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Abstract

This paper we introducing a new sequence of positive q-integral new
Modified q-Szász-Mirakyan Operators. We show that it is a weighted
approximation process in the polynomial space of continuous functions
defined on [0,∞). Weighted statistical approximation theorem, Korovkin-
type theorems for fuzzy continuous functions, an estimate for the rate of
convergence and some properties are also obtained for these operators.
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1 Introduction

The approximation of functions by linear positive operators is an important
research topic in general mathematics and it also provides powerful tools to ap-
plication areas such as computer-aided geometric design, numerical analysis, and
solutions of differential equations. q-Calculus is a generalization of any subjects,
such as hyper geometric series, complex analysis and particle physics. Currently
it continues being an important subject of study. It has been shown that linear
positive operators constructed by q-numbers are quite effective as far as the rate
of convergence is concerned and we can have some unexpected results, which
are not observed for classical case. This type of construction was first used to
generate Bernstein operators. In 1987, Lupas defined a q-analogue of Bern-
stein operators and studied some approximation properties of them. In 1997,
Phillips introduced another generalization of Bernstein operators based on the
q-integers called q-Bernstein operators. Research results show that q-Bernstein

71
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operators possess good convergence and approximation properties in C[0, 1].
Aral [1] introduced the q-Szász–Mirakyan operators. Aral and Gupta [1], [14]
extended the study and established some approximation properties for q-Szász–
Mirakyan operators. In the last decade some new generalizations of well known
positive linear operators, based on q-integers were introduced and studied by
several authors. For instance q-Meyer–König and Zeller operators studied by
Trif., Dogru and Duman [12] and Gupta [2] etc. In 20011, Aral and Gupta [1],
[14] introduced a q-generalization of the classical Baskakov operators. In 2012,
Honey Sharma [4],[5] introduced the q-Durrmeyer type operators. In this paper
motivated by Honey Sharma we introduced a q-analogue of the q-Durrmeyer
operators and we study better rate of convergence.

Definition 1 For any fixed real number q > 0 and k ∈ N , the q-integers is
defined by

[k]q =

{
k, if q = 1,
1 + q + q1 + q2 + . . .+ qk−1, if q �= 1.

In this way for a real number n we may write [n]q = 1−qn

1−q ; q �= 1.

Definition 2 The q-factorial is defined by

[k]q ! =

{
1, if k = 0,
[1]q · [2]q · . . . · [k]q, if k = 1, 2, . . .

Definition 3 For any number k ∈ (0, n) , the q-binomial coefficient is defined
by (

n

k

)
q

=
[n]q!

[k]q ![n− k]q !
.

Aral and Gupta [1] introduced a q-generalization of the classical Baskakov
operators. For f ∈ C[0,∞) , q ∈ (0, 1) and each positive integer n, the operators
is defined as

(Bn,qf)(x) =

∞∑
k=0

(
n+ k − 1

k

)
q

q
k(k−1)

2
(kx)k

(1 + qx)n+k
q

f

(
[k]q

qq−1[n]q

)
. (1.1)

For q = 1 above operators becomes classical Baskakov operators.
N. Deo et. al. [9] introduced new version of Bernstein–Durrmeyer-type op-

erators defined as: for f ∈ CIn where In = [0, n
n+1 ]

(Mn,qf)(x) = n

(
1 +

1

n

)2 n∑
k=0

pn,k(x)

∫ n
n+1

0

pn,k(t)f(t)dt (1.2)

where,

pn,k(x) =

(
1 +

1

n

)n(
n

k

)
xk

(
n

n+ 1
− x

)n−k

and established some approximation results on it.
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H. Sharma [4] introduced the following q-Durrmeyer type operators defined

as: for f ∈ CIn,q where In,q =
[
0,

[n]q
[n+1]q

]

(M

n,qf)(x) =

[n+ 1]2q
[n]q

n∑
k=0

q−kp
n,k(q;x)

∫ [n]q
[n+1]q

0

p
n,k(q; qt)f(t)dqt (1.3)

where

p
n,k(q;x) =

(
n

k

)
q

(
[n+ 1]q
[n]q

x

)k (
1− [n+ 1]q

[n]q
x

)n−k

q

and established some approximation results on it.
In this paper motivated by H. Sharma [4], [5], and N. Deo [8] we introduce

a q-analogue of the q-Szász–Mirakyan type operators defined as: for f ∈ CIn,q

(Sn,qf)(x) =
[n+ 1]2q

[n]qEq([n]qx)

∞∑
k=0

q
k2−k−2

2
([n]qx)

k

[k]q!

