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17. listopadu 12, 771 46 Olomouc, Czech Republic
e-mail: jiri.rachunek@upol.cz

2Department of Mathematical Methods in Economy,
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Abstract

Generalized MV-algebras (= GMV-algebras) are non-commutative gen-
eralizations of MV-algebras. They are an algebraic counterpart of the
non-commutative �Lukasiewicz infinite valued fuzzy logic. The paper in-
vestigates approximation spaces in GMV-algebras based on their normal
ideals.
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1 Introduction

Rough sets were introduced by Pawlak [18] in 1982 to give a new mathematical
approach to vagueness. The key idea is that our knowledge about the properties
of the objects of a given universe of discourse may be inadequate or incomplete
in the sense that the objects of this universe can be observed only within the
accuracy of indiscernible relations. Rough sets were studied by many authors
and from various points of view, see e.g. [1, 3, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17,
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23, 25, 27, 28, 29, 30, 31]. Recall that in the classical rough set theory, subsets
are approximated by means of pairs of ordinary sets, so-called lower and upper
approximations, which are e.g. composed by some classes of given equivalences.

MV-algebras are an algebraic counterpart of the �Lukasiewicz propositional
infinite valued logic with truth values from the real interval [0, 1]. Recently,
rough sets in MV-algebras based on their ideals and corresponding congruences
were studied in [26].

The first author in [24] and, independently, Georgescu and Iorgulescu in
[10], have introduced mutually equivalent generalizations of MV-algebras. We
will use for these algebras the name generalized MV-algebras, briefly GMV-
algebras. Leuştean in [14] introduced the non-commutative �Lukasiewicz infinite
valued logic, also with truth values from the real interval [0, 1], and she showed
that GMV-algebras can be taken as an algebraic semantics of this logic.

In the paper we study approximation spaces in GMV-algebras based on
their normal ideals and corresponding congruences. (Note that the quotient
GMV-algebras corresponding to normal ideals need not be (commutative) MV-
algebras.)

2 Preliminaries

Let M = (M ;⊕,− ,∼ , 0, 1) be an algebra of type 〈2, 1, 1, 0, 0〉. Set x � y :=
(x−⊕y−)∼ for any x, y ∈ M . Then M is called a generalized MV-algebra (briefly:
GMV-algebra) if for any x, y, z ∈ M the following conditions are satisfied:

(A1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;

(A2) x⊕ 0 = x = 0⊕ x;

(A3) x⊕ 1 = 1 = 1⊕ x;

(A4) 1− = 0 = 1∼;

(A5) (x∼ ⊕ y∼)− = (x− ⊕ y−)∼;

(A6) x⊕ (y � x∼) = y ⊕ (x� y∼) = (y− � x)⊕ y = (x− � y)⊕ x;

(A7) (x− ⊕ y)� x = y � (x⊕ y∼);
(A8) x−∼ = x.

The GMV-algebras are in fact equivalent with the pseudo-MV algebras in-
troduced in [10]. The only difference is the following: x � y from [24] is y � x
from [10]. Note that now we use the axiomatization and some basic results from
[10] which are modified for the GMV-algebras in this sense.

If we put x ≤ y if and only if x− ⊕ y = 1, then ≤ is an order on M .
Moreover, (M ;≤) is a bounded distributive lattice in which x∨y = x⊕ (y�x∼)
and x ∧ y = x � (y ⊕ x∼) for each x, y ∈ M , and 0 is the least and 1 is the
greatest element in M , respectively.

Further we define binary operations d1 and d2 (distance functions) on M as
follows:

d1(x, y) := (x− � y)⊕ (y− � x), d2(x, y) := (x� y∼)⊕ (y � x∼).
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Proposition 2.1 ([10]) The following properties hold in any GMV-algebra:

(1) x� y = (x∼ ⊕ y∼)−,

(2) x∼− = x,

(3) 0∼ = 0− = 1,

(4) x� 1 = 1� x = x,

(5) (x⊕ y)− = x− � y−, (x⊕ y)∼ = x∼ � y∼,

(6) (x� y)− = x− ⊕ y−, (x� y)∼ = x∼ ⊕ y∼,

(7) x⊕ y = (x− � y−)∼ = (x∼ � y∼)−,

(8) x− ⊕ x = 1 = x⊕ x∼,

(9) x− � x = 0 = x� x∼,

(10) x� y ≤ x ∧ y, x⊕ y ≥ x ∨ y,

(11) x� (y � z) = (x� y)� z,

(12) x ≤ y ⇐⇒ y− ≤ x− ⇐⇒ y∼ ≤ x∼,

(13) y � (x⊕ z) ≤ x⊕ (y � z),

(14) (x⊕ z)� y ≤ (x� y)⊕ z,

(15) d1(x, y) = d1(y, x), d2(x, y) = d2(y, x),

(16) d1(x
∼, y∼) = d2(x, y), d2(x

−, y−) = d1(x, y).

