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ON THE TREE STRUCTURE OF THE POWER

DIGRAPHS MODULO n
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Abstract. For any two positive integers n and k > 2, let G(n, k) be a digraph whose
set of vertices is {0, 1, . . . , n − 1} and such that there is a directed edge from a vertex a

to a vertex b if ak ≡ b (mod n). Let n =
∏r

i=1 p
ei
i be the prime factorization of n. Let

P be the set of all primes dividing n and let P1, P2 ⊆ P be such that P1 ∪ P2 = P and
P1 ∩ P2 = ∅. A fundamental constituent of G(n, k), denoted by G∗

P2
(n, k), is a subdigraph

of G(n, k) induced on the set of vertices which are multiples of
∏

pi∈P2
pi and are relatively

prime to all primes q ∈ P1. L. Somer and M.Křížek proved that the trees attached to all
cycle vertices in the same fundamental constituent of G(n, k) are isomorphic. In this paper,
we characterize all digraphs G(n, k) such that the trees attached to all cycle vertices in
different fundamental constituents of G(n, k) are isomorphic. We also provide a necessary
and sufficient condition on G(n, k) such that the trees attached to all cycle vertices in
G(n, k) are isomorphic.

Keywords: congruence; symmetric digraph; fundamental constituent; tree; digraph prod-
uct; semiregular digraph

MSC 2010 : 68R10, 05C05, 05C20, 11A07, 11A15

1. Introduction

Let n and k > 2 be any positive integers. Let G(n, k) be a digraph whose set of

vertices is {0, 1, . . . , n− 1} and such that there is a directed edge from a vertex a to

a vertex b if ak ≡ b (mod n).

The indegree of a vertex a in G(n, k), denoted by indegn(a), is the number of

directed edges coming into the vertex a, and the outdegree of a vertex a is the

number of directed edges leaving the vertex a. Cycles of length t are called t-cycles,

and cycles of length 1 are called fixed points. A fixed point is isolated if it is not

connected to any other vertex in G(n, k).
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Attached to each cycle vertex c in G(n, k) is a tree T (c) whose root is c and whose

additional vertices are the non-cycle vertices b such that bk
i

≡ c (mod n), for some

positive integer i, but bk
i−1

is not congruent modulo n to a cycle vertex in G(n, k).

Let G1(n, k) denote the subdigraph of G(n, k) induced on the set of vertices which

are relatively prime to n, and let G2(n, k) denote the subdigraph of G(n, k) induced

on the set of vertices which are not relatively prime to n. It is clear that the digraph

G(n, k) is a disjoint union of the digraphs G1(n, k) and G2(n, k).

Let M > 2 be an integer. The digraph G(n, k) is symmetric [5] of order M if

its set of components can be partitioned into subsets of size M , each containing

M isomorphic components. The digraph G(n, k) is semiregular [6] if there exists

a positive integer d such that each vertex of G(n, k) either has indegree d or 0.

Let n =
r
∏

i=1

peii , where pi, i = 1, 2, . . . , r are distinct primes. Let P be the set

of all primes dividing n. Let P1, P2 be subsets of P such that P1 ∪ P2 = P and

P1 ∩ P2 = ∅. Let G∗
P2
(n, k) denote the subdigraph of G(n, k) induced on the set of

vertices which are multiples of
∏

pi∈P2

pi and are relatively prime to all primes q ∈ P1.

Then G∗
P2
(n, k) is called a fundamental constituent of G(n, k). These subdigraphs

were first introduced by B.Wilson [7].

B.Wilson [7] proved that the trees attached to all cycle vertices in G1(n, k) are

isomorphic. In [4], L. Somer and M.Křížek proved that the trees attached to all

cycle vertices in the same fundamental constituent of G(n, k) are isomorphic. They

also provide an example of a digraph whose trees attached to all cycle vertices in

two distinct fundamental constituents are isomorphic. In Figure 1, the trees in the

fundamental constituents G∗
{3,13}(39, 3) and G

∗
{13}(39, 3) of G(39, 3) are trivial, and

the trees attached to cycle vertices in G∗
∅(39, 3) and G

∗
{3}(39, 3) are isomorphic.

29 35 17 23

0 13 26 14 38

3 9 16 22 4 10 30 36

27 1 25 12

11 20 2 32 24 33 15 6 7 37 19 28

5 8 18 21 31 34

Figure 1. G(39, 3).
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In this paper, we characterize n and k such that the trees attached to all cycle

vertices in different fundamental constituents of G(n, k) are isomorphic. We provide

a relation between the tree structure of G(n, k) and the symmetry and semiregularity

property of G(n, k). We also provide a necessary and sufficient condition on G(n, k)

such that the trees attached to all cycle vertices in G(n, k) are isomorphic.

The outline of this paper is as follows. In Section 2, we give some basic prop-

erties of the Carmichael lambda function. In Section 3, we state basic results on

G(n, k) proved in [1], [2], [4]–[7]. In Section 4, we discuss important properties of

the fundamental constituents of G(n, k), which will be used throughout the paper.

In particular, we discuss the product of two distinct fundamental constituents. Sec-

tion 5 contains some lemmas which will be used in the main results. In Section 6,

we prove the main results of this paper.

2 6 10 14 3 5 11 13

4 9

8 12 7 15

0 1

Figure 2. G(16, 2).

2. Carmichael lambda function

In this section, we give some basic properties of the Carmichael lambda function.

Definition 2.1. Let n be a positive integer. Then the Carmichael lambda func-

tion λ(n) is defined as:

λ(1) = 1 = ϕ(1),

λ(2) = 1 = ϕ(2),

λ(4) = 2 = ϕ(4),

λ(2k) = 2k−2 =
1

2
ϕ(2k), for k > 3,

λ(pk) = pk−1(p− 1) = ϕ(pk), for any odd prime p and k > 1,

λ

( r
∏

i=1

peii

)

= lcm[λ(pe11 ), λ(pe22 ), . . . , λ(perr )],

where p1, p2, . . . , pr are distinct primes and ei > 1 for all i = 1, 2, . . . , r.
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Theorem 2.2. Let a, n ∈ N. Then aλ(n) ≡ 1 (mod n) if and only if gcd(a, n) = 1.

Moreover, there exists an integer g such that ordn(g) = λ(n), where ordn(g) denotes

the multiplicative order of g modulo n.

For more on the Carmichael lambda function, see [3].

3. Some results on G(n, k)

Consider a digraph G(n, k). Let

λ(n) = uv,

where u is the largest divisor of λ(n) relatively prime to k. We need the following

results in this paper.

Lemma 3.1 ([7]). Let n =
r
∏

i=1

peii , where pi, i = 1, 2, . . . , r are distinct primes.

Then there are
r
∏

i=1

gcd(λ(peii ), u) cycle vertices in G1(n, k).

Lemma 3.2 ([5]). Every cycle in G1(n, k) is a fixed point if and only if k ≡ 1

(mod u).

Lemma 3.3 ([6]). Every vertex in G(n, k) is a cycle vertex if and only if

gcd(λ(n), k) = 1 and n is square-free.

