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GENERIC ONE-STEP BRACKET-GENERATING
DISTRIBUTIONS OF RANK FOUR

Chiara De Zanet

Abstract. We give a uniform, explicit description of the generic types of
one–step bracket–generating distributions of rank four. A manifold carrying
such a structure has dimension at least five and no higher than ten. For each
of the generic types, we give a brief description of the resulting class of generic
distributions and of geometries equivalent to them. For dimensions different
from eight and nine, these are available in the literature. The remaining two
cases are dealt with in my doctoral thesis.

1. Introduction

A smooth distribution H ⊂ TM is said to be bracket-generating if all iterated
brackets among its sections generate, at each point, the whole tangent space to the
manifold M . Bracket–generating distributions play a key role in non-holonomic
mechanics, control theory and subriemannian geometry. The structure of generic
type is encoded, at least locally, by a model nilpotent graded Lie algebra. Contact
structures are remarkable generic examples. According to a classic result in dif-
ferential geometry known as Pfaff theorem, any contact structure locally looks
like the same canonical model, so contact structures do not admit local invariants.
Moreover, the automorphism group of a contact structure is infinite-dimensional.
E. Cartan showed the existence of structures with completely different behavior. In
his “five variables paper” ([7]), he considered generic distributions of rank two in
dimension five, which are bracket generating in two steps. To any such structure,
he associated a Cartan geometry related to the exceptional Lie group G2, thus
showing the existence of local invariants for the structure and of an upper bound
for the dimension of its automorphism group. Nowadays, it is clear that this is a
special case of a more general phenomenon arising in parabolic geometry. Indeed,
generic bracket-generating distributions underlie several parabolic geometries and
in some cases, as in Cartan’s example, they are actually equivalent. The main result
of the article, stated in Theorem 1, is the classification of generic types of one-step
bracket-generating distributions of rank four. As we will see, from the point of view
of the intrinsic properties, there are several examples in rank four. We find a contact
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structure, but also distributions admitting local invariants with infinite-dimensional
automorphism group, parabolic geometries and, finally, a non-parabolic geometry
equipped with a canonical linear connection.

The structure of the article can be briefly described as follows. First, we define
the Levi bracket L : Λ2H → TM/H associated to a (k, n)-distribution H ⊂ TM .
The bracket-generating condition in one step writes in terms of the natural action of
G = GL(k,R)×GL(n−k,R) on the set of surjective linear maps Λ2Rk → Rn−k. In
Proposition 1, we show that L generates G-orbits which we assume, as a genericity
condition, to be open. By linear algebra, the G-orbits are equivalent to orbits
for a natural action of GL(k,R). A key remark concerning GL(4,R), formulated
in Proposition 2, leads to a characterization of open orbits as non-degenerate
restrictions for the wedge product on Λ2R4. Then, the classification in Theorem 1
is obtained by counting the possible nondegenerate restrictions. The result in
Theorem 1 can be read as a special case of the classification of rigid Carnot
algebras, which is given in [1]. However, our description is more explicit and leads
directly to a nice presentation of model algebras. In this picture, one can easily
deduce model algebras of generic (4, 9) and (4, 10)-types. The remaining generic
types are described through suitable generalizations of the real Heisenberg algebra.
We conclude with an overview of model structures. These are described in the
literature, except for dimensions eight and nine. A detailed study of these two cases
will appear in my doctoral thesis.

2. Generic one-step bracket-generating distributions

Definition 1. Let M be a smooth manifold of dimension n and H ⊂ TM a
smooth distribution of rank k. We say that H is bracket generating in one step (or
a (k, n)-distribution) if TM = H + [H,H].