If M is a GMV-algebra and ∅ �= I ⊆ M , then I is called an ideal of M if
(a) x⊕ y ∈ I for any x, y ∈ I;
(b) y ≤ x implies y ∈ I for any x ∈ I and y ∈ M .

An ideal I is called normal if
(c) x− � y ∈ I iff y � x∼ ∈ I for each x, y ∈ M .

Recall that an ideal I of a GMV-algebra M is normal if and only if x⊕ I =
I⊕x, for any x ∈ M , where x⊕I := {x⊕y : y ∈ I} and I⊕x := {y⊕x : y ∈ I}.
It is obvious that the sets I(M) of ideals of M and N (M) of normal ideals of
M ordered by set inclusion are complete lattices. Moreover, normal ideals of M
are in a one-to-one correspondence to congruences on M and the lattice N (M)
is isomorphic to the lattice Con(M) of the congruences on M . (Recall that if
I is a normal ideal of M , then the corresponding congruence θI is such that
(x, y) ∈ θI iff d1(x, y) ∈ I iff d2(x, y) ∈ I, and if θ is a congruence on M then
the corresponding normal ideal Iθ is the 0-class of θ.) If θ is a congruence on
M , I = Iθ the corresponding normal filter of M and x ∈ M then the class of θ
containing x will be denoted by x/θ or x/I.

Now we recall some basic notions of the classical theory of approximation
spaces. An approximation space is a pair (S, θ) where S is a set and θ an
equivalence on S. For any approximation space (S, θ), by the upper rough
approximation in (S, θ) we will mean the mapping Aprθ : P(S) −→ P(S) such
that

Aprθ(X) := {x ∈ S : x/θ ∩X �= ∅}
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and by the lower rough approximation in (S, θ) the mapping Apr
θ
: P(S) −→

P(S) such that
Apr

θ
(X) := {x ∈ S : x/θ ⊆ X},

for any X ⊆ S. (x/θ is the class of S/θ containing x.) The upper rough
approximation Aprθ(X) of X can be interpreted as the set of all objects which
are possibly in X with respect to (S, θ) and the lower rough approximation
Apr

θ
(X) of X as the set of all objects which are certainly in X with respect to

(S, θ).
If Aprθ(X) = Apr

θ
(X) then X is called a definable set, otherwise X is called

a rough set.
The following properties of approximation spaces are well known and obvi-

ous.

Proposition 2.2 If (S, θ) is an approximation space, then for every X,Y ⊆ S
we have:

(1) Apr
θ
(X) ⊆ X ⊆ Aprθ(X).

(2) X ⊆ Y =⇒ Apr
θ
(X) ⊆ Apr

θ
(Y ), Aprθ(X) ⊆ Aprθ(Y ).

(3) Aprθ(X ∪ Y ) = Aprθ(X) ∪ Aprθ(Y ),

Aprθ(X ∩ Y ) ⊆ Aprθ(X) ∩ Aprθ(Y ).

(4) Apr
θ
(X ∩ Y ) = Apr

θ
(X) ∩ Apr

θ
(Y ),

Apr
θ
(X ∪ Y ) ⊇ Apr

θ
(X) ∪ Apr

θ
(Y ).

3 Approximations induced by normal ideals of GMV-
algebras

In this section we introduce and investigate special approximation spaces (M, θ)
such that M is the universe of a GMV-algebra and θ is a congruence on this
GMV-algebra.

Let M = (M ;⊕,− ,∼ , 0, 1) be a GMV-algebra, θ a congruence on M and
I = Iθ the corresponding normal ideal of M . Then for the approximation space
(M, θ) we will also use the denotation Apr

I
(X) for the lower and AprI(X) for

the upper rough approximation, respectively, and any X ⊆ M .

Proposition 3.1 If I is a normal ideal of a GMV-algebra M and ∅ �= X ⊆ M ,
then X is definable with respect to I if and only if

Apr
I
(X) = X or AprI(X) = X.

