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Abstract. Let K be a field and S = K[x1, . . . , xm, y1, . . . , yn] be the standard bigraded
polynomial ring over K. In this paper, we explicitly describe the structure of finitely gener-
ated bigraded “sequentially Cohen-Macaulay” S-modules with respect to Q = (y1, . . . , yn).
Next, we give a characterization of sequentially Cohen-Macaulay modules with respect
to Q in terms of local cohomology modules. Cohen-Macaulay modules that are sequentially
Cohen-Macaulay with respect to Q are considered.
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Introduction

Let K be a field and S = K[x1, . . . , xm, y1, . . . , yn] be the standard bigraded

K-algebra with deg xi = (1, 0) and deg yj = (0, 1) for all i and j. Consider the

bigraded irrelevant ideals P = (x1, . . . , xm) and Q = (y1, . . . , yn). LetM be a finitely

generated bigraded S-module. The largest integer k for which Hk
Q(M) 6= 0 is called

the cohomological dimension of M with respect to Q and denoted by cd(Q,M).

A finite filtration D : 0 = D0  D1  . . .  Dr = M of bigraded submodules of M is

called the dimension filtration ofM with respect to Q if Di−1 is the largest bigraded

submodule of Di for which cd(Q,Di−1) < cd(Q,Di) for all i = 1, . . . , r, see [6]. In

Section 1, we explicitly describe the structure of the submodules Di that extends [8],

Proposition 2.2. In fact, it is shown that Di =
⋂

pj 6∈Bi,Q

Nj for i = 1, . . . , r − 1 where

0 =
s
⋂

j=1

Nj is a reduced primary decomposition of 0 in M where Nj is pj-primary for
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j = 1, . . . , s and

Bi,Q = {p ∈ Ass(M) : cd(Q,S/p) 6 cd(Q,Di)}.

In [7], we say M is Cohen-Macaulay with respect to Q if grade(Q,M) = cd(Q,M).

A finite filtration F : 0 = M0  M1  . . .  Mr = M of M by bigraded submod-

ules of M is called a Cohen-Macaulay filtration with respect to Q if each quotient

Mi/Mi−1 is Cohen-Macaulay with respect to Q and

0 6 cd(Q,M1/M0) < cd(Q,M2/M1) < . . . < cd(Q,Mr/Mr−1).

If M admits a Cohen-Macaulay filtration with respect to Q, then we say M is se-

quentially Cohen-Macaulay with respect to Q, see [6]. Note that if M is sequentially

Cohen-Macaulay with respect to Q, then the filtration F is uniquely determined

and it is just the dimension filtration of M with respect to Q, that is, F = D. In

Section 2, we give a characterization of sequentially Cohen-Macaulay modules with

respect to Q in terms of local cohomology modules which extends [4], Corollary 4.4,

and [3], Corollary 3.10. We apply this result and the description of the submod-

ules Mi mentioned earlier, showing that S/I is sequentially Cohen-Macaulay with

respect to P and Q where I is the Stanley-Reisner ideal that corresponds to the

natural triangulation of the projective plane P2. Here S = K[x1, x2, x3, y1, y2, y3],

P = (x1, x2, x3) and Q = (y1, y2, y3). Note that S/I is Cohen-Macaulay of dimen-

sion 3 if charK 6= 2.

In [7] we have shown that if M is a finitely generated bigraded Cohen-Macaulay

S-module which is Cohen-Macaulay with respect to P , then M is Cohen-Macaulay

with respect to Q. Inspired by this fact and the above example we have the fol-

lowing question: Let I ⊆ S be a monomial ideal. Suppose S/I is Cohen-Macaulay.