∫ [n]q
[n+1]q

0

pn,k(q; qt)f(t)dqt.

(1.4)
Again we modified above equations for p � 0 so, we get

(Sn,q,pf)(x) =

=
[n+ 1]2q

[n]qEq([n+ p]qx)

∞∑
k=0

q
k2−k−2

2
([n+ p]qx)

k

[k]q!

∫ [n]q
[n+1]q

0

pn,k(q; qt)f(t) dqt. (1.5)

H. S. Kasana et. el. [3] obtained a sequence of modified Szász operators for
integrable function on [0,∞) defined as:

(Mn,xf)(x) ≡ Mn,x(f(y); t) = n
∞∑
k=0

bn,k(t)

∫ ∞

0

bn,k(y)f(x+ y) dy (1.6)

where, x and t belong to [0,∞) and x is fixed.
In this paper motivated by H. S. Kasana and H. Sharma, we introduce a

q-analogue of the q-Szász–Mirakyan type operators defined as: for f ∈ CIn,q ;

(S

n,q,x,pf)(t) =

=
[n+ 1]2q

[n]qEq([n+ p]qt)

∞∑
k=0

q
k2−k−2

2
([n+ p]qt)

k

[k]q!

∫ [n]q
[n+1]q

0

pn,k(q; qy)f(x+ y) dqy (1.7)

where, x and t belong to In,q and x is fixed.
The aim of this paper is to study the approximation properties of a new

generalization of the q-Szász-Mirakyan operators based on q-integers. We esti-
mate moments for these operators. Also, we study asymptotic formula for these
operators. Finally, we give better error estimations for operators (1.5) and (1.7).
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2 Estimation of moments

Theorem 1 Let the sequence of positive linear operators (Sn,q,pf)(x) defined
by (1.5). For all n ∈ N ; q ∈ (0, 1), p � 0; f ∈ CIn,q; x ∈ In,q, we get

(Sn,q,p1)(x) = 1 (2.1)

(Sn,q,pt)(x) =
[n]q([n+ p]qx+ 1)

[n+ 2]q[n+ 1]q
(2.2)

(Sn,q,pt
2)(x) =

(1 + q)[n]2q + q(1 + q)2x[n+ p]q[n]
2
q + q3x2[n+ p]2q[n]

2
q

[n+ 3]q[n+ 2]q[n+ 1]2q
. (2.3)

Proof We put f(t) = 1 in the operators Sn,q,p, we get

(Sn,q,p1)(x) =

=
[n+ 1]2q

[n]qEq([n+ p]qx)

∞∑
k=0

q
k2−k−2

2
([n+ p]qx)

k

[k]q!

∫ [n]q
[n+1]q

0

pn,k(q; qt)1dqt

=
[n+ 1]2q

[n]qEq([n+ p]qx)

∞∑
k=0

q
k2−k−2

2
([n+ p]qx)

k

[k]q!

[n]q
[n+ 1]q

qk
[n]q!

[n+ 1]q!

=
1

Eq([n+ p]qx)

∞∑
k=0

q
k(k−1)

2
([n+ p]qx)

k

[k]q!
= 1.

Again we put f(t) = t in the operators Sn,q,p, we get

(Sn,q,pt)(x) =

=
[n+ 1]2q

[n]qEq([n+ p]qx)

∞∑
k=0

q
k2−k−2

2
([n+ p]qx)

k

[k]q !

∫ [n]q
[n+1]q

0

pn,k(q; qt)tdqt

=
[n+ 1]2q

[n]qEq([n+ p]qx)

∞∑
k=0

q
k2−k−2

2
([n+ p]qx)

k

[k]q !

[n]2q
[n+ 1]2q

qk
[n]q![k + 1]q!

[k]q![n+ 2]q!

=
[n]q

[n+ 2]q[n+ 1]qEq([n+ p]qx)

∞∑
k=0

q
k(k−1)

2
([n+ p]qx)

k

[k]q!
[k + 1]q

=
[n]q([n+ p]qx+ 1)

[n+ 2]q[n+ 1]q
.

Similarly, we put f(t) = t2 in the operators Sn,q,p, we get

(Sn,q,pt
2)(x) =

=
[n+ 1]2q

[n]qEq([n+ p]qx)

∞∑
k=0

q
k2−k−2

2
([n+ p]qx)

k

[k]q!