Let H ⊂ TM be a (k, n)–distribution. Denote by Q = TM/H the quotient
bundle and by q : TM → Q the canonical projection. Put gr−1(TM) = H and
gr−2(TM) = Q. Then gr(TM) = gr−1(TM)⊕ gr−2(TM) is the associated graded
vector bundle. The Levi bracket L : Λ2H → Q, defined by the formula

L(ξ, η) := q([ξ, η]) , ξ, η ∈ Γ(H)

gives, at each point x ∈ M , a surjective linear map Lx : Λ2Hx → Qx. Extending
trivially Lx to the remaining components, we endow gr(TxM) with a nilpotent
graded Lie algebra structure, in general depending on the base point x. Consider
the natural action of the Lie group G = GL(k,R) × GL(n − k,R) on the set of
linear maps Λ2Rk → Rn−k, explicitely given by the formula

(1)
G× L(Λ2Rk,Rn−k) −→ L(Λ2Rk,Rn−k)
(A,B) · F (v, w) := B · F (A−1 · v,A−1 · w)

Observe that the subset Ls(Λ2Rk,Rn−k) of surjective linear maps is G-invariant.

Proposition 1. Let be k, n nonnegative integers such that 1 ≤ n−k ≤
(
k
2
)
. Denote

by L(Λ2Rk,Rn−k) = {φ : Λ2Rk → Rn−k linear}, by Ls(Λ2Rk,Rn−k) the subset of
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surjective linear maps and by G = GL(k,R)×GL(n− k,R) the product of general
linear groups.

(a) The Levi bracket associated to a (k, n)-distribution determines, for each
x ∈M , an orbit Ox ⊂ Ls(Λ2Rk,Rn−k) for the natural action of G.

(b) The G-orbits in Ls(Λ2Rk,Rn−k) are in one-to-one correspondence with
the GL(k,R)-orbits for the natural smooth action on the Grassmannian of
`-planes in Λ2Rk, where ` =

(
k
2
)
− n+ k.

Proof. (a) Let H ⊂ TM be a (k, n)-distribution and L : Λ2H → Q the associated
Levi bracket. For x ∈M , choose a pair (φx, ψx) of linear isomorphisms φx : Rk →
Hx and ψx : Rn−k → Qx. The set of all isomorphisms Rk ⊕ Rn−k → gr(TxM)
writes as

{ (φx ◦A,ψx ◦B) | (A,B) ∈ G } .
The pair (φx, ψx), together with Lx, defines Tx ∈ Ls(Λ2Rk,Rn−k) via

Tx(v, w) = ((ψx)−1 ◦ Lx ◦ Λ2φx)(v, w) , v, w ∈ Rk .
Similarly, the pair (φx ◦ A,ψx ◦ B) induces a map Sx ∈ Ls(Λ2Rk,Rn−k) for any
(A,B) ∈ G. Now Sx is easily seen to lie in the G-orbit of Tx. Indeed, for all
v, w ∈ Rk:

(A,B) · Sx(v, w) = (A,B) · ((ψx ◦B)−1 ◦ Lx ◦ Λ2(φx ◦A))(v, w)
= (A,B) · (B−1 ◦ (ψx)−1 ◦ Lx ◦ Λ2φx)(Av,Aw)
= Tx(v, w) .

shows that (A,B) ·Sx = Tx. We conclude that the G-orbit of Tx does not depend
on the choice of isomorphism Rk ⊕ Rn−k → gr(TxM) and it is therefore defined
only by Lx.

(b) Observe that Ker(T ) ⊂ Λ2Rk is a linear subspace of dimension `, hence
an element in the Grassmannian Gr(`,Λ2Rk), for any T ∈ Ls(Λ2Rk,Rn−k). In
formula (1), the factor GL(n− k,R) acts transitively on Rn−k. It thus follows that
two surjective linear maps are in the same G-orbit if and only if their kernels are
mapped to each other by an element of GL(k,R). �

Consider the natural topology on Ls(Λ2Rk,Rn−k), which is induced by the
Euclidean topology on domain and target space.

Definition 2. Let be k, n nonnegative integers such that 1 ≤ n − k ≤
(
k
2
)

and call (k, n) a bidimension. Consider the natural action of the Lie group G =
GL(k,R)×GL(n− k,R) on Ls(Λ2Rk,Rn−k).

(1) The bidimension (k, n) is said to be rigid if there exist open G-orbits in
Ls(Λ2Rk,Rn−k).