If S/I is sequentially Cohen-Macauly with respect to P , is S/I sequentially Cohen-

Macaulay with respect to Q? We do not know the answer to this question yet,

however in the last section, we obtain some properties of a Cohen-Macaulay filtra-

tion with respect to Q in general provided that the module itself is Cohen-Macaulay,

see Propositions 3.3 and 3.4. Inspired by Proposition 3.4, we pose the following

question: Let M be a finitely generated bigraded Cohen-Macaulay S-module such

that Hk
Q(M) 6= 0 for all grade(Q,M) 6 k 6 cd(Q,M). Is Hs

P (M) 6= 0 for all

grade(P,M) 6 s 6 cd(P,M)? Of course the question has affirmative answer in the

case that M has only one (two) non-vanishing local cohomology with respect to Q.

The projective plane P2 would also be the case as module with three non-vanishing

local cohomology.
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1. The dimension filtration with respect to Q

Let K be a field and S = K[x1, . . . , xm, y1, . . . , yn] the standard bigraded polyno-

mial ring over K. In other words, deg xi = (1, 0) and deg yj = (0, 1) for all i and j.

Consider the bigraded irrelevant ideals P = (x1, . . . , xm) and Q = (y1, . . . , yn), and

let M be a finitely generated bigraded S-module. We denote by cd(Q,M) the coho-

mological dimension of M with respect to Q which is the largest integer i for which

Hi
Q(M) 6= 0. Notice that 0 6 cd(Q,M) 6 n.

We recall the following facts which will be used in the sequel.

Fact 1.1. If M is Cohen-Macaulay, then

grade(P,M) 6 dimM − cd(Q,M),

and the equality holds, see [7], Formula 5.

Let q ∈ Z. In [7], we say M is relative Cohen-Macaulay with respect to Q if

Hi
Q(M) = 0 for all i 6= q. In other words, grade(Q,M) = cd(Q,M) = q. From now

on, we omit the word “relative” for simplicity and say M is Cohen-Macaulay with

respect to Q.

Fact 1.2. If M is Cohen-Macaulay with respect to Q with |K| = ∞, then

cd(P,M) + cd(Q,M) = dimM,

see [7], Theorem 3.6.

Fact 1.3. The exact sequence 0 → M ′ → M → M ′′ → 0 of finitely generated

bigraded S-modules yields

cd(Q,M) = max{cd(Q,M ′), cd(Q,M ′′)},

see the general version of [2], Proposition 4.4.

Fact 1.4.

cd(Q,M) = max{cd(Q,S/p) : p ∈ Ass(M)},

see the general version of [2], Corollary 4.6.

For a finitely generated bigraded S-module M , there is a unique largest bigraded

submodule N of M for which cd(Q,N) < cd(Q,M), see [6], Lemma 1.6. We recall

the following definition from [6].
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Definition 1.5. We call a filtration D : 0 = D0  D1  . . .  Dr = M of

bigraded submodules of M the dimension filtration of M with respect to Q if Di−1

is the largest bigraded submodule of Di for which cd(Q,Di−1) < cd(Q,Di) for all

i = 1, . . . , r.

Remark 1.6. Let D be the dimension filtration ofM with respect to Q. For all i,

the exact sequence 0 → Di−1 → Di → Di/Di−1 → 0 by using Fact 1.3 yields

cd(Q,Di) = max{cd(Q,Di−1), cd(Q,Di/Di−1)} = cd(Q,Di/Di−1).

Thus, cd(Q,Di−1/Di−2) < cd(Q,Di/Di−1) for all i.

Let D be the dimension filtration of M with respect to Q. We set

Bi,Q = {p ∈ Ass(M) : cd(Q,S/p) 6 cd(Q,Di)}, Ii,Q =
∏

p∈Bi,Q

p

and

Ai,Q = {p ∈ Ass(M) : p ∈ V (Ii,Q)} for i = 1, . . . , r.

Lemma 1.7. Let the notation be as above. Then the following statements hold

Ai,Q = Bi,Q = Ass(Di) for i = 1, . . . , r.

Consequently,

Supp(Di) ⊆ V (Ii,Q) for i = 1, . . . , r.