∫ [n]q
[n+1]q

0

pn,k(q; qt)t
2dqt



Some applications of New modified q-Szász–Mirakyan operators 75

=
[n+ 1]2q

[n]qEq([n+ p]qx)

∞∑
k=0

q
k2−k−2

2
([n+ p]qx)

k

[k]q!

[n]3q
[n+ 1]3q

qk
[n]q![k + 2]q!

[k]q ![n+ 3]q!

=
[n]2q

[n+ 3]q[n+ 2]q[n+ 1]2qEq([n+ p]qx)

∞∑
k=0

q
k(k−1)

2
([n+ p]qx)

k

[k]q!
[k + 1]q[k + 2]q

=
[n]2q

[
1 + q + q(1 + q)2[n+ p]qx

[n+ 3]q[n+ 2]q[n+ 1]2q

+
q4
((

[n+1]q [n+p]qx
2

q + [n+ p]qx
)
− [n+ p]qx

) ]
[n+ 3]q[n+ 2]q[n+ 1]2q

=
(1 + q)[n]2q + q(1 + q)2x[n+ p]q[n]

2
q + q3x2[n+ p]2q [n]

2
q

[n+ 3]q[n+ 2]q[n+ 1]2q
.

This completes the proof of the theorem. �

Lemma 1 For the special case q = 1 we have

(Sn,1,p1)(x) = 1;

(Sn,1,pt)(x) =
n(n+ p)x+ n

(n+ 2)(n+ 1)
;

(Sn,1,pt
2)(x) =

n2[(n+ p)2x2 + 4(n+ p)x+ 2]

(n+ 3)(n+ 2)(n+ 1)2
.

Lemma 2 The sequence of positive linear operators Sn,q,p, we get following
central moments: let φi = (t− x)i, i = 1, 2, . . .

(Sn,q,pφ
1)(x) = (Sn,q,pt)(x)− x(Sn,q,p1)(x)

=
[n]q([n+ p]qx+ 1)

[n+ 2]q[n+ 1]q
− x · 1 =

[n]q(1 + (p− 3)x)− 2x

[n+ 2]q[n+ 1]q
;

(Sn,q,pφ
2)(x) = (Sn,q,pt

2)(x)− 2x(Sn,q,pt)(x) + x2(Sn,q,p1)(x)

=
(1 + q)[n]2q + q(1 + q)2x[n+ p]q[n]

2
q + q3x2[n+ p]2q [n]

2
q

[n+ 3]q[n+ 2]q[n+ 1]2q

− 2x
[n]q([n+ p]qx+ 1)

[n+ 2]q[n+ 1]q
+ x2 · 1

= x2

(
1− 2[n]q[n+ p]q

[n+ 2]q[n+ 1]q
+

q3[n]2q[n+ p]2q
[n+ 3]q[n+ 2]q[n+ 1]q

)

+ x

(
q(1 + q)2[n]2q[n+ p]q

[n+ 3]q[n+ 2]q[n+ 1]2q
− 2[n]q

[n+ 2]q[n+ 1]q

)
+

(1 + q)[n]2q
[n+ 3]q[n+ 2]q[n+ 1]2q

.



76 Ramesh P. Pathak, Shiv Kumar Sahoo

Lemma 3 For the special case q = 1 we have the following central moment

(Sn,q,pφ
1)(x) =

n(1 + (p− 3)x)− 2x

(n+ 2)(n+ 1)

(Sn,q,pφ
2)(x) =

=
n3[2x− x2] + n2[(p2 + 11)x2 + (4p− 8)x+ 2] + n[(17− 12p)x2 − 6x] + 6x2

(n+ 3)(n+ 2)(n+ 1)2
.

Lemma 4 For the special case q = 1; p = 0 we have

(Sn,1,p1)(x) = 1;

(Sn,1,pt)(x) =
n2x+ n

(n+ 2)(n+ 1)
;

(Sn,1,pt
2)(x) =

[n4x2 + 4n3x+ 2n2]

(n+ 3)(n+ 2)(n+ 1)2
.

3 Weighted statistical approximation theorem

The aim of this section is to use statistical convergence to study Korovkin-type
approximation of a function f by means of sequence of positive linear operators
from a weighted space into a weighted subspace.