(2) Let be O ⊂ Ls(Λ2Rk,Rn−k) an open orbit. A (k, n)-distribution H ⊂ TM
is said to be generic of type O if Ox = O for all x ∈M , with Ox denoting
the orbit generated by Lx as in Proposition 1 (a). We say that T ∈ O is a
model bracket for H.
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An orbit O ⊂ Ls(Λ2Rk,Rn−k) is equivalent to an isomorphism class of nilpotent
graded Lie algebras n = g−1 ⊕ g−2 such that dim(g−1) = k and dim(g−2) = n− k.
For this reason, we can equivalently speak about model bracket or model algebra
for a generic type O. Observe that every open orbit O of bidimension (k, n) is
realized as the type of some generic (k, n)-distribution. To see this, first consider
a nilpotent graded Lie algebra n corresponding to the orbit O. Let N be the
connected and simply connected Lie group with Lie algebra n. Then g−1 ⊂ n
generates a left-invariant distribution on N , which is generic of type O. Therefore,
a classification of generic types of (k, n)-distributions consists of a list of open orbits
of bidimension (k, n). These are a special case of rigid Carnot algebras, classified in
[1]. There, it is shown that the list of rigid bidimensions is given by three infinite
series and several exceptional cases. Put p = k +

(
k
2
)

for arbitrary integers k ≥ 2.
Each of the following bidimensions corresponds to a unique open orbit:

• Darboux bidimensions (k, k + 1);
• dual Darboux bidimensions (k, p− 1);
• free bidimensions (k, p).

Interesting in this sense is the rank-four case where, beyond Darboux, dual Darboux
and free, we find three exceptional rigid bidimensions. Observe that, for every k,
there is a unique orbit of free bidimension (k, p). This is the orbit of isomorphisms
Λ2Rk → Rp−k and coincides with Ls(Λ2Rk,Rp−k).

2.1. Case of rank four. The natural action of GL(4,R) on Λ2R4 clearly respects
the wedge product Λ2R4 × Λ2R4 → Λ4R4, which is symmetric, up to scale. Hence,
this action maps GL(4,R) to the conformal group of the wedge product, which is
isomorphic to CO(3, 3). Observing that the two groups have the same dimension,
one easily deduces the following

Proposition 2 ([8, p. 117]). The wedge product defines a conformal class of
quadratic forms of signature (3, 3) on Λ2R4. The resulting Lie group homomor-
phism GL(4,R)→ CO(3, 3) restricts to a two–fold covering between the connected
components of the identities.

Nonempty orbits of bidimension (4, n) as in Definition 2, a priori, may exist
for 5 ≤ n ≤ 10. Since the free type was discussed above, we restrict to 5 ≤ n ≤ 9.
The orbits of bidimension (4, n) are equivalent, by Proposition 1 (b), to orbits in a
Grassmannian for the action of GL(4,R). If P ⊂ Λ2R4 is a linear subspace, one
can restrict the wedge product to P .

Theorem 1. The open GL(4,R)-orbits in Gr(10− n,Λ2R4) for n = 5, . . . , 9 are
those consisting of subspaces for which the restriction of the wedge product is
nondegenerate. Hence, there is one generic type in Darboux, dual Darboux and free
bidimensions (4, 5), (4, 9) and (4, 10) and there are two generic types in bidimensions
(4, 6), (4, 7) and (4, 8).

Proof. Let b be a quadratic form on Λ2R4 in the conformal class defined by the
wedge product. More precisely, the wedge product determines b through a choice
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of isomorphism Λ4R4 ∼= R. Recall that the conformal group of b is isomorphic to
CO(3, 3). First, we show that the O(3, 3)-orbit of a linear subspace P ⊂ Λ2R4 is
uniquely determined by rank and signature of the restriction b|P . Let P ⊂ Λ2R4 be
a linear subspace of dimension 10− n. Then b|P is a symmetric bilinear form on P
of signature [t, s] with rank t+ s ≤ 10− n. Clearly, rank and signature of b|A·P are
the same for every A ∈ O(3, 3), hence they are constant on the O(3, 3)-orbit of P . If
r = t+s ≤ 10−n, the nullspace N = P∩P⊥ ⊂ P for b|P is a (10−n−r)-dimensional
subspace and b descends to a nondegenerate pseudoscalar product of signature [t, s]
on W/N . Moreover, N ⊂W ⊂ N⊥ and b descends to a nondegenerate pseudoscalar
product on N⊥/N of signature [t′, s′] = [t − (10 − n − r), s − (10 − n − r)]. We
can thus find a basis {w1, . . . , w10−n} for P , which can be completed to a basis
{w1, . . . , w6} for Λ2R4 ∼= R6 such that b writes as

