξ

)
= 0 .(48)

Let U ∈ D(λ) and contraction of (48) with respect to U we have
(49)

(
− 2nκ+ (1− 2n)λµ+ 2nLC

)
g
(
C(ξ, V )W, ξ

)
= 0 .

Similarity for U ∈ D(−λ) and contraction of (48) with respect to U we get
(50)

(
− 2nκ− (1− 2n)λµ+ 2nLC

)
g
(
C(ξ, V )W, ξ

)
= 0 .

Suppose µ = 0. Then from the equation (49) we obtain
(51) (LC − κ)g

(
C(ξ, V )W, ξ

)
= 0 .

If g(C(ξ, V )W, ξ) = 0. Using (20), (11) and straightforward computation, we have
S(X,Y ) =

[
2(n− 1)− nµ

]
g(X,Y ) +

[
2(n− 1)µ

]
g(hX, Y )

+
[
2(1− n) + n(2κ+ µ)

]
η(X)η(Y ) .(52)

Comparing equation (52) with (19) one can get

(53) µ = 2n− 1
2n− 2

and this is a contradiction. Then κ = LC .
Suppose now that µ 6= 0 and substracting equations (49) and (50), we get

(54) λµg
(
C(ξ, V )W, ξ

)
= 0 .

But λµ 6= 0 since κ < 1 and µ 6= 0. Hence g(C(ξ, V )W, ξ) = 0 and then
µ = 2n− 1

2n− 2 . �
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Therefore we have the following corollary.
Corollary 1. If M be a Weyl-pseudosymmetric Sasakian manifold then either
LC = 1 or µ = 2n− 1

2n− 2 holds on M .

Proof. Since M is Sasakian then κ = 1 and λ = 0. From equation (49) one can
easily get the results. �
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