Theorem 2 Let a sequence (qn)n; qn ∈ (0, 1) such that st− limn→∞ qn = 1 and
let the sequence of positive linear operators Sn,qn,p; n ∈ N be defined by (1.5).
Then for any compact set x ∈ In and for non-decreasing function f ∈ Cρ0

In,
we get

st− lim
n→∞ ‖(Sn,qn,pf)(x)− f(x)‖ρα

= 0; α > 0. (3.1)

Proof The weight functions ρ0(x) and weighted subspace Cρ0
In defined by;

for x ∈ In; α > 0, ρ0(x) = 1 + x2; ρα(x) = 1 + x2+α and f ∈ Cρ0
In = f ∈ BρIn

such that f continuous on In with norm ‖f‖ρ = supx∈In
‖f(x)‖
ρ(x) ; here Bρ(In);

Cρ(In) are Banach Space. By using Theorem 1, we get

st− lim
n→∞ ‖(Sn,qn,p1)(x)− 1‖ρ0

= 0 (3.2)

Since,

|(Sn,qn,pt)(x)− x|
1 + x2

=
| [n]q([n+p]qx+1)

[n+2]q[n+1]q
− x|

1 + x2
≤ 1

[n]qn

and st− limn→∞ qn = 1 this implies st− limn→∞ 1
[n]qn

= 0 , we get

st− lim
n→∞ ‖(Sn,qn,pt)(x)− x‖ρ0

= 0 (3.3)

Again since,

|(Sn,qn,pt
2)(x)− x2|

1 + x2
≤ 1 + qn

[n]2qn
+

qn(1 + qn)
2

[n]qn
+

q3

[n]qn
,
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we get
st− lim

n→∞ ‖(Sn,qn,pt
2)(x)− x2‖ρ0

= 0. (3.4)

By using A-statistical convergence theorem given by Duman and Orhan [11],
here we let A = C1 equation (3.2), (3.3) and (3.4), we get

st− lim
n→∞ ‖(Sn,qn,pt

k)(x)− xk‖ρ0
= 0

for k = 0, 1, 2 if and only if

st− lim
n→∞ ‖(Sn,qn,pf)(x)− f(x)‖ρα

= 0; α > 0.

This completes the proof of the theorem. �

Theorem 3 Let a sequence (qn)n; qn ∈ (0, 1) such that st− limn→∞ qn = 1 and
let the sequence of positive linear operators S


n,qn,p; n ∈ N be defined by (1.7).
Then for any compact set x; t ∈ In and for non-decreasing function f ∈ C

0
In,

we get
st− lim

n→∞ ‖(S

n,qn,pf)(t)− f(t)‖ρα

= 0;α > 0.

Proof The proof of the theorem is analogous as Theorem 2. �

Theorem 4 Let a sequence (qn)n; qn ∈ (0, 1) such that st− limn→∞ qn = 1 and
let the sequence of positive linear operators Sn,qn,p; n ∈ N be defined by (1.5).
Then for any compact set x ∈ In and for non-decreasing function f ∈ Cx2In,
we get

lim
n→∞ ‖(Sn,qn,pf)(x)− f(x)‖x2 = 0.

Proof To prove the theorem we use modulus of continuity of f on closed
interval In is given by

ω(f, δ) = sup
|t−x|≤δ

sup
t∈In

|f(t)− f(x)|.

We see that f ∈ Cx2In, the modulus of continuity ω(f, δ) tends to zero.

‖(Sn,qn,pt)(x)− x‖x2 ≤

≤ [n+ p]qn − q[n+ p− 1]qn
[n+ 2]qn [n+ 1]qn

sup
t∈In

x

1 + x2
+

[n]qn
[n+ 2]qn [n+ 1]qn

sup
t∈In

1

1 + x2

we get,
lim

n→∞ ‖(Sn,qn,pt)(x)− x‖x2 = 0. (3.5)

Again

lim
n→∞ ‖(Sn,qn,pt

2)(x)− x2‖x2 ≤
(

q3[n]2q [n+ p]2q
[n+ 3]q[n+ 2]q[n+ 1]q

− 1

)
sup
t∈In

x2

1 + x2
+ ...
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q(1 + q)2x[n]2qn [n+ p]qn
[n+ 3]qn [n+ 2]qn [n+ 1]2qn

sup
t∈In

x

1 + x2
+

(1 + q)[n]2qn
[n+ 3]qn [n+ 2]qn [n+ 1]2qn

sup
t∈In

1

1 + x2

we get,
lim
n→∞ ‖(Sn,qn,pt

2)(x)− x2‖x2 = 0. (3.6)