P r o o f. In order to show the first equality, we note that Bi,Q ⊆ Ai,Q for

i = 1, . . . , r. Now let p ∈ Ai,Q. Then p ∈ Ass(M) with Ii,Q ⊆ p. Hence q ⊆ p

for some q ∈ Ass(M) with cd(Q,S/q) 6 cd(Q,Di). The canonical epimorphism

S/q → S/p yields cd(Q,S/p) 6 cd(Q,S/q) by Fact 1.3. It follows that p ∈ Bi,Q and

hence Ai,Q ⊆ Bi,Q.

To show the second equality, let p ∈ Bi,Q. Then there is a submodule N ⊆ M

such that N ∼= S/p and cd(Q,S/p) 6 cd(Q,Di). Using Fact 1.3 we have

cd(Q,N +Di) = max{cd(Q,Di), cd(Q,N/(N ∩Di))} = cd(Q,Di),

and hence N ⊆ Di. This shows that p ∈ Ass(Di) and therefore Bi,Q ⊆ Ass(Di).

Now let p ∈ Ass(Di). Then p ∈ Ass(M) and cd(Q,S/p) 6 cd(Q,Di) by Fact 1.4.

This shows that p ∈ Bi,Q and hence Ass(Di) ⊆ Bi,Q. �

In the following we describe the structure of the submodules Di in the dimension

filtration of D with respect to Q which extends [8], Proposition 2.2.
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Proposition 1.8. Let D be the dimension filtration of M with respect to Q.

Then

Di = H0
Ii,Q(M) =

⋂

pj 6∈Bi,Q

Nj

for i = 1, . . . , r − 1 where 0 =
s
⋂

j=1

Nj is a reduced primary decomposition of 0 in M

with Nj , pj-primary for j = 1, . . . , s.

P r o o f. In order to prove the first equality, we have V (Ann(Di)) = Supp(Di) ⊆

V (Ii,Q) for i = 1, . . . , r − 1 by Lemma 1.7. Since Ii,Q is finitely generated, it follows

that Iki

i,Q ⊆ Ann(Di) for some integer ki and hence I
ki

i,QDi = 0 for some ki. Thus

Di = H0
Ii,Q

(Di) ⊆ H0
Ii,Q

(M) for i = 1, . . . , r − 1.

Now we prove the equality by decreasing induction on i. For i = r− 1, we assume

that Dr−1  H0
Ir−1,Q

(M) ⊆ Dr = M . It follows from the definition of dimension

filtration that cd(Q,H0
Ir−1,Q

(M)) = cd(Q,M). Note that

AssH0
Ii,Q(M) = Ai,Q = Ass(Di) for i = 1, . . . , r − 1

by [5], Proposition 3.13, (c) and Lemma 1.7. It follows that cd(Q,H0
Ir−1,Q

(M)) =

cd(Q,Dr−1,Q), and hence cd(Q,Dr−1,Q) = cd(Q,M), a contradiction. Thus

Dr−1,Q = H0
Ir−1,Q

(M). Now let 1 < i < r − 1, and assume that Di = H0
Ii,Q

(M).

We show that Di−1 = H0
Ii−1,Q

(M). Assume Di−1  H0
Ii−1,Q

(M). As H0
Ii−1,Q

(M) ⊆

H0
Ii,Q

(M) = Di, we have cd(Q,H0
Ii−1,Q

(M)) > cd(Q,Di). Since AssH
0
Ii−1,Q

(M) =

Ass(Di−1), it follows that cd(Q,Di−1) = cd(Q,H0
Ii−1,Q

(M)) > cd(Q,Di), a con-

tradiction. Therefore, Di−1 = H0
Ii−1,Q

(M). The second equality follows from

Lemma 1.7 and [5], Proposition 3.13 (a). �

Remark 1.9. Let D be the dimension filtration of M with respect to Q with

cd(Q,M) = q. We call the submodule

Dr−1 =
⋂

pj 6∈Br−1,Q

Nj =
⋂

cd(Q,S/pj)=q

Nj

the unmixed component of M with respect to Q and denote it by uQ,M (0). Notice

that um,M (0) = uM (0) was introduced by Schenzel in [8]. If M is relatively unmixed

with respect to Q, that is, cd(Q,M) = cd(Q,S/p) for all p ∈ Ass(M), then by

Proposition 1.8 we have

Di =
⋂

pj 6∈Bi,Q

Nj =

s
⋂

j=1

Nj = 0 for all i < r.
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Corollary 1.10. Let D be the dimension filtration ofM with respect to Q. Then

for i = 1, . . . , r we have

Ass(M/Di) = Ass(M)−Ass(Di).