Proof Let Apr
I
(X) = X. Let x ∈ AprI(X), i.e. x/I ∩ X �= ∅. Consider

y ∈ x/I ∩ X. Then y ∈ X = Apr
I
(X), hence x/I = y/I ⊆ X, therefore

x ∈ Apr
I
(X).

Further, let AprI(X) = X, x ∈ X and y ∈ x/I. Then y/I ∩ X �= ∅, thus
y ∈ AprI(X) = X. �
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Remark 3.2 From the proof of Proposition 3.1 it is obvious that the assertion
of the preceding proposition is valid for any equivalence on M .

Proposition 3.3 Let I be a normal ideal of a GMV-algebra M and a, b ∈ M .
Then a/I = b/I if and only if there are elements x, y, u, v ∈ I such that

a = (x⊕ b)� y∼ = v− � (b⊕ u).

Proof If a/I = b/I then d1(a, b) ∈ I, that means x = b− � a ∈ I and
y = a− � b ∈ I. Hence x ⊕ b = (b− � a) ⊕ b = a ∨ b = (a− � b) ⊕ a = y ⊕ a.
Further (x ⊕ b) � y∼ = (y ⊕ a) � y∼ = y∼ ∧ a = a, because y = a− � b ≤ a−,
and hence y∼ ≥ a−∼ = a.

Analogously, if we put u = a � b∼ and v = b � a∼, then u, v ∈ I (since
d2(a, b) ∈ I) and a = v− � (b⊕ u).

Conversely, let a = (x⊕ b)� y∼, where x, y ∈ I. Then ((x⊕ b)� y∼)−� b =
((x⊕b)−⊕y∼−)�b = ((x−�b−)⊕y)�b ≤ ((x−�b−)�b)⊕y = (x−�(b−�b))⊕y =
y ∈ I, therefore a− � b = ((x⊕ b)� y∼)− � b ∈ I.

Further, b− � ((x⊕ b)� y∼) = (b− � (x⊕ b))� y∼ ≤ (x⊕ (b− � b))� y∼ =
x� y∼ ≤ x ∈ I, hence b−�a = b−� ((x⊕ b)� y∼) ∈ I. That means a/I = b/I.

�

If M is a GMV-algebra and ∅ �= X ⊆ M , denote by 〈X〉 the ideal of M
generated by X. Obviously 〈X〉 = {a ∈ M : a ≤ x1⊕· · ·⊕xn, where x1, . . . , xn ∈
X, n ∈ N}. If ∅ �= X,Y ⊆ M then 〈X,Y 〉 will denote the ideal 〈X ∪ Y 〉.

Theorem 3.4 Let I be a normal ideal of a GMV-algebra M and ∅ �= X, Y ⊆
M . Then

AprI(〈X, Y 〉) ⊆ 〈AprI(X), AprI(Y )〉.

If M is linearly ordered then

AprI(〈X, Y 〉) = 〈AprI(X), AprI(Y )〉.

Proof If a ∈ AprI(〈X,Y 〉) then a/I ∩〈X,Y 〉 �= ∅. Let b ∈ a/I ∩〈X,Y 〉 and let
b ≤ z1 ⊕ · · · ⊕ zn, where zi ∈ X ∪ Y , i = 1, . . . , n, n ∈ N. Since a/I = b/I, there
are c, d ∈ I such that a = c−�(b⊕d). Thus a = c−�(b⊕d) ≤ b⊕d ≤ (z1⊕· · ·⊕
zn)⊕d = (z1⊕· · ·⊕ zn−1)⊕ (zn⊕d), and since (zn⊕d)/I = zn/I⊕d/I = zn/I
and zi ∈ AprI(X) ∪ AprI(Y ), i = 1, . . . , n, we get a ∈ 〈AprI(X), AprI(Y )〉.

Let M be linearly ordered, a ∈ 〈AprI(X), AprI(Y )〉, a ≤ v1 ⊕ · · · ⊕ vn,
n ∈ N and vi ∈ AprI(X)∪AprI(Y ). Let wi ∈ vi/I∩X, whenever vi ∈ AprI(X)
and wi ∈ vi/I ∩ Y , whenever vi ∈ AprI(Y ), and let z ∈ a/I. Suppose a/I �=
(w1 ⊕ · · · ⊕ wn)/I. Since M is linearly ordered, z ≤ w1 ⊕ · · · ⊕ wn, hence
z ∈ 〈X,Y 〉. Therefore a ∈ AprI(〈X,Y 〉).