Lemma 3.4 ([4]). Every vertex in G(n, k) is a fixed point if and only if n is

square-free and k ≡ 1 (mod λ(n)).

Lemma 3.5 ([4]). The vertex 0 is an isolated fixed point of G(n, k) if and only

if n is square-free.

Let At(G(n, k)) denote the number of t-cycles in G(n, k).

Lemma 3.6 ([5]). Let n =
r
∏

i=1

peii , where pi, i = 1, 2, . . . , r are distinct primes.

Then

At(G(n, k)) =
1

t

[ r
∏

i=1

(δi gcd(λ(p
ei
i ), kt − 1) + 1)−

∑

d | t, d 6=t

dAd(G(n, k))

]

,

where δi = 2 if 2 | kt − 1 and 8 | peii , and δi = 1 otherwise.
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Lemma 3.7 ([7]). Let c1 and c2 be any two cycle vertices in G1(n, k). Let T (c1)

and T (c2) be trees attached to c1 and c2, respectively. Then T (c1) ∼= T (c2).

Lemma 3.8 ([6]). Let n =
r
∏

i=1

peii , where pi, i = 1, 2, . . . , r are distinct primes,

and k > 2 be integers. If gcd(λ(n), k) > 1, then G1(n, k) is always semiregular. If

a is a vertex in G1(n, k) and indegn(a) > 1, then

indegn(a) = ε

r
∏

i=1

gcd(λ(peii ), k),

where ε = 2 if 2 | k and 8 | n, and ε = 1 otherwise.

Lemma 3.9 ([6]). Let p be an odd prime, and let e > 1, α > 1 be integers.

Let k = Qpe, where gcd(Q, p) = 1. Then G2(p
α, k) is semiregular if and only if

1 6 α 6 k + e+ 1.

Lemma 3.10 ([1]). Let p be an odd prime and let α, k > 2 be two integers. Then

G(pα, k) is semiregular if and only if gcd (pα−1(p− 1), k) = pα−1.

Lemma 3.11 ([1]). Let p be an odd prime and α > 1. Then G(pα, k) is symmetric

of order p if and only if gcd(pα−1(p− 1), k) = pα−1 and k ≡ 1 (mod p− 1).

Lemma 3.12 ([7]). Let n =
r
∏

i=1

peii , where pi, i = 1, 2, . . . , r are distinct primes,

and let a be a vertex of positive indegree in G1(n, k). Then

indegn(a) =

r
∏

i=1

εi gcd(λ(p
ei
i ), k),

where εi = 2 if 2 | k and 8 | peii , and εi = 1 otherwise.

Lemma 3.13 ([5]). Let p be a prime and let α > 1. Then

indegpα(0) = pα−⌈α/k⌉.

Lemma 3.14 ([1]). Let k > 2, α > 1 be integers and let p be a prime. If a and b

are two cycle vertices in the same cycle of G(pα, k), then indegpα(a) = indegpα(b).

The height of a vertex b in G(n, k) is the least non-negative integer i such that

bk
i

is congruent modulo n to a cycle vertex in G(n, k). We denote the height of

a vertex b by h(b). If C is a component of G(n, k), we define h(C) = sup
b∈C

(b).
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Lemma 3.15 ([1]). Let p be a prime and α > 1, k > 2 be integers. Suppose that

h is the unique positive integer such that kh−1 < α 6 kh. Then h = h(G2(p
α, k)).

Lemma 3.16 ([1]). Let p be a prime and α > 1, k > 2 be integers. Let λ(pα) =

uv, where u is the largest divisor of λ(pα) relatively prime to k. If C is the component

of G(pα, k) containing 1, then h(C) = min{i : v | ki}.

Now we discuss the digraph product and some of its properties. Let n = n1n2,

where gcd(n1, n2) = 1, n1 > 1, n2 > 1. Let k > 2 be an integer. Then it was proved

in [5] that we can write

G(n, k) ∼= G(n1, k)×G(n2, k).

The isomorphism is given by a 7→ (a1, a2), where a ≡ ai (mod ni), for i = 1, 2.

In general, if n =
r
∏

i=1

peii , where pi, i = 1, 2, . . . , r are distinct primes, then

G(n, k) ∼= G(pe11 , k)×G(pe22 , k)× . . .×G(perr , k).

Lemma 3.17 ([2]). Let n = n1n2, where gcd(n1, n2) = 1. Let a = (a1, a2) be

a vertex in G(n, k) ∼= G(n1, k)×G(n2, k). Then

indegn(a) = indegn1
(a1) indegn2

(a2).

Lemma 3.18 ([7]). Let n =
r
∏

i=1

peii , where pi, i = 1, 2, . . . , r are distinct primes.

Let a = (a1, a2, . . . , ar) be a vertex in G(n, k) ∼= G(pe11 , k)×G(p
e2
2 , k)×. . .×G(p

er
r , k).

Then

indegn(a) =
r
∏

i=1

indegqi(ai), where qi = peii .

Lemma 3.19 ([2]). Let n = n1n2, where gcd(n1, n2) = 1. Let C1 be a component

of G(n1, k) and C2 be a component of G(n2, k). Let the cycle length of Ci be ti.

Then C1 ×C2 is a subdigraph of G(n, k) consisting of gcd(t1, t2) components, each

having an lcm[t1, t2]-cycle.

Lemma 3.20 ([5]). Let n = n1n2, where gcd(n1, n2) = 1. Let c = (c1, c2) be

a vertex in G(n, k) ∼= G(n1, k)×G(n2, k). Then c is a cycle vertex in G(n, k) if and

only if ci is a cycle vertex in G(ni, k), for i = 1, 2.
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Lemma 3.21 ([5]). Let J(n1, k) be a union of components of G(n1, k) and let

L(n2, k) be a union of components of G(n2, k). Then J(n1, k)× L(n2, k) is a union

of components of G(n, k) ∼= G(n1, k)×G(n2, k). Moreover, if

L(n2, k) =

m
⋃

i=1

Li(n2, k),

where Li(n2, k) are distinct components of G(n2, k), for i = 1, 2, . . . ,m, then

J(n1, k)× L(n2, k) =

m
⋃

i=1

J(n1, k)× Li(n2, k),

where the union is a disjoint union.

Definition 3.22 ([1]). For any positive integers t and m, we define Om
t to be

the digraph which satisfies the following conditions:

(i) Om
t has a t-cycle;

(ii) indeg(a) = m if a is a cycle vertex, and indeg(a) = 0 otherwise.

Lemma 3.23 ([1]). Om
1 ×G ∼= Om

1 ×H if and only if G ∼= H , for any digraphs

G and H .

4. Fundamental constituents of G(n, k)

Let n = n1n2, where gcd(n1, n2) = 1. Let P be the set of primes dividing n.

Let P1, P2 be subsets of P such that P1 ∪ P2 = P and P1 ∩ P2 = ∅. Suppose that

n1 =
∏

pi∈P1

peii and n2 =
∏

pi∈P2

peii . Let L(n2, k) denote the subdigraph of G2(n2, k)

induced on the set of vertices of G2(n2, k) which are multiples of
∏

pi∈P2

pi. It is clear

that L(n2, k) is a single component of G(n2, k) with the fixed point 0.