0 0 0 I10−n−r
0 It,s 0 0
0 0 It′′,s′′ 0

I10−n−r 0 0 0


with respect to {w1, . . . , w6}, with t + t′′ = t′ and s + s′′ = s′. If P, P ′ ⊂ Λ2R4

are (10 − n)-dimensional subspaces on which b restricts with same rank and
signature, we can apply the argument above to each of them. In this way, we
find bases {w1, . . . , w6} and {w′1, . . . , w′6} for Rn such that {w1, . . . , w10−n} and
{w′1, . . . , w′10−n} are bases respectively of P and P ′. There exists a unique A ∈
GL(6,R) such that Awi = w′i for all i = 1, . . . , 6. By construction, A maps P
onto P ′. Moreover, since b coincides on {w1, . . . , w6} and on {Aw1, . . . , Aw6}, A
actually lies in O(3, 3). Hence, P and P ′ lie in the same O(3, 3)-orbit. We thus
showed that rank and signature of b|P characterizes the O(3, 3)-orbit of P ⊂ Λ2R4.
In particular, the open orbits correspond to nondegenerate restrictions. Passing
to CO(3, 3)-orbits, the same characterization holds if we identify the values [t, s]
and [s, t] for the signature. By Proposition 2, GL(4,R)–orbits and CO(3, 3)-orbits
coincide, thus proving the first statement. In order to prove the second statement,
we shall count the nondegenerate restrictions of the wedge product to a linear
subspace P ⊂ Λ2R4 of dimension (10 − n) for n = 5, . . . , 9. Observe that b|P is
nondegenerate if and only if the same holds for the restriction to the orthogonal
complement b|P⊥ . Therefore, it is enough to consider the following cases:

(a) orbits of lines (n = 5, 9);
(b) orbits of two-dimensional planes (n = 6, 8);
(c) orbits of three-dimensional planes (n = 7).
On the one hand, it is clear that generic Darboux and dual Darboux types are

unique, since there is a unique nondegenerate restriction to a line. On the other
hand, for each exceptional bidimension there are two distinct open orbits. To see
this, suppose that P ⊂ Λ2R4 is a linear subspace of dimension 10− n = 2, 3 such
that b|P is nondegenerate of signature [t, s], with t+ s = 10− n and t ≥ s. In the
case (b), hyperbolic and elliptic orbits are given by signatures [1, 1] and [2, 0], while
for (c) they correspond to signatures [2, 1] and [3, 0]. �
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Remark 1. The characterization of GL(4,R)-orbits proves the existence of open
orbits of bidimension (4, n) for each admissible value of n.

Observe that the characterization of GL(4,R)-orbits gives an explicit description
of model brackets. Suppose that O ⊂ Ls(Λ2R4,Rn−4) is an open orbit. Then, O
corresponds to a unique value [t, s] for the signature such that t ≥ s and t+s = 10−n.
If the wedge product restricts to a linear subspace P ⊂ Λ2R4 of dimension 10− n
with signature [t, s], then the canonical projection Λ2R4 → Λ2R4/P onto the
quotient is in O. In this picture, the model algebras for the types (4, 10) and (4, 9)
are immediately deduced. In dimension ten, we have the free algebra R4 ⊕ Λ2R4,
which can be realized as the negative graded part of a grading on g = so(9) such
that the first cohomology H1(g−, g) is concentrated in negative homogeneity (see
[6, p. 430]). It follows from a general result ([6, Theorem 3.1.14 p. 271]) that any
generic (4, 10)-distribution is equivalent to a parabolic geometry.