P r o o f. The assertion follows from Proposition 1.8, Lemma 1.7 and the fact

that AssM/H0
Ii,Q

(M) = Ass(M)−Ai,Q, see [5], Proposition 3.13 (c). �

2. Sequentially Cohen-Macaulay with respect to Q

We recall the following definition from [6].

Definition 2.1. Let M be a finitely generated bigraded S-module. We call a fi-

nite filtration F : 0 = M0  M1  . . .  Mr = M of M by bigraded submodules M

a Cohen-Macaulay filtration with respect to Q if

(a) each quotient Mi/Mi−1 is Cohen-Macaulay with respect to Q;

(b) 0 6 cd(Q,M1/M0) < cd(Q,M2/M1) < . . . < cd(Q,Mr/Mr−1).

We call M to be sequentially Cohen-Macaulay with respect to Q if M admits

a Cohen-Macaulay filtration with respect to Q.

Note that if M is sequentially Cohen-Macaulay with respect to Q, then the filtra-

tion F in the definition above is uniquely determined and it is just the dimension

filtration of M with respect to Q defined in Definition 1.5, see [6], Proposition 1.9.

We have the following characterization of sequentially Cohen-Macaulay modules

with respect to Q in terms of local cohomology modules which extends [4], Corol-

lary 4.4, and [3], Corollary 3.10.

Proposition 2.2. Let D: 0 = D0  D1  . . .  Dr = M be the dimension

filtration of M with respect to Q. Then the following statements are equivalent:

(a) M is sequentially Cohen-Macaulay with respect to Q;

(b) Hk
Q(M/Di−1) = 0 for i = 1, . . . , r and k < cd(Q,Di);

(c) grade(Q,M/Di−1) = cd(Q,Di) for i = 1, . . . , r.

P r o o f. (a) ⇒ (b): We proceed by decreasing induction on i. As Di/Di−1 is

Cohen-Macaulay with respect to Q for all i, for i = r we have Hk
Q(M/Dr−1) = 0

for k < cd(Q,M). Now let 1 < i < r, and assume that Hk
Q(M/Di−1) = 0 for

k < cd(Q,Di). The exact sequence

0 → Di−1/Di−2 → M/Di−2 → M/Di−1 → 0,
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induces the following long exact sequence

(1) . . . → Hk
Q(Di−1/Di−2) → Hk

Q(M/Di−2) → Hk
Q(M/Di−1) → . . .

As Di−1/Di−2 is Cohen-Macaulay with respect to Q, we have H
k
Q(Di−1/Di−2) = 0

for k < cd(Q,Di−1). By Remark 1.6, we have cd(Q,Di−1) = cd(Q,Di−1/Di−2) <

cd(Q,Di). So, by using (1) and the induction hypothesis, we have H
k
Q(M/Di−2) = 0

for k < cd(Q,Di−1), as desired.

(b) ⇒ (a): By Remark 1.6 we have cd(Q,Di/Di−1) < cd(Q,Di+1/Di) for all i.

Thus it suffices to show that Di/Di−1 is Cohen-Macaulay with respect to Q for all i.

We prove this statement by decreasing induction on i. In condition (b), we first

assume i = r. It follows that M/Dr−1 is Cohen-Macaulay with respect to Q. Now

let 1 < i < r, and assume that Di/Di−1 is Cohen-Macaulay with respect to Q. The

exact sequence

0 → Di/Di−1 → M/Di−1 → M/Di → 0,

induces the following long exact sequence

(2) . . . → Hk−1
Q (Di/Di−1) → Hk−1

Q (M/Di−1) → Hk−1
Q (M/Di) → . . .