The case a/I = (w1 ⊕ · · · ⊕ wn)/I is trivial. �

Theorem 3.5 Let I be a normal ideal of a GMV-algebraM and ∅ �= X,Y ⊆ M .
Then

〈Apr
I
(X), Apr

I
(Y )〉 ⊆ Apr

I
(〈X,Y 〉).
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Proof Suppose that a ∈ 〈Apr
I
(X), Apr

I
(Y )〉 and zi ∈ Apr

I
(X) ∪ Apr

I
(Y ),

i = 1, . . . , n, are such that a ≤ z1⊕· · ·⊕zn. Let b ∈ a/I. Then there are c, d ∈ I
such that b = c−�(a⊕d). Hence b = c−�(a⊕d) ≤ a⊕d ≤ (z1⊕· · ·⊕zn)⊕d =
(z1 ⊕ · · · ⊕ zn−1)⊕ (zn ⊕ d).

We have zn ⊕ d ∈ zn/I ⊆ X, if zn ∈ Apr
I
(X), and zn ⊕ d ∈ zn/I ⊆ Y , if

zn ∈ Apr
I
(Y ), thus b ∈ 〈X,Y 〉. Therefore a ∈ Apr

I
(〈X,Y 〉). �

Recall that if I and J are normal ideals of a GMV-algebra M , then z ⊕
I = I ⊕ z and z ⊕ J = J ⊕ z for every z ∈ M , and thus 〈I, J〉 = {a ∈
M : a ≤ x ⊕ y, where x ∈ I, y ∈ J}. Moreover, since M satisfies the Riesz
Decomposition Property (i.e., if a, b1, . . . , bn ∈ M and a ≤ b1 ⊕ · · · ⊕ bn, then
there are c1, . . . , cn ∈ M such that ci ≤ bi, i = 1, . . . , n, and a = c1 ⊕ · · · ⊕ cn),
〈I, J〉 = I ⊕ J := {x⊕ y : x ∈ I, y ∈ J}, I ⊕ J = J ⊕ I, and 〈I, J〉 is a normal
ideal.

Theorem 3.6 If I and J are normal ideals of a GMV-algebra M and ∅ �= X ⊆
M , then

Apr〈I,J〉(X) ⊆ 〈Apr
I
(X), Apr

J
(X)〉.

Moreover, if a ∈ 〈Apr
I
(X), Apr

J
(X)〉, then

a/〈I, J〉 ⊆ 〈Apr
I
(X), Apr

J
(X)〉.

Proof Let a ∈ Apr〈I,J〉(X). Then a/〈I, J〉 ⊆ X, and thus also a/I ⊆ X

and a/J ⊆ X. Hence a ≤ a ⊕ a ∈ 〈Apr
I
(X), Apr

J
(X)〉, and this means

Apr〈I,J〉(X) ⊆ 〈Apr
I
(X), Apr

J
(X)〉.

Now, let a ∈ 〈Apr
I
(X), Apr

J
(X)〉. Then there are u1, . . . , un ∈ Apr

I
(X) ∪

Apr
J
(X) such that a ≤ u1 ⊕ · · · ⊕ un.

Let b ∈ a/〈I, J〉. Then there are x, y ∈ 〈I, J〉 such that b = x− � (a ⊕ y).
Moreover y = v ⊕ w, where v ∈ I and w ∈ J . Hence b ≤ a⊕ y ≤ u1 ⊕ · · ·un ⊕
v ⊕ w. We have (un ⊕ v)/I = un/I, thus (un ⊕ v)/〈I, J〉 = un/〈I, J〉. Further
(un ⊕ v) ⊕ w = w1 ⊕ (un ⊕ v), where w1 ∈ J , and hence (un−1 ⊕ w1)/J =
un−1/J , and therefore also (un−1 ⊕ w1)/〈I, J〉 = un−1/〈I, J〉. Thus we get
b ∈ 〈Apr

I
(X), Apr

J
(X)〉, and this means a/〈I, J〉 ⊆ 〈Apr

I
(X), Apr

J
(X)〉. �

Theorem 3.7 If I and J are normal ideals of a GMV-algebra M and X is an
ideal of M , then

Apr〈I,J〉(X) = 〈Apr
I
(X), Apr

J
(X)〉.

Proof Obviously 〈Apr
I
(X), Apr

J
(X)〉 ⊆ X. Let a ∈ 〈Apr

I
(X), Apr

J
(X)〉.

Then by Theorem 3.6, a/〈I, J〉 ⊆ 〈Apr
I
(X), Apr

J
(X)〉 ⊆ X, and so

〈Apr
I
(X), Apr

J
(X)〉 ⊆ Apr〈I,J〉(X).