Then we have (see [4])

(4.1) G∗
P2
(n, k) ∼= G1(n1, k)× L(n2, k).

If P1 = ∅, then n2 = n and G∗
P2
(n, k) ∼= L(n, k). If P2 = ∅, then n1 = n

and G∗
P2
(n, k) ∼= G1(n, k). It was discussed in [4] that G

∗
P1
(n, k) and G∗

P2
(n, k) are

disjoint unions of components ofG(n, k), andG2(n, k) is a disjoint union ofG
∗
P2
(n, k),

where P2 ranges over all the nonempty subsets of P .
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Let l = mn, where gcd(m,n) = 1. Let m =
r
∏

i=1

peii and n =
r+s
∏

i=r+1

peii , where

pi, i = 1, 2, . . . , r + s are distinct primes. Let P = {p1, p2, . . . , pr} and Q =

{pr+1, pr+2, . . . , pr+s}. Let G∗
P2
(m, k) and G∗

Q2
(n, k) be fundamental constituents

of G(m, k) and G(n, k), respectively, where P2 ⊆ P and Q2 ⊆ Q. Then from (4.1),

we see that

G∗
P2
(m, k)×G∗

Q2
(n, k) ∼= G∗

P2∪Q2
(l, k).

Also note that if R = {p1, p2, . . . , pr, pr+1, pr+2, . . . , pr+s} and R2 ⊆ R, then

(4.2) G∗
R2

(l, k) ∼= G∗
Ri

2

(li, k)×G∗
Rj

2

(lj , k),

where Ri
2, R

j
2 are subsets of R2 such that R

i
2 ∪R

j
2 = R2, R

i
2 ∩R

j
2 = ∅, and lilj = l,

where gcd(li, lj) = 1 and Ri
2 = {pi ∈ R2 : pi | li}, R

j
2 = {pj ∈ R2 : pj | lj}.

Thus we see that the product of a fundamental constituent of G(m, k) and a fun-

damental constituent of G(n, k) results in a fundamental constituent of G(l, k). Also,

any fundamental constituent of G(l, k) can be decomposed into a product of a fun-

damental constituent of G(m, k) and a fundamental constituent of G(n, k). This

property of the fundamental constituents will be our main technique to prove the

main results in this paper.

Note. If G∗
Q2

(m, k) is a fundamental constituent of G(m, k), then G∗
Q2

(l, k) is

also a fundamental constituent of G(l, k), and

G∗
Q2

(l, k) ∼= G∗
Q2

(m, k)×G∗
∅(n, k).

Let n =
r
∏

i=1

peii be the prime factorization of n and P be the set of all primes

dividing n. Let P2 = {p1, p2, . . . , ps}, for any s such that 1 6 s 6 r. Then

G∗
P2
(n, k) ∼= G∗

{p1}
(p1, k)×G∗

{p2}
(p2, k)× . . .

×G∗
{ps}

(ps, k)×G∗
∅(ps+1, k)× . . .×G∗

∅(pr, k).

Theorem 4.1 ([4]). Let n =
r
∏

i=1

peii , where pi, i = 1, 2, . . . , r are distinct primes

and let P be the set of primes dividing n. Let P1, P2 be subsets of P such that

P1 ∪ P2 = P and P1 ∩ P2 = ∅. Let c1, c2 be two cycle vertices in G∗
P2
(n, k) and let

T (c1) and T (c2) be the trees attached to c1 and c2, respectively. Then T (c1) ∼= T (c2).
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5. Preliminary lemmas

Lemma 5.1. Let n = n1n2, where gcd(n1, n2) = 1, n1 > 1, n2 > 1. Let P

and Q be the set of all primes dividing n1 and n2, respectively. Let G
∗
P2∪Q′(n, k) and

G∗
Q′(n, k) be fundamental constituents of G(n, k), for any Q′ ⊆ Q and ∅ 6= P2 ⊆ P .

(i) Let n1 = p1p2 . . . pr, where pi, i = 1, 2, . . . , r are distinct odd primes. Let

P2 = {p1, p2, . . . , ps}, for any integer s such that 1 6 s 6 r. Suppose that k ≡ 1

(mod λ(n1)). Then G
∗
Q′(n, k) consists of (p1 − 1)(p2 − 1) . . . (ps − 1) subgraphs

of G(n, k), each isomorphic to G∗
P2∪Q′(n, k).

(ii) Let n1 = pα, where p is an odd prime and α > 1. Suppose that k ≡ 1 (mod p−1)

and pα−1/k. Then G∗
Q′(n, k) consists of (p − 1) subgraphs of G(n, k), each

isomorphic to G∗
{p}∪Q′(n, k).

P r o o f. We prove the first part. By Lemma 3.2, we see that every vertex in

G1(n1, k) is a fixed point. Also, by Lemma 3.6, we have

A1(G(n1, k)) =

r
∏

i=1

(gcd(λ(pi), k − 1) + 1) =

r
∏

i=1

[(pi − 1) + 1] =

r
∏

i=1

pi = n1.

Hence, G(n1, k) consists only of isolated fixed points.

Let Q′ ⊆ Q and ∅ 6= P2 ⊆ P , for any s such that 1 6 s 6 r. Then by (4.2),

G∗
Q′(n, k) ∼= G∗

∅(n1, k)×G∗
Q′(n2, k),

G∗
P2∪Q′(n, k) ∼= G∗

P2
(n1, k)×G∗

Q′(n2, k).

By (4.1) and Lemma 3.5, we see that G∗
∅(n1, k) consists of ϕ(n1) isolated fixed points,

and G∗
P2
(n1, k) consists of (ps+1 − 1)(ps+2 − 1) . . . (pr − 1) isolated fixed points, for

any s such that 1 6 s 6 r.

Let m = (ps+1 − 1)(ps+2 − 1) . . . (pr − 1). Then we have

G∗
Q′(n, k) ∼=

ϕ(n1)
⋃

i=1

Fi(n1, k)×G∗
Q′(n2, k),

G∗
P2∪Q′(n, k) ∼=

m
⋃

i=1

Ej(n1, k)×G∗
Q′ (n2, k),

where Fi(n1, k) and Ej(n1, k) are components of G
∗
∅(n1, k) and G

∗
P2
(n1, k), respec-

tively, for i = 1, 2, . . . , ϕ(n1) and j = 1, 2, . . . ,m. Also, by Lemma 3.23 we see

that

Fi(n1, k)×G∗
Q′(n2, k) ∼= Ej(n1, k)×G∗

Q′ (n2, k),

for all i, j.
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Hence, G∗
Q′(n, k) consists of (p1 − 1)(p2 − 1) . . . (ps − 1) subgraphs of G(n, k), for

any s such that 1 6 s 6 r, each subgraph is isomorphic to G∗
P2∪Q′(n, k).