Suppose k < cd(Q,Di−1). Induction hypothesis and our assumption say that

Hk−1
Q (Di/Di−1) = Hk−1

Q (M/Di) = 0. Hence Hk−1
Q (M/Di−1) = 0 by (2). We

have Hk
Q(M/Di−2) = 0 for k < cd(Q,Di−1) because of our assumption again.

Thus Hk
Q(Di−1/Di−2) = 0 for k < cd(Q,Di−1) by (1). Therefore Di−1/Di−2 is

Cohen-Macaulay with respect to Q, as desired.

(b) ⇒ (c): We set cd(Q,Di) = cd(Q,Di/Di−1) = qi for i = 1, . . . , r. Our assump-

tion says that grade(Q,M/Di−1) > qi for i = 1, . . . , r. We only need to show that

Hqi
Q (M/Di−1) 6= 0. Consider the long exact sequence

(3) . . . → Hqi−1
Q (M/Di) → Hqi

Q (Di/Di−1) → Hqi
Q (M/Di−1) → . . .

Since qi − 1 < qi < qi+1, it follows from our assumption that H
qi−1
Q (M/Di) = 0. If

Hqi
Q (M/Di−1) = 0, then by (3) we have Hqi

Q (Di/Di−1) = 0, a contradiction. The

implication (c) ⇒ (b) is obvious. �

As an application of Proposition 1.8 and Proposition 2.2 we have

Example 2.3. Let I be the Stanley-Reisner ideal that corresponds to the natural

triangulation of the projective plane P2. Then

I = (x1x2x3, x1x2y1, x1x3y2, x1y1y3, x1y2y3, x2x3y3, x2y1y2, x2y2y3, x3y1y2, x3y1y3).
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We set R = S/I where S = K[x1, x2, x3, y1, y2, y3], P = (x1, x2, x3) and Q =

(y1, y2, y3). Our aim is to show that R is sequentially Cohen-Macaulay with respect

to P andQ. Note thatR is Cohen-Macaulay of dimension 3 if charK 6= 2. The ideal I

has the minimal primary decomposition I =
10
⋂

i=1

pi where p1 = (x3, y1, y3), p2 =

(x1, y1, y3), p3 = (x2, y1, y2), p4 = (x3, y1, y2), p5 = (x1, y2, y3), p6 = (x2, y2, y3),

p7 = (x2, x3, y3), p8 = (x1, x2, y1), p9 = (x1, x3, y2), p10 = (x1, x2, x3). Since

P = p10 ∈ Ass(R), we have grade(P,R) = 0. By Fact 1.4 we have cd(P,R) = 2 and

cd(Q,R) = 3. As R is Cohen-Macaulay, it follows from Fact 1.1 that grade(Q,R) = 1.

We first show that R is sequentially Cohen-Macaulay with respect to P . By Propo-

sition 1.8, R has the dimension filtration

0 = R0  R1  R2  R3 = R,

with respect to P where

R1 =

9
⋂

i=1

pi/I and R2 =

6
⋂

i=1

pi/I.

By Corollary 1.10 we have

Ass(R1) = Ass(R)−Ass(R/R1) = {p10}

and

Ass(R2) = Ass(R)−Ass(R/R2) = {p7, p8, p9, p10}.

It follows that cd(P,R1) = 0 and cd(P,R2) = 1. We set I1 =
9
⋂

i=1

pi and I2 =
6
⋂

i=1

pi.

In view of Proposition 2.2, we need to show that

grade(P,R3/R0) = grade(P,R) = cd(P,R1) = 0,

grade(P,R3/R1) = grade(P, S/I1) = cd(P,R2) = 1

and

grade(P,R3/R2) = grade(P, S/I2) = cd(P,R) = 2.