�

Theorem 3.8 If I is a normal ideal and X is a subalgebra of a GMV-algebra
M then also AprI(X) is a subalgebra of M .
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Proof Let x, y ∈ AprI(X). Then x/I ∩X �= ∅ �= y/I ∩X. Let x1 ∈ x/I ∩X
and y1 ∈ y/I ∩X. Then x1 ⊕ y1 ∈ X and x1 ⊕ y1 ∈ x/I ⊕ y/I = (x⊕ y)/I and
hence x⊕ y ∈ AprI(X).

Now let x ∈ AprI(X) and x1 ∈ x/I ∩ X. Then d1(x1, x) ∈ I, thus also
d2(x

−
1 , x

−) ∈ I, therefore x−
1 ∈ x−/I ∩X. That means x− ∈ AprI(X).

Analogously one can show that x∼ ∈ AprI(X). �

(The assertion also follows directly from the Third Isomorphism Theorem in
the universal algebra [2].)

Theorem 3.9 Let M be a linearly ordered GMV-algebra, I a normal ideal of
M and X �= ∅ a convex subset of M . Then Apr

I
(X) and AprI(X) are convex

too.

Proof Let x, y ∈ Apr
I
(X), z ∈ M and x ≤ z ≤ y. Let a ∈ z/I and x/I �=

z/I �= y/I. Since θI is also a lattice congruence, and hence has convex classes,
for any elements x1 ∈ x/I, y1 ∈ y/I, z1 ∈ z/I we get x1 < z1 < y1, thus
z1 ∈ Apr

I
(X) and so also z ∈ Apr

I
(X). For x/I = z/I or y/I = z/I the proof

is obvious. Therefore Apr
I
(X) is convex.

Let now x, y ∈ AprI(X), i.e. x/I ∩ X �= ∅ �= y/I ∩ X. Suppose z ∈ M ,
x ≤ z ≤ y and x1 ∈ x/I ∩X, y1 ∈ y/I ∩X. If x/I �= z/I �= y/I and z1 ∈ z/I,
then x1 < z1 < y1. Since x1, y1 ∈ X, we get z1 ∈ X, thus z1 ∈ z/I ∩X, and
hence z ∈ AprI(X). Therefore AprI(X) is convex. �

Remark 3.10 The proof of the preceding theorem is based on the fact that
lattice congruences have convex classes. Hence it is easy to show that its as-
sertion is valid for any equivalence with convex classes, e.g. for congruences of
algebras with lattice reduct in the signature.

If Y is a subset of a GMV-algebra M , set

Y − := {y− : y ∈ Y } and Y ∼ := {y∼ : y ∈ Y }.

Theorem 3.11 Let I be a normal ideal of a GMV-algebra M and ∅ �= X ⊆ M .
Then

a) AprI(X)− = AprI(X
−), AprI(X)∼ = AprI(X

∼);

b) Apr
I
(X)− = Apr

I
(X−), Apr

I
(X)∼ = Apr

I
(X∼).

Proof a) Let x ∈ AprI(X)−. Then x∼ ∈ AprI(X), thus x∼/I ∩X �= ∅. Let
y ∈ x∼/I ∩ X. Then d1(x

∼, y) ∈ I, hence also d2(x, y
−) ∈ I and y− ∈ X−.

From this we get x ∈ AprI(X
−), i.e. AprI(X)− ⊆ AprI(X

−).
Conversely, let x ∈ AprI(X

−), i.e. x/I∩X− �= ∅. Then there is y ∈ x/I∩X−,
thus d2(x, y) ∈ I and y∼ ∈ X. From d2(x, y) ∈ I we get d1(x

∼, y∼) ∈ I, hence
x∼/I = y∼/I. Thus we have x∼/I ∩X �= ∅, that means x∼ ∈ AprI(X), and so
x ∈ AprI(X)−. Hence AprI(X

−) ⊆ AprI(X)−.
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b) Let x ∈ Apr
I
(X)−. Then x∼ ∈ Apr

I
(X), thus x∼/I ⊆ X, hence x/I ⊆

X−, and that means x ∈ Apr
I
(X−).

Conversely, let x ∈ Apr
I
(X−). Then x/I ⊆ X−, hence x∼/I ⊆ X, i.e.

x∼ ∈ Apr
I
(X), and therefore x ∈ Apr

I
(X)−. �

Lemma 3.12 Let M1 and M2 be GMV-algebras, f a homomorphism of M1

into M2 and I a normal ideal of M2. Then f−1(I) is a normal ideal of M1.