We now prove the second part. Assume that k ≡ 1 (mod p− 1) and pα−1 | k. By

Lemma 3.2, we see that every cycle in G1(n1, k) is a fixed point. By Lemma 3.6, we

have

A1(G(n1, k)) = gcd(pα−1(p− 1), k − 1) + 1 = (p− 1) + 1 = p.

Also, note that the only cycle vertex in G2(n1, k) is the fixed point 0. Thus, every

cycle in G(n1, k) is a fixed point.

Let a1, a2, . . . , ap be the fixed points of G(n1, k). Then by Lemma 3.12 and

Lemma 3.13, it follows that

indegpα(ai) = (pα−1(p− 1), k) = pα−1, for i = 1, 2, 3, . . . , p.

This implies that
p
∑

i=1

indegpα(ai) = pα = n1. It follows that the height of each

component of G(n1, k) is 1. Hence, all the components of G(n1, k) are isomorphic.

Consider G∗
∅(n1, k) and G

∗
{p}(n1, k), the fundamental constituents of G(n1, k). We

know that G∗
∅(n1, k) consists of p−1 isomorphic components and G∗

{p}(n1, k) consists

of only one component.

Let G∗
Q′(n2, k) be a fundamental constituent of G(n2, k), for any Q

′ ⊆ Q. Then,

by (4.2)

G∗
Q′(n, k) ∼= G∗

∅(n1, k)×G∗
Q′ (n2, k) ∼=

p−1
⋃

i=1

Opα−1

1i
×G∗

Q′ (n2, k),

G∗
{p}∪Q′(n, k) ∼= G∗

{p}(n1, k)×G∗
Q′(n2, k) ∼= Opα−1

1 ×G∗
Q′(n2, k).

Hence, by Lemma 3.23, it follows that G∗
Q′(n, k) consists of p−1 subgraphs ofG(n, k),

each isomorphic to G∗
Q′∪{p}(n, k). �

Lemma 5.2. Let p be a prime, let α > 1 and k > 2 be integers. Suppose

that the trees attached to all cycle vertices in G(pα, k) are isomorphic. Then the

trees attached to all cycle vertices in G(pα, kr), for any positive integer r, are also

isomorphic.

P r o o f. If C is a component ofG(pα, kr), then |C| 6 |D|, whereD is a component

of G(pα, k) and D contains all the vertices of C. Note that a is a cycle vertex of

G(pα, k) if and only if a is also a cycle vertex of G(pα, kr), for any positive integer r.

Let a0 be a fixed point in G(p
α, k), as well as a fixed point in G(pα, kr). If C
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is a component of G(pα, kr) with the fixed point a0, then |C| = |D|, where D is

a component of G(pα, k) with the fixed point a0 and containing all the vertices of C.

That is, the components C and D have the same vertices but the edges may be

different.

Let T (0) and T (1) be the trees attached to the fixed points 0 and 1, respectively, in

G(pα, k). By hypothesis, there exists a digraph isomorphism ϕ from T (0) onto T (1).

Let T ′(0) and T ′(1) denote the trees attached to the fixed points 0 and 1, respectively,

in G(pα, kr), for any positive integer r. It is enough to show that T ′(0) ∼= T ′(1).

Let a and b be two vertices in T ′(0) such that ak
r

≡ b (mod pα). Then there exist

vertices x1, x2, . . . , xr = b such that

ak ≡ x1 (mod pα), xk1 ≡ x2 (mod pα), . . . , xkr−1 ≡ b (mod pα).

Since T ′(0) and T (0) have the same vertices, and since ϕ is an isomorphism, we have

ϕ(a)k ≡ ϕ(x1) (mod pα), ϕ(x1)
k ≡ ϕ(x2) (mod pα), . . . , ϕ(xr−1)

k ≡ ϕ(b) (mod pα).

Thus, ϕ(a)k
r

≡ ϕ(b) (mod pα) in T (1) as well as in T ′(1). Hence, T ′(0) ∼= T ′(1). �

Theorem 5.3 ([2]). Let n = pq1q2 . . . qr, where p and qi, i = 1, 2, . . . , r are

distinct odd primes. Suppose G(p, k) is not symmetric of order p. Then G(n, k) is

symmetric of order p if and only if both of the following conditions are satisfied.

(i) gcd(p− 1, k) = 1.

(ii) Let T = {qi | gcd(qi − 1, k) = 1}. Then T is not empty and for all t ∈ N,

p | At

(

G
(

∏

qi∈T

qi, k
))

or ordp−1 k | t.

Corollary 5.4. Let n = pq1q2 . . . qr, where p and qi, i = 1, 2, . . . , r are distinct

odd primes. Let k > 2 be an integer such that gcd(p− 1, k) = gcd(qi − 1, k) = 1, for

all i. Suppose that G(n, k) is symmetric of order p and G(p, k) is not symmetric of

order p. Then p | A1(G(q1q2 . . . qr, k)).

P r o o f. This follows from Lemma 3.11 and Theorem 5.3. �
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6. Main results

Theorem 6.1. Let l = mn, where gcd(m,n) = 1, and let k > 2 be an integer. Let

G∗
P1
(m, k) and G∗

P2
(m, k) be two distinct fundamental constituents of G(m, k) such

that the trees attached to all cycle vertices in G∗
P1
(m, k) and G∗

P2
(m, k) are isomor-

phic. Let G∗
Q(n, k) be a fundamental constituent of G(n, k). Then the trees attached

to all cycle vertices in the fundamental constituents G∗
Q∪P1

(l, k) and G∗
Q∪P2

(l, k) of

G(l, k) are isomorphic.

P r o o f. By (4.2), we have

G∗
P1∪Q(l, k)

∼= G∗
P1
(m, k)×G∗

Q(n, k),

G∗
P2∪Q(l, k)

∼= G∗
P2
(m, k)×G∗

Q(n, k).

Let a1, a2, . . . , ar be the cycle vertices of G
∗
P1
(m, k), b1, b2, . . . , bs be the cycle vertices

of G∗
P2
(m, k), and c1, c2, . . . , ct be the cycle vertices of G

∗
Q(n, k), for any positive

integers r, s, and t.

Then by Lemma 3.20, the cycle vertices of G∗
P1∪Q(l, k) and G

∗
P2∪Q(l, k) are of the

form (ai, cj) and (bx, cj), respectively, for all i, j, x such that 1 6 i 6 r, 1 6 j 6 t,

and 1 6 x 6 s. It now suffices to show that the trees attached to cycle vertices

(ai, cj) and (bx, cj) are isomorphic, for all i, j, x. In view of Theorem 4.1, it is

enough to show that T (a1, c1) is isomorphic to T (b1, c1).

By hypothesis, there exists a digraph isomorphism ϕij from T (ai) onto T (bj), for

all i, j such that 1 6 i 6 r, 1 6 j 6 s. Note that ϕij maps a vertex at height h in

T (ai) to a vertex at the same height in T (bj). Now, we define a map F from T (a1, c1)

into T (b1, c1) as F ((u, v)) = (ϕ11(u), v), for each vertex (u, v) in T (a1, c1). We first

show that F is well-defined. Suppose that (u, v) is a cycle vertex in T (a1, c1). Then

F ((u, v)) = F ((a1, c1)) = (ϕ11(a1), c1) = (b1, c1).