By equation, (3.5) and (3.6) , we get

lim
n→∞ ‖(Sn,qn,pt

k)(x)− xk‖ρ0
= 0

for k = 0, 1, 2 if and only if limn→∞ ‖(Sn,qn,pf)(x)−f(x)‖x2 = 0. This completes
the proof of the theorem. �

Theorem 5 Let a sequence (qn)n; qn ∈ (0, 1) such that st− limn→∞ qn = 1 and
let the sequence of positive linear operators S


n,qn,p;n ∈ N be defined by (1.7).
Then for any compact set x; t ∈ In and for non-decreasing function f ∈ Ct2In,
we get

lim
n→∞ ‖(S


n,qn,pf)(t)− f(t)‖t2 = 0.

Proof The proof of the theorem is analogous as theorem 4. �

4 Korovkin-type theorems for fuzzy continuous functions

In this section we mention some important definitions given by M. Burgin [6].

Definition 4 A number a is called an r-limit of a sequence S (it is denoted by
a = r− limS) if for any ε ∈ R, the inequality |a− ai| < r+ ε is valid for almost
all ai, i.e. there is such n that for any i > n, we have |a− ai| < r + ε.

Definition 5 A sequence S that has an r-limit is called r-convergent and it is
said that S r-converges to its r-limit a. It is denoted by S → ra .

Definition 6 A function f : R → R is called r-continuous in X ⊂ R if γ(f,X) ≤
r and is called fuzzy continuous in X if γ(f,X) ≤ ∞ where γ(f,X) defined as,

γ(f,X) ≥ inf{sup{|f(x)− g(x)| : x ∈ X} : g(x) ∈ C(X)}.

For example the functions f(x) = xn when x ∈ [n, n + 1), n ∈ Z and
g(x) = [x]n are fuzzy continuous in each finite interval of the real line R, but
they are not continuous in any interval with the length larger than 1. To define
the Riemann integral for a continuous function f(x), step functions are utilized.
If the integral of f(x) exists, then any such step function is fuzzy continuous.

Theorem 6 Let a sequence (qn)n; qn ∈ (0, 1) such that r− limn→∞ qn = 1 and
let the sequence of positive linear operators Sn,qn,p; n ∈ N be defined by (1.5).
If

ri − lim
n→∞ ‖(Sn,qn,pei)(x)− ei‖ = 0
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for i = 0, 1, 2. Then for non-decreasing function f ∈ C(In), we get

r − lim
n→∞ ‖(Sn,qn,pf)(x)− f‖ = 0

where, r is any real number such that r ≥ K3(r0 + r1 + r2) for some K3 > 0.

Proof Let the functions ei defined as; ei(x) = ti far all x ∈ In. Now,
for each ε > 0 , there corresponds δ > 0 such that |λ(t − x)| ≤ ε whenever
|t − x| ≤ δ. Again for |t − x| > δ, then there exist a positive number M such

that |λ(t− x)| ≤ M ≤ M (t−x)2

δ2 . Thus for all t and x ∈ In, we get

|λ(t− x)| ≤ ε+M
(t− x)2

δ2
. (4.1)

Applying Sn,qn on (4.1), we get

|(Sn,qn,pf)(x)− f(x)| ≤ ε(Sn,qn,pe0)(x) +
M

δ2
(Sn,qn,p(t− x)2)(x)

‖(Sn,qn,pf)(x)− f(x)‖ ≤ ε+ ε‖(Sn,qn,pe0)(x)− e0(x)‖

+K3

2∑
i=0

‖(Sn,qn,pei)(x)− ei(x)‖

where

K3 = max

{
M

δ2
,
2Mx

δ2
,
Mx2

δ2

}
.

Then for every ε > 0 there exist N = N(ε) > 0 such that for all n ∈ N , we get

‖(Sn,qn,pf)(x)− f(x)‖ ≤ ε+ ε(r0 + ε) +K3(3ε+ r0 + r1 + r2) ≤ r + ε1

here, ε1 = ε(1+r0+ε+3K3). Since ε is arbitrary and small, r− limn→∞ qn = 1,
we get r − limn→∞ ‖(Sn,qn,pf)(x) − f‖ = 0 . This completes the proof of the
theorem. �

Theorem 7 Let a sequence (qn)n; qn ∈ (0, 1) such that r− limn→∞ qn = 1 and
let the sequence of positive linear operators S


n,qn,p; n ∈ N be defined by (1.7).
If

ri − lim
n→∞ ‖(S


n,qn,pei)(x)− ei‖ = 0

for i = 0, 1, 2. Then for non-decreasing function f ∈ C(In), we get

r − lim
n→∞ ‖(S


n,qn,pf)(x)− f‖ = 0

where, r is any real number such that r ≥ K4(r0 + r1 + r2) for some K4 > 0.