Theorem 3.13 Let M1 and M2 be GMV-algebras, f a homomorphism of M1

into M2, I a normal ideal of M2 and ∅ �= X ⊆ M2. Then

f−1
(
AprI(X)

)
= Aprf−1(I)(f

−1(X)).

Proof Let x ∈ M1. Then x ∈ Aprf−1(I)(f
−1(X)) ⇐⇒ x/f−1(I) ∩ f−1(X) �=

∅ ⇐⇒ ∃z ∈ x/f−1(I) ∩ f−1(X) ⇐⇒ d1(z, x) ∈ f−1(I), z ∈ f−1(X) ⇐⇒
f(d1(z, x)) ∈ I, z ∈ f−1(X) ⇐⇒ f(z)/I = f(x)/I, z ∈ f−1(X).

Hence f(z) ∈ f(x)/I and z ∈ f−1(X), that means f(z) ∈ f(x)/I ∩X, and
so f(x) ∈ AprI(X) and this is equivalent to x ∈ f−1

(
AprI(X)

)
. �

If f is a homomorfismus of a GMV-algebra M1 into a GMV-algebra M2, we
denote Ker(f) = {x ∈ M1 : f(x) = 0}. It is obvious that Ker(f) is a normal
ideal of M1.

Theorem 3.14 Let M1 and M2 be GMV-algebras, f a homomorphism of M1

into M2 and ∅ �= X ⊆ M1. Then

f
(
AprKer(f)(X)

)
= f(X).

Proof Obviously f(X) ⊆ f
(
AprKer(f)(X)

)
.

Conversely, x ∈ f
(
AprKer(f)(X)

)
implies that there is y ∈ AprKer(f)(X)

such that x = f(y). Let z ∈ y/Ker(f)∩X. Then d1(z, y) ∈ Ker(f) and z ∈ X,
hence f(d1(z, y)) = 0, thus d1(f(z), f(y)) = 0, and so f(z) = f(y) = x, i.e.

f(z) ∈ f(X). Therefore f
(
AprKer(f)(X)

)
⊆ f(X). �

Let M be a GMV-algebra and I a proper ideal of M . Then I is called a
prime ideal of M if x ∧ y ∈ I implies x ∈ I or y ∈ I, for any x, y ∈ M . By
[10, Theorem 2.17], a normal ideal I of M is prime if and only if the quotient
GMV-algebra M/I is linearly ordered. In particular, if M is an MV-algebra,
denote by Spec(M) the set of all prime ideals of M . It is well known that for
any MV-algebra M ,

⋂
(P : P ∈ Spec(M)) = {0} [4, Theorem 1.3.3], and hence

M is representable as a subdirect product of linearly ordered MV-algebras.

Remark 3.15 Let M be a GMV-algebra and a, b ∈ M . Then by Proposition
3.3, a/{0} = b/{0} iff a = (0 ⊕ b) � 0∼ = b. Therefore, if X ⊆ M then
Apr{0}(X) = X.
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Remark 3.16 Theorem 3.3.1 in [26] asserts that if M is an MV-algebra and
∅ �= X ⊆ M , then

⋂
(Apr

P
(X) : P ∈ Spec(M)) = {0}. But this theorem is not

true. Namely, its proof is based only on the inclusion⋂
(Apr

P
(X) : P ∈ Spec(M)) ⊆ Apr⋂

(P : P∈Spec(M))
(X) = Apr{0}(X) = X.

However, this inclusion is trivial since Apr
P
(X) ⊆ X for any P ∈ Spec(M), and

so it still does not prove the theorem. Moreover, if 0 /∈ X then consequently
0 /∈

⋂
(Apr

P
(X) : P ∈ Spec(M)).

We can illustrate this observation on the following example.

Example 3.17 Let M = {0, a, b, 1} be a four-element Boolean algebra with the
least element 0 and the greatest element 1. The prime ideals of M are just
I1 = {0, a} and I2 = {0, b}. Then e.g.

Apr
I1
({a, b}) ∩Apr

I2
({a, b}) = ∅ ∩ ∅ = ∅,

Apr
I1
({0, a}) ∩Apr

I2
({0, a}) = {0, a} ∩ ∅ = ∅,

Apr
I1
({a, b, 1}) ∩Apr

I2
({a, b, 1}) = {1, b} ∩ {1, a} = {1}.
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