Now assume that a vertex (u, v) is at height h > 1 in T (a1, c1). Then h is the least

positive integer such that (u, v)k
h

= (a1, c1). It follows that u is at height h in T (a1)

or v is at height h in T (c1). If one of u or v is at height h, then the other is at

height i such that i 6 h. Since ϕ11 is a digraph isomorphism, then

[F ((u, v))]k
h

= (ϕ11(u), v)
kh

= (ϕ11(u)
kh

, vk
h

)

= (ϕ11(u
kh

), vk
h

) = (ϕ11(a1), c1) = (b1, c1).

If 1 6 i < h, then it follows from Lemma 3.20 that [F ((u, v))]k
i

= (ϕ11(u
ki

), vk
i

)

is not a cycle vertex in T (b1, c1). Hence, F maps a vertex at height h in T (a1, c1)
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to a vertex at the same height in T (b1, c1). We now show that F is a digraph

isomorphism.

Clearly, F is one-one. We now show that F is onto. First note that (b1, c1) =

(ϕ11(a1), c1) = F ((a1, c1)). Let (u, v) be a vertex at height h > 1 in T (b1, c1). As-

sume that u is at height h in T (b1) and v is at height i such that i 6 h in T (c1). Since

ϕ11 is a digraph isomorphism, there exists a vertex w at height h in T (a1) such that

ϕ11(w) = u. Then (w, v) is at height h in T (a1, c1) and F ((w, v)) = (ϕ11(w), v) =

(u, v). Similarly, if v is at height h in T (c1), then F ((w, v)) = (ϕ11(w), v) = (u, v),

where w is at height i such that i 6 h in T (a1). Hence, F is onto.

Finally, we show that F preserves direction. Let (u1, v1) and (u2, v2) be two non-

cycle vertices in T (a1, c1). Suppose there exists a directed edge from (u1, v1) to

(u2, v2). Since ϕ11 is edge-preserving, we have

[F ((u1, v1))]
k = (ϕ11(u1), v1)

k = (ϕ11(u1)
k, vk1 )

= (ϕ11(u
k
1), v

k
1 ) = (ϕ11(u2), v2) = F ((u2, v2)).

�

10
14 18

22 11
13 19

21

6 26 5 27

2 30 3 29

16 17

12
8 24

28 15
9 25

23

4 20 7 31

0 1

Figure 3. G(32, 4).

Theorem 6.2. Let α > 1, and let k > 2 be an integer. Then G(2α, k) is

symmetric of order 2 if and only if the trees attached to all cycle vertices in G(2α, k)

are isomorphic.

P r o o f. If G(2α, k) is symmetric of order 2, or if the trees attached to all cycle

vertices in G(2α, k) are isomorphic, then G(2α, k) has exactly two isomorphic com-

ponents, one containing the fixed point 0 and the other containing the fixed point 1.

Hence, the result follows. �
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Corollary 6.3. Let α > 1, and let k > 2 be an integer. Suppose that the trees

attached to all cycle vertices in G(2α, k) are isomorphic. Then k must be an even

integer.

P r o o f. By Theorem 6.2, the only cycle vertices in G(2α, k) are the fixed points 0

and 1. Now, A1(G(2
α, k)) = gcd(λ(2α), k−1)+1. If k is odd, then A1(G(2

α, k)) > 3,

which is a contradiction. Hence, k must be even. �

Theorem 6.4. Let p be an odd prime and α > 1. Let k > 2 be an integer.

Then the trees attached to all cycle vertices in G(pα, k) are isomorphic if and only

if gcd (pα−1(p− 1), k) = pα−1.

P r o o f. Assume that gcd(p − 1, k) = d > 1 or p ∤ k when α > 1. Let h =

h(G(pα, k)). Then h(G(pα, kh)) = 1. By Lemma 3.14, we have

G(pα, kh) = G2(p
α, kh) ∪G1(p

α, kh) = Opα−1

1 ∪ a1O
m
1 ∪ a2O

m
2 ∪ . . . ∪ atO

m
t ,

where ai = Ai(G1(p
α, kh)) and m = gcd(pα−1(p − 1), kh). By our assumption,

m 6= pα−1. This implies that the trees attached to cycle vertices in G1(p
α, kh) and

G2(p
α, kh) are not isomorphic. By Lemma 5.2, the trees attached to cycle vertices

in G1(p
α, k) and G2(p

α, k) are also not isomorphic. Hence, gcd(p − 1, k) = 1 and

p | k when α > 1.

We now assume that pr||k, for some positive integer r. By hypothesis, h(T (0)) =

h(T (1)) = h0. By Lemma 3.15 and Lemma 3.16, we have k
h0−1 < α 6 kh0 and

pα−1 | kh0 . Then r(h0 − 1) < α − 1 6 rh0. Then p
r(h0−1) 6 kh0−1 6 α − 1 6 rh0,

which implies that h0 = 1. Thus, the height of all components of G(pα, k) is 1. Then

we can write

G(pα, k) = Opα−1

1 ∪ a1O
m
1 ∪ a2O

m
2 ∪ . . . ∪ atO

m
t ,

where ai = Ai(G1(p
α, k)).

Also, indegpα(a) = pr, if a is a cycle vertex in G1(p
α, k), and indegpα(a) = 0

otherwise. By hypothesis, we get m = pr = pα−1, which implies r = α − 1. Hence,

the result follows.

Now we prove the converse. Assume that gcd(pα−1(p − 1), k) = pα−1. Then the

indegree of any vertex in G(pα, k) is 0 or pα−1. Also, the indegree of all cycle vertices

in G(pα, k) is pα−1. By Lemma 3.1, the number of cycle vertices in G1(p
α, k) is p−1.

It follows that the number of cycle vertices in G(pα, k) is p. Thus, this implies that

the height of all components in G(pα, k) is 1. Hence, the result follows. �
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Corollary 6.5. Let p be an odd prime and α > 1. Let k > 2 be an integer.

Then the trees attached to all cycle vertices in G(pα, k) are isomorphic if and only

if G(pα, k) is semiregular.

Corollary 6.6. Let p be an odd prime and α > 1. Let k > 2 be an integer.

Suppose that G(pα, k) is symmetric of order p. Then the trees attached to all cycle

vertices in G(pα, k) are isomorphic.

The converse of Corollary 6.6 does not hold. For example, the trees attached to

all cycle vertices in G(49, 35) are isomorphic, but G(49, 35) is not symmetric (see

Figure 4). However, if k ≡ 1 (mod p−1), then the converse is also true. This follows

from Theorem 6.4 and Lemma 3.11.

22 43 21 42 34 41

15 1 36 14 0 35 20 48 27

8 29 7 28 6 13

16 23 11 4 25 10 38 40 26 5

9 18 30 46 3 19 31 47

2 37 44 39 32 17 24 45 12 33

Figure 4. G(49, 35).