For the (4, 9)-type, observe that the restriction of the wedge product to a line
in Λ2R4 is nondegenerate if and only if the nonzero elements in this line are
nondegenerate as bilinear forms on (R4)∗. A model bracket is thus given by the
projection Λ2R4 → Λ2

0R4 onto the kernel of a nondegenerate skew-symmetric
bilinear form on R4. This generalizes to a description for generic dual Darboux
types of even rank. Indeed, one can consider a nondegenerate skew-symmetric
bilinear form on the real vector space R2k and analogously define a model bracket
of type (2k, n), where n = 2k +

(2k
2
)
− 1. A detailed description of generic dual

Darboux distributions of even rank will appear in my doctoral thesis. There, it will
be proved that every such distribution determines a canonical linear connection. In
particular, torsion and curvature of the canonical connection are local invariants
for the structure, whose automorphism group is related to a conformal symplectic
group and has finite dimension.

A simpler description for the remaining types is obtained through generalizations
of the real Heisenberg algebra of type (4, 5). Generic distributions of (4, 5)-type
are contact structures in dimension five. Model algebras of hyperbolic and elliptic
(4, 6)-types are, respectively, the two-fold product of three-dimensional real Heisen-
berg algebras and the complex three-dimensional Heisenberg algebra. The locally
flat geometries of the types hence are three-dimensional complex contact manifolds
and products of two real three-dimensional contact manifolds, respectively. In
particular, these have infinite-dimensional automorphism group. As shown in [4],
for each type there is a tensor, whose vanishing is equivalent to local flatness,
so there are local invariants. However, there exist remarkable examples of finite
type. Any generic (4, 6)-distribution endowed with an additional almost complex
structure on the subbundle H, which is compatible with the Levi bracket in an
appropriate sense, is in fact equivalent to a parabolic geometry (see [6, p. 443-455]).
This is related to CR-structures of dimension and codimension two, see [5] and [9].

The model bracket for a generic (4, 7)-distribution is the imaginary part of
an Hermitian form on a real four-dimensional algebra A (see [6, p. 432-436] for
details). The two open orbits are realized through different choices for A. The
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algebra of quaternions A = H gives the elliptic model bracket, while the hyperbolic
model comes from the choice of algebra A = M2(R) of real square matrices of
size two. An alternative nice description in terms of nondegenerate orbits in a
Grassmannian involves the Hodge operator (see [8, p. 117]). Every choice of a scalar
product on R4 gives an Hodge operator ∗ : Λ2R4 → Λ2R4. The two eigenspaces
associated to ∗ are both three-planes in Λ2R4 and we look at their CO(3, 3)-orbits
in Gr(3,Λ2R4). Elliptic and hyperbolic orbits come from two different choices
of a scalar product on R4, namely of positive definite and indefinite signature
[2, 2]. These are exactly the signatures of the quadratic forms defined by the
square norm on H and by the determinant on M2(R). The corresponding generic
distributions of elliptic and hyperbolic types, respectively known as quaternionic
and split-quaternionic contact structures, are equivalent to parabolic geometries.
Quaternionic contact structures were introduced by O. Biquard in his work about
conformal infinities of quaternionic-Kähler metrics (see [3] and [2]). The model for
quaternionic contact structures, arising in the gauge theory of four-dimensional
manifolds, is the instanton distribution on the sphere S7 ⊂ H2.

Finally, considerations concerning open (4, 8)-orbits are deduced, by duality,
from the description of (4, 6)-types given above. Characteristic of the hyperbolic
(4, 8)-model, for instance, is a decomposition g−1 = gE−1⊕gF−1 into two–dimensional
subspaces, which both are isotropic. This means that the bracket induces an
isomorphism g−2 ∼= gE−1 ⊗ gF−1. Elliptic and hyperbolic (4, 8)-types are obtained
as the negative part of a grading on two different real forms for g = sl(5,C).
The structures in dimension eight are equivalent to parabolic geometries. Using
this equivalence, one can apply tools from the general theory to deduce local
invariants for the structure. Similar results concerning structures in dimension
eight will appear in my doctoral thesis. By considering smooth sections, one can
prove that any hyperbolic (4, 8)-distribution writes as direct sum H = E ⊕ F of
smooth subbundles such that TM/H ∼= E ⊗ F . This, in turn, leads to an explicit
decomposition of torsion and curvature in irreducible components.
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