Proof The proof of the theorem is analogous as Theorem 6. �
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Theorem 8 Let f be the integrable and bounded in the interval In and let
if f ′′ exists at a point x ∈ In. Let a sequence (qn)n; qn ∈ (0, 1) such that
limn→∞ qn = 1 and let the sequence of positive linear operators Sn,qn,p; n ∈ N
be defined by (1.5). Then, one gets that

lim
n→∞[n]qn |(Sn,qn,pf)(x)− f(x)| = (1 + (p− 3x))f ′(x) +

2x− x2

2
f ′′(x)

Proof Let if f ′′ exists at a point x ∈ In, then by using Taylor’s expansion, we
write

f(t) = f(x) + (t− x)f ′(x) +
(t− x)2

2
f ′′(x) + (t− x)2λ(t− x) (4.2)

where, λ(t− x) → 0 as t → x. Applying Sn,qn,p, we get

(Sn,qn,pf)(x) = f(x)(Sn,qn,p1)(x) + f ′(x)(Sn,qn,p(t− x))(x)

+
f ′′(x)
2

(Sn,qn,p(t− x)2)(x) + (Sn,qn,p(t− x)2λ(t− x))(x).

By using Lemma 1 and multiplying [n]qn both sides, we get

[n]qn [(Sn,qn,pf)(x)− f(x)] = f ′(x)[n]qn

(
[n]q([n+ p]qx+ 1)

[n+ 2]q[n+ 1]q

)
. . .

. . .+
f ′′(x)[n]qn

2
Sn,qn,pφ

2(x) + [n]qnR[n]qn
(t, x). (4.3)

Here we write,

[n]qnR[n]qn
(t, x) =

=
[n+ 1]2q

[n]qEq([n+ p]qx)

∞∑
k=0

q
k2−k−2

2
([n+ p]qx)

k

[k]q!

∫ [n]qn
[n+1]qn

0

pn,k(qn; qnt)φ
2λφdqt

|[n]qnR[n]qn
(t, x)| ≤

≤
[n+ 1]2q

[n]qEq([n+ p]qx)

∞∑
k=0

q
k2−k−2

2
([n+ p]qx)

k

[k]q!

∫ [n]qn
[n+1]qn

0

pn,k(qn; qnt)|φ2λφ|dqt

≤ [n]qnε(Sn,qn,p(t− x)2)(x) +
[n]qnM

δ2
(Sn,qn,p(t− x)4)(x)

≤ [n]qnεo

(
1

[n]qn

)
+

[n]qnM

δ2
o

(
1

[n]2qn

)

≤ ε+
M

([n]qn)
−1
2

o

(
1

[n]qn

)
≤ ε+Mo

(
1√
[n]qn

)
.

Here we choose δ = ([n]qn)
−1
4 .
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Since ε is arbitrary and small, limn→∞ qn = 1 and whenever n → ∞, we get

|[n]qnR[n]qn
(t, x)| → 0. (4.4)

By using (4.3) in equation (4.4), we get

lim
n→∞[n]qn |(Sn,qn,pf)(x)− f(x)| = (1 + (p− 3x))f ′(x) +

2x− x2

2
f ′′(x)

This completes the proof of the theorem. �

Theorem 9 Let f be the integrable and bounded in the interval In and let if
f ′′ exists at a point x; t ∈ In. Let a sequence (qn)n; qn ∈ (0, 1) such that
limn→∞ qn = 1 and let the sequence of positive linear operators S


n,qn,p; n ∈ N
be defined by (1.7). Then, one gets that

lim
n→∞[n]qn |(S


n,qn,pf)(t)− f(t)| = (1 + (p− 3t))f ′(x+ t) +
2t− t2

2
f ′′(x+ t)

Proof The proof of the theorem is analogous as Theorem 8. �

5 Conclusion

We conclude that q-Szász–Mirakyan modified operators (1.5) and (1.7) improve
the approximation process when the value of n is very large i.e. when n tends to
infinity. Although some theorems written in similar way but proofs are different.
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