Theorem 6.7. Let n = p1p2 . . . pr, where pi, i = 1, 2, . . . , r are distinct odd

primes. Suppose that for any fundamental constituent G∗
P (n, k) of G(n, k), there

exists a distinct fundamental constituent G∗
Q(n, k) such that the trees attached to

all cycle vertices in G∗
P (n, k)∪G

∗
Q(n, k) are isomorphic. Then, G(pi, k) consists only

of cycles, for at least one i such that 1 6 i 6 r, and conversely. Moreover, if G(pi, k)

consists only of cycles for all i, then the trees attached to all cycle vertices in G(n, k)

are isomorphic.

P r o o f. From Lemma 3.5, we see that 0 is an isolated fixed point of G(pi, k),

for all i. Suppose that G(pi, k) contains some nontrivial trees, for all i. Then using

Lemma 3.7, the indegree of all non-zero cycle vertices in G(pi, k) is greater than 1,

for all i. Note that the cycle vertices of G(n, k) are of the form a = (a1, a2, . . . , ar),
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where each ai is a cycle vertex of G(pi, k). By Lemma 3.18,

indegn(a) =

r
∏

i=1

indegpi
(ai).

Thus, indegn(a) > 1, unless a = (0, 0, . . . , 0). That is, the only cycle vertex in G(n, k)

with indegree 1 is the fixed point 0. Since G∗
{p1,p2,...,pr}

(n, k) is the only fundamental

constituent of G(n, k) with trivial trees, the result follows.

Conversely, assume that G(pi, k) consists only of cycles for at least one i

such that 1 6 i 6 r. Then the trees attached to all cycle vertices in the

fundamental constituents G∗
∅(pi, k) and G∗

{pi}
(pi, k) are isomorphic, in fact the

trees are trivial. Let G∗
Q(n, k) be any fundamental constituent of G(n, k). Let

mi = p1p2 . . . pi−1pi+1 . . . pr. Then by (4.2),

G∗
Q(n, k)

∼= G∗
Q1

(pi, k)×G∗
Q2

(mi, k),

where Q1 = {p ∈ Q : p | pi}, Q2 = {p ∈ Q : p | mi}. Then there exists a fundamental

constituent G∗
Q′

1

(pi, k) of G(pi, k) such that the trees attached to all cycle vertices

in G∗
Q1

(pi, k)∪G
∗
Q′

1

(pi, k) are isomorphic. By Theorem 6.1, the trees attached to all

cycle vertices in G∗
Q(n, k) ∪G

∗
Q′

1
∪Q2

(n, k) are isomorphic.

The second part follows directly from Lemma 3.20. �

Corollary 6.8. Let n = p1p2 . . . pr, where pi, i = 1, 2, . . . , r are distinct odd

primes, and let k > 2 be an integer. Suppose that G(n, k) is symmetric of order n.

Then the trees attached to all cycle vertices in G(n, k) are isomorphic.

The converse of Corollary 6.8 does not hold. For example, the digraph G(35, 11)

has trivial trees but it is not symmetric (see Figure 5).

0 1 6 14 15 20 21 29 34 13 27

2 18 3 12 5 10 7 28 8 22 9 4

16 11 17 33 19 24 23 32 25 30 31 26

Figure 5. G(35, 11).
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Corollary 6.9. Let n = pq1q2 . . . qr, where p and qi, i = 1, 2, . . . , r are distinct

odd primes. Let k > 2 be an integer such that gcd(p−1, k)=gcd(qi−1, k)=1, for all i.

Let Q ⊆ {q1, q2, . . . , qr} and consider the fundamental constituent G∗
Q(q1q2 . . . qr, k)

of G(q1q2 . . . qr, k). Suppose that G(p, k) is symmetric of order p. Then G
∗
Q(n, k) ∪

G∗
Q∪{p}(n, k), which is a subdigraph of G(n, k), is symmetric of order p.

P r o o f. Since G(p, k) is symmetric of order p, then by Lemma 3.11 we see that

k ≡ 1 (mod p − 1). Let C be a component of G∗
Q(n, k). Then by Lemma 5.1 (ii),

there exist distinct components C1, C2, . . . , Cp−2 of G
∗
Q(n, k) and one component

Cp−1 of G
∗
Q∪{p}(n, k) such that each Ci is isomorphic to C, for i = 1, 2, . . . , p − 1.

Similarly, it is the case if we take C to be a component of G∗
Q∪{p}(n, k). Hence,

G∗
Q(n, k) ∪G

∗
Q∪{p}(n, k) is symmetric of order p. �

Corollary 6.9 does not hold when G(p, k) is not symmetric of order p, even though

G(n, k) is symmetric of order p. Consider the following example.

Example. Consider the digraphs G(5, 15) and G(29, 15). Note that both G(5, 15)

and G(29, 15) consist only of cycles. By Lemma 3.11, G(5, 15) is not symmetric

of order 5. Now, A1(G(5, 15)) = 3, A2(G(5, 15)) = 1, A1(G(29, 15)) = 15, and

A2(G(29, 15)) = 7. Also, A1(G(5× 29, 15)) = 45 and A2(G(5× 29, 15)) = 50. Hence,

G(5 × 29, 15) is symmetric of order 5.

Consider the fundamental consituents G∗
∅(145, 15), G

∗
{5}(145, 15), G

∗
{29}(145, 15)

and G∗
{5,29}(145, 15) of G(145, 15). By (4.2), we have

G∗
∅(145, 15)

∼= G∗
∅(5, 15)×G∗

∅(29, 15),

G∗
{5}(145, 15)

∼= G∗
{5}(5, 15)×G∗

∅(29, 15),

G∗
{29}(145, 15)

∼= G∗
∅(5, 15)×G∗

{29}(29, 15),

G∗
{5,29}(145, 15)

∼= G∗
{5}(5, 15)×G∗

{29}(29, 15).

Note that G∗
∅(5, 15) consists of one 2-cycle and 2 isolated fixed points, and G

∗
∅(29, 15)

consists of 7 2-cycles and 14 isolated fixed points. Then by Lemma 3.19 and

Lemma 3.21, G∗
∅(145, 15) consists of 14 + 14 + 14 = 42 2-cycles and 28 isolated

fixed points. Similarly, G∗
{5}(145, 15) consists of 7 2-cycles and 14 isolated fixed

points, G∗
{29}(145, 15) consists of one 2-cycle and 2 isolated fixed points, and

G∗
{5,29}(145, 15) consists of only 1 isolated fixed point. Therefore, we see that

G∗
P (145, 15) ∪ G∗

Q(145, 15) is not symmetric of order 5, for any P,Q ⊆ {5, 29},

P 6= Q.
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Theorem 6.10. Let n = n1n2, where gcd(n1, n2) = 1, and k > 2 be positive

integers.

(i) Let n1 = p1p2 . . . pr, where pi, i = 1, 2, . . . , r are distinct odd primes and r > 2.

Suppose that gcd(λ(n), k) = 1.

(ii) Let n1 = pα, where p is an odd prime and α > 1 is an integer. Suppose that

gcd(pα−1(p− 1), k) = pα−1.