The first equality is obvious. As P 6⊆ pi for i = 1, . . . , 9, we have grade(P, S/I1) > 1.

On the other hand, grade(P, S/I1) 6 dimS/I1 − cd(Q,S/I1) = 3 − 2 = 1. Thus

the second equality holds. In order to show the third equality, we note that S/I2
has dimension 3 and, by using CoCoA [1], depth 2. Thus Fact 1.1 can not be used
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to compute grade(P, S/I2). We set q1 = p1 ∩ p2 = (x1x3, y1, y3), q2 = p3 ∩ p4 =

(x2x3, y1, y2) and q3 = p5 ∩ p6 = (x1x2, y2, y3). Consider the exact sequence

0 → S/q1 ∩ q2 → S/q1 ⊕ S/q2 → S/(q1 + q2) → 0.

Since grade(P, S/q1⊕S/q2) = 2 and grade(P, S/(q1+q2)) = 1, it follows that grade(P,

S/(q1 ∩ q2)) > 2. Since cd(P, S/(q1 ∩ q2)) = 2, we have grade(P, S/(q1 ∩ q2)) = 2.

Consider the exact sequence

(4) 0 → S/I2 → S/q1 ∩ q2 ⊕ S/q3 → S/(q1 + q3) ∩ (q2 + q3) → 0.

The exact sequence

0 → S/(q1 + q3) ∩ (q2 + q3) → S/(q1 + q3)⊕ S/(q2 + q3) → S/(q1 + q2 + q3) → 0

yields that grade(P, S/(q1+q3)∩(q2+q3)) > 1. So, by (4) we have grade(P, S/I2) > 2.

As cd(P, S/I2) = 2, we conclude that grade(P, S/I2) = 2, as desired.

Next, we show that R is sequentially Cohen-Macaulay with respect to Q. By

Proposition 1.8, R has the dimension filtration 0 = R0  R1  R2  R3 = R

with respect to Q where R1 =
10
⋂

i=7

pi/I and R2 = p10/I. By Corollary 1.10 we have

cd(Q,R1) = 1 and cd(Q,R2) = 2. We set J =
10
⋂

i=7

pi. In view of Proposition 2.2, we

need to show that

grade(Q,R3/R0) = grade(Q,R) = cd(Q,R1) = 1,

grade(Q,R3/R1) = grade(Q,S/J) = cd(Q,R2) = 2

and

grade(Q,R3/R2) = grade(Q,S/p10) = cd(Q,R) = 3.

The first and the third statements are obvious. In order to prove the second equality,

consider the exact sequence

(5) 0 → S/J → S
/

9
⋂

i=7

pi ⊕ S/p10 → S
/

9
⋂

i=7

(pi + p10) → 0.

An exact sequence argument shows that

grade

(

Q,S
/

9
⋂

i=7

pi

)

= grade

(

Q,S
/

9
⋂

i=7

(pi + p10)

)

= 2.
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Thus it follows from (5) that grade(Q,S/J) > 2. On the other hand,

grade(Q,S/J) 6 dimS/J − cd(P, S/J) = 3− 1 = 2.

Therefore, grade(Q,S/J) = 2, as desired.

3. Cohen-Macaulay modules that are sequentially Cohen-Macaulay

with respect to Q

In [7] we have shown that if M is a finitely generated bigraded Cohen-Macaulay

S-module which is Cohen-Macaulay with respect to P , then M is Cohen-Macaulay

with respect to Q. Inspired by this fact and Example 2.3 we have the following

question.

Question 3.1. Let I ⊆ S be a monomial ideal. Suppose S/I is Cohen-Macaulay.

If S/I is sequentially Cohen-Macauly with respect to P , is S/I sequentially Cohen-

Macaulay with respect to Q?

We do not know the answer to this question yet, however in this section, we obtain

some properties of a Cohen-Macaulay filtration with respect to Q in general provided

that the module itself is Cohen-Macaulay.