(iii) Let n1 = 2α, where α > 1. Suppose that G(n1, k) satisfies the following condi-

tions:

(a) α = 5, k = 4.

(b) α = 4, k = 2.

(c) α 6 2, 2α−1 | k.

(d) α 6 2, k > 2, 2α−2 | k.

Then for any fundamental constituent G∗
P (n, k) of G(n, k), there exists a distinct

fundamental constituent G∗
Q(n, k) such that the trees attached to all cycle vertices

in G∗
P (n, k) ∪G

∗
Q(n, k) are isomorphic.

P r o o f. We first show that the trees attached to all cycle vertices in G(n1, k) are

isomorphic. Cases (i) and (ii) follow from Lemma 3.3 and Theorem 6.4, respectively.

Now we consider case (iii). For parts (a) and (b), we see from Figure 2 and Figure 3,

respectively, that G(16, 2) and G(32, 4) have exactly two isomorphic components, one

with the fixed point 0 and the other with the fixed point 1.

We now prove parts (c) and (d). By Lemma 3.2, every cycle of G1(2
α, k) is a fixed

point. Also, the fixed point 0 is the only cycle in G2(2
α, k). Since A1(G(2

α, k)) =

gcd(λ(2α), k − 1) + 1 = 2, the only cycles in G(2α, k) are the fixed points 0 and 1.

By Lemmas 3.12 and 3.13, we get indegn1
(1) = indegn1

(0) = 2α−1. Thus, G(2α, k)

has exactly two isomorphic components, one component containing the fixed point 0

and the other containing the fixed point 1.

To finish the proof, in all three cases we use Theorem 6.1 and equation (4.2). Let

G∗
P (n, k) be any fundamental constituent of G(n, k). By (4.2), we have

G∗
P (n, k)

∼= G∗
P1
(n1, k)×G∗

P2
(n2, k),

where P1 = {p ∈ P : p | n1}, P2 = {q ∈ P : q | n2}. Then there exists a fundamental

constituent G∗
Q1

(n1, k) of G(n1, k) such that the trees attached to all cycle vertices

in G∗
P1
(n1, k) ∪ G∗

Q1
(n1, k) are isomorphic. Now, using equation (4.1), consider the

fundamental constituent

G∗
Q1

(n1, k)×G∗
P2
(n2, k) ∼= G∗

Q1∪P2
(n, k).

Hence, by Theorem 6.1, the trees attached to all cycle vertices in G∗
P (n, k) ∪

G∗
Q1∪P2

(n, k) are isomorphic. �
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Corollary 6.11. Let n = 3pe11 p
e2
2 . . . perr , where pi 6= 3 are distinct odd primes.

Let k > 2 be an odd integer. Then for any fundamental constituent G∗
P (n, k) of

G(n, k), there exists a distinct fundamental constituent G∗
Q(n, k) such that the trees

attached to all cycle vertices in G∗
P (n, k) ∪G

∗
Q(n, k) are isomorphic.

Corollary 6.12. Let n = n1n2, where gcd(n1, n2) = 1. Let n1 = pα, where p is

an odd prime and α > 1. Let G∗
Q(n2, k) be a fundamental constituent of G(n2, k).

Suppose that G(n1, k) is symmetric of order p. Then G
∗
Q(n, k)∪G

∗
Q∪{p}(n, k), which

is a subdigraph of G(n, k), is symmetric of order p.

P r o o f. By Theorem 6.10, the trees attached to all cycle vertices in G∗
Q(n, k) ∪

G∗
Q∪{p}(n, k) are isomorphic. Since G(n1, k) is symmetric of order p, then by

Lemma 3.11 we get that k ≡ 1 (mod p− 1). Let C be a component of G∗
Q∪{p}(n, k).

Then by Lemma 5.1 (ii), there exist p − 1 distinct components of G∗
Q(n, k), say,

C1, C2, . . . , Cp−1, each isomorphic to C. Similarly, it is the case when C is a compo-

nent of G∗
Q(n, k). Hence, G

∗
Q(n, k) ∪G

∗
Q∪{p}(n, k) is symmetric of order p. �

The following theorem is a generalization of Theorem 6.4.

Theorem 6.13. Let n = pe11 p
e2
2 . . . perr , where pi, i = 1, 2, . . . , r are distinct odd

primes. Let k > 2 be an integer. The trees attached to all cycle vertices in G(n, k)

are isomorphic if and only if gcd(pei−1
i (pi − 1), k) = pei−1

i , for i = 1, 2, . . . , r.

P r o o f. Assume that gcd(pei−1
i (pi − 1), k) = m 6= pei−1

i , for some i such that

1 6 i 6 r. Our aim is to show that indegpei
i
(0) 6= indegpei

i
(1). We know that

indegpei
i
(0) = p

ei−⌈ei/k⌉
i and indegpei

i
(1) = m. If pi ∤ m, then we are done. So

we consider the case when pi | m. By Lemma 3.8, G1(p
ei
i , k) is always semiregular,

and indegpei
i
(a) = 0 or m, for any vertex a in G1(p

ei
i , k).

Suppose that indegpei
i
(0) = indegpei

i
(1), then m = gcd(pei−1

i (pi − 1), k) =

p
ei−⌈ei/k⌉
i . This implies that k < ei. If G2(p

ei
i , k) is semiregular, then by Lemma 3.10,

we get a contradiction. Now consider the case when G2(p
ei
i , k) is not semiregular. By

Lemma 3.9, we have ei > k+ei−⌈ei/k⌉+2. Note that ei−⌈ei/k⌉+2 6 p
ei−⌈ei/k⌉
i 6 k,

for any odd prime p. Then, ei > 2ei+4−2⌈ei/k⌉, which is again a contradiction. Thus

we can conclude that if gcd(pei−1
i (pi−1), k) 6= pei−1

i , then indegpei
i
(0) 6= indegpei

i
(1).

Let mi = pe11 p
e2
2 . . . p

ei−1

i−1 p
ei+1

i+1 . . . p
er
r . Then,

indegpei
i
(0) indegmi

(1) 6= indegpei
i
(1) indegmi

(1),

which by Lemma 3.17 implies that indegn((0, 1)) 6= indegn((1, 1)). Hence, the trees

attached to the cycle vertices (0, 1) and (1, 1) in G(n, k) are not isomorphic.
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We now prove the converse. Assume that gcd(pei−1
i (pi − 1), k) = pei−1

i , for i =

1, 2, . . . , r. Then by Theorem 6.4, the trees attached to all cycle vertices in G(peii , k),

for all i, are isomorphic. By similar arguments as in the proof of Theorem 6.4, we

see that the height of each component of G(peii , k), for all i, is 1. Then it is clear

that the height of each non-cycle vertex of G(n, k) is 1.

Let a = (a1, a2, . . . , ar) and b = (b1, b2, . . . , br) be two cycle vertices in G(n, k) ∼=

G(pe11 , k)×G(pe22 , k)× . . .×G(perr , k). Let ϕi be a digraph isomorphism from T (ai)

onto T (bi) in G(p
ei
i , k), for i = 1, 2, . . . , r. Consider the trees T (a) and T (b) in

G(n, k). It is enough to show that T (a) ∼= T (b). Let u = (u1, u2, . . . , ur) be any

vertex in T (a). Define a map F : T (a) −→ T (b) as

T ((u1, u2, . . . , ur)) = (ϕ1(u1), ϕ2(u2), . . . , ϕr(ur)).

If u = (u1, u2, . . . , ur) is a cycle vertex, then

F ((u1, u2, . . . , ur)) = F ((a1, a2, . . . , ar))

= (ϕ1(a1), ϕ2(a2), . . . , ϕr(ar)) = (b1, b2, . . . , br).

Suppose that the vertex u = (u1, u2, . . . , ur) is at height 1 in T (a). Since ϕi is an

isomorphism, then

[F ((u1, u2, . . . , ur))]
k = (ϕ1(u1), ϕ2(u2), . . . , ϕr(ur))

k = (ϕ1(u
k
1), ϕ2(u

k
2), . . . , ϕr(u

k
r ))

= (ϕ1(a1), ϕ2(a2), . . . , ϕr(ar)) = (b1, b2, . . . , br).

Hence, F is well-defined. Since ϕi are one-one and onto, it is clear that F is

also one-one and onto. Finally, we show that F preserves the direction. Let u =

(u1, u2, . . . , ur) be at height 1 in T (a). Then

[F ((u1, u2, . . . , ur))]
k = (ϕ1(u1), ϕ2(u2), . . . , ϕr(ur))

k = (ϕ1(u
k
1), ϕ2(u

k
2), . . . , ϕr(u

k
r ))

= (ϕ1(a1), ϕ2(a2), . . . , ϕr(ar)) = F (a).

�

Note. The arguments of the proof of the ‘⇒’ part of Theorem 6.13 will also work

to prove the ‘⇒’ part of Theorem 6.4.

Corollary 6.14. Let n = pe11 p
e2
2 . . . perr , where pi, i = 1, 2, . . . , r are distinct odd

primes. Let k > 2 be an integer. The trees attached to all cycle vertices in G(n, k)

are isomorphic if and only if G(n, k) is semiregular.
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P r o o f. If the trees attached to all cycle vertices in G(n, k) are isomorphic, then

the height of each component of G(n, k) is 1. Let a = (a1, a2, . . . , ar) be a cycle

vertex in G(n, k). Then by Lemma 3.18, indegn(a) =
r
∏

i=1

indegqi(ai), where qi = peii .

Thus it follows that G(n, k) is semiregular.

Conversely, assume that G(n, k) is semiregular. Our aim is to show that

gcd(pei−1
i (pi − 1), k) = pei−1

i , for all i such that 1 6 i 6 r. However, this fol-

lows by using similar arguments as in the proof of the ‘⇒’ part of Theorem 6.13. �

Corollary 6.15. Let n and k > 2 be two integers. The trees attached to all

cycle vertices in G2(n, k) are isomorphic if and only if the trees attached to all cycle

vertices in G(n, k) are isomorphic.

The following theorem is a generalization of Theorem 7.1 in [5].

Theorem 6.16. Let n = n1n2, where gcd(n1, n2) = 1. Let J(n1, k) and L(n2, k)

be subdigraphs of G(n1, k) and G(n2, k), respectively. Suppose that J(n1, k) consists

of M isomorphic components, and L(n2, k) consists of N isomorphic components.

Then J(n1, k)×L(n2, k) is a subdigraph of G(n, k) that is symmetric of order MN .

P r o o f. Let Ci(n1, k), where i = 1, 2, . . . ,M , be M isomorphic components of

J(n1, k), and let Dj(n2, k), where j = 1, 2, . . . , N , be N isomorphic components of

L(n2, k). Since all Ci(n1, k) are isomorphic, each cycle in Ci(n1, k) is a t1-cycle, for

some positive integer t1. Let the M t1-cycles in J(n1, k) be

〈a1, a2, . . . , at1〉, 〈at1+1, at1+2, . . . , a2t1〉, . . . , 〈a(M−1)t1+1, a(M−1)t1+2, . . . , aMt1〉.

Similarly, each cycle in Dj(n2, k), for j = 1, 2, . . . , N , is a t2-cycle, for some positive

integer t2. Let the N t2-cycles of L(n2, k) be

〈b1, b2, . . . , bt2〉, 〈bt2+1, bt2+2, . . . , b2t2〉, . . . , 〈b(N−1)t2+1, b(N−1)t2+2, . . . , bNt2〉.

From Lemma 3.21, we see that

J(n1, k)×Dj(n2, k) =

M
⋃

i=1

Ci(n1, k)×Dj(n2, k),

for each j such that 1 6 j 6 N . Thus, from Lemma 3.19, it follows that there are

M disjoint subgraphs in J(n1, k)×Dj(n2, k), for each j such that 1 6 j 6 N , each

subgraph containing gcd(t1, t2) components. We now show that these M subgraphs

are all isomorphic.
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For each j, it suffices to show that

Ci(n1, k)×Dj(n2, k) ∼= Cl(n1, k)×Dj(n2, k),

for all positive integers i, l such that 1 6 i, l 6M .

By hypothesis, there exists a digraph isomorphism ϕil from Ci(n1, k) onto

Cl(n1, k), for all i, l such that 1 6 i, l 6 M . Then it is clear that for each j,

the map

Fil : Ci(n1, k)×Dj(n2, k) −→ Cl(n1, k)×Dj(n2, k),

defined by Fil((u, v)) = (ϕil(u), v), for any vertex (u, v) ∈ Ci(n1, k) × Dj(n2, k), is

a digraph isomorphism, for all i, l such that 1 6 i, l 6 M . Again, by hypothesis,

there exists a digraph isomorphism ψij from Di(n2, k) onto Dj(n2, k), for all i, j

such that 1 6 i, j 6 N . Define a map

F ′
ij : J(n1, k)×Di(n2, k) −→ J(n1, k)×Dj(n2, k)

as F ′
ij((u, v)) = (u, ψij(v)), for any vertex (u, v) ∈ J(n1, k) × Di(n2, k). It is clear

that F ′
ij is a digraph isomorphism from J(n1, k)×Di(n2, k) onto J(n1, k)×Dj(n2, k),

for all i, j such that 1 6 i, j 6 N .

Then, J(n1, k)× L(n2, k) consists of MN isomorphic subgraphs, each containing

gcd(t1, t2) components. Hence, J(n1, k)× L(n2, k) consists of gcd(t1, t2) subgraphs,

each containing MN isomorphic components. This implies that J(n1, k)× L(n2, k)

is symmetric of order MN . �

Theorem 6.17. Let n = n1n2, where gcd(n1, n2) = 1. Suppose that G(n1, k)

is symmetric of order M and G(n2, k) is symmetric of order N . Then G(n, k) ∼=

G(n1, k)×G(n2, k) is symmetric of order MN .

P r o o f. This follows from Lemma 3.21 and Theorem 6.16. �
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