Fact 3.2. For a Cohen-Macaulay filtration F with respect to Q we recall the

following fact from [6], Fact 2.3,

grade(Q,Mi) = grade(Q,M) for i = 1, . . . , r.

Proposition 3.3. Let M be a finitely generated bigraded Cohen-Macaulay

S-module with |K| = ∞. Suppose M is sequentially Cohen-Macaulay with respect

to Q with the Cohen-Macaulay filtration 0 = M0  M1  . . .  Mr = M with

respect to Q. Then

(a) cd(P,Mi) = cd(P,M) for i = 1, . . . , r;

(b) grade(Q,Mi) + cd(P,Mi) = dimMi for i = 1, . . . , r.

P r o o f. In order to prove (a), since M1 is Cohen-Macaulay with respect to Q,

it follows from Fact 1.2 that cd(P,M1) + cd(Q,M1) = dimM1. By Fact 3.2 we have

cd(Q,M1) = grade(Q,M1) = grade(Q,M). Since M is Cohen-Macaulay, it follows

from [6], Lemma 1.8, that dimM1 = dimM and cd(P,M) = dimM − grade(Q,M)

by Fact 1.1. Thus we conclude that cd(P,M1) = cd(P,M). As by Fact 1.3 we have

cd(P,Mi−1) 6 cd(P,Mi) for all i, the first equality follows.

For the proof (b), by [6], Lemma 1.8, we have dimMi = dimM for i = 1, . . . , r.

Thus the second equalities follow from Fact 1.1, Fact 3.2 and part (a). �
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Proposition 3.4. Let the assumptions and the notation be as in Proposition 3.3.

Then the following statements are equivalent:

(a) cd(P,M) + cd(Q,M) = dimM + r − 1;

(b) Hs
Q(M) 6= 0 for all grade(Q,M) 6 s 6 cd(Q,M).

P r o o f. We first assume that r = 1. As M is Cohen-Macaulay, by Fact 1.1 and

Fact 1.2 we have cd(P,M)+cd(Q,M) = dimM if and only ifM is Cohen-Macaulay

with respect to Q. Thus the claim holds in this case. Now let r > 2. By Fact 1.1 we

have cd(P,M)+cd(Q,M) = dimM + r− 1 if and only if cd(Q,M)− grade(Q,M) =

r−1. This is equivalent to saying that cd(Q,Mi+1) = cd(Q,Mi)+1 for i = 1, . . . , r−1

by Fact 3.2. By [6], Lemma 2.2, this is equivalent to saying that Hs
Q(M) 6= 0 for all

grade(Q,M) 6 s 6 cd(Q,M). �

The following example shows that the condition that “M is Cohen-Macaulay” is

required for Proposition 3.4.

Example 3.5. We set K[x] = K[x1, . . . , xm] and K[y] = K[y1, . . . , yn]. Let L be

a nonzero finitely generated graded K[x]-module of depth 0 and dimension 1, and N

a nonzero finitely generated gradedK[y]-module of depth 0 and dimension 1. We set

M = L ⊗K N and consider it as S-module. One has depthM = 0 and dimM = 2.

Hence M is not Cohen-Macaulay. On the other hand, grade(Q,M) = depthN = 0

and cd(Q,M) = dimN = 1 = dimL = cd(P,M). Hence M is sequentially Cohen-

Macaulay with respect to Q which satisfies condition (b) in Proposition 3.4, while

the equality (a) does not hold.

The following question is inspired by Proposition 3.4.

Question 3.6. LetM be a finitely generated bigraded Cohen-Macaulay S-module

such that Hk
Q(M) 6= 0 for all grade(Q,M) 6 k 6 cd(Q,M). Is Hs

P (M) 6= 0 for all

grade(P,M) 6 s 6 cd(P,M)?

Remark 3.7. Of course the question has affirmative answer in the following cases,

namely, if M has only one(two) non-vanishing local cohomology with respect to Q.

This immediately follows by Fact 1.1. The projective plane P2 given in Example 2.3

is also the case as module with three non-vanishing local cohomology.
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