
Kybernetika

Vladimír Janiš; Susana Montes; Branimir Šešelja; Andreja Tepavčević
Poset-valued preference relations

Kybernetika, Vol. 51 (2015), No. 5, 747–764

Persistent URL: http://dml.cz/dmlcz/144741

Terms of use:
© Institute of Information Theory and Automation AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

http://dml.cz/dmlcz/144741
http://dml.cz


K Y B E R N E T I K A — V O L U M E 5 1 ( 2 0 1 5 ) , N U M B E R 5 , P A G E S 7 4 7 – 7 6 4

POSET-VALUED PREFERENCE RELATIONS

Vladiḿır Janǐs, Susana Montes, Branimir Šešelja and Andreja Tepavčević

In decision processes some objects may not be comparable with respect to a preference re-
lation, especially if several criteria are considered. To provide a model for such cases a poset
valued preference relation is introduced as a fuzzy relation on a set of alternatives with mem-
bership values in a partially ordered set. We analyze its properties and prove the representation
theorem in terms of particular order reversing involution on the co-domain poset. We prove
that for every set of alternatives there is a poset valued preference whose cut relations are all
relations on this domain. We also deal with particular transitivity of such preferences.

Keywords: relation, poset, order reversing involutions, weakly orthogonal poset, transi-
tivity

Classification: 03G10, 91B08

1. INTRODUCTION

1.1. Motivation; historical background

Preference relations are a convenient tool for expressing the result of a pairwise compar-
ison on a set of alternatives [6]. They appear in game theory [10], voting theory [17, 33],
psychological studies on preference and discrimination in decision-making methods [9].
Next, in group decision making, preference relations represent collective preferences
and are built from individual preferences, either by aggregation methods [16], or by
consensus-reaching processes [27]. Finally, preferences are important tools in social
choice theory [5, 10, 26, 29, 33].

The decisions in the mentioned processes can be either strict, in case a decision-
maker is sure about her/his preference of one alternative to another, or non-strict, when
the grade of preference of an alternative x to an alternative y is given by a number
R(x, y) from some numerical scale, usually the unit interval. However, even this may
be sometimes too restrictive, namely in case when the decision statements cannot be
ordered in a reasonable way.

Let us suppose we are interested in comparing products x and y in accordance to their
design and functionality. Then the different possibilities are detailed in the following
statements:
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• D−F−: x is preferred to y neither in design nor in functionality,

• D−F 0: x is not preferred to y in design and the functionality of both is approxi-
mately equal,

• D0F−: the design of both is approximately equal and x is not preferred to y in
functionality,

• D−F+: x is not preferred to y in design, but it is preferred to y in functionality,

• D0F 0: the design and functionality of both are approximately equal,

• D+F−: x is preferred to y in design, but not in functionality,

• D0F+: the design of both is approximately equal and x is preferred to y in func-
tionality,

• D+F 0: x is preferred to y in design and the functionality of both is approximately
equal,

• D+F+: x is preferred to y both in design and functionality.

These statements can be represented as elements of the ordered set (poset) given
by the diagram in Figure 1. The usual order p ≤ q in this poset can be interpreted as
“The statement p is less favorable to the preference of x towards y than the statement q”.

j

j
j

j
j

j
j

j
j

D+F+

D0F+ D+F 0

D−F+ D0F 0 D+F−

D−F 0 D0F−

D−F−

Fig. 1. Representation of the different statements associated to the

comparison of two products.

In this example it is shown that there may be cases, when not all pairs of decision
statements are comparable. A practical example where a total order can make no sense
appears e. g, in prevention of work risks, when alternatives could be ordered from differ-
ent points of view. Thus, for instance, in human reliability, it is reasonable to order the
accidents in a company made by human errors in accordance to different criteria applied
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to the consequences: economical damage, human lives damage, company reputation
damage, or environment damage. In this context, a group of experts can evaluate the
risks according to these four points of view and obtain, for any pair of accidents, a vec-
tor in R4, which represents the intensity of the relation (one accident is more important
than the other) with respect to different damage criteria. Obviously, these intensities
could not be totally ordered.

The situation presented in the example above is a two-criteria problem where each
criterion is linearly ordered. Such situations could be treated by usual multi-criteria
methods. However, if we do not allow the option that the design and functionality of
both products are approximately equal (i. e., the situation when there is no preference),
then, we obtain essentially different situation, when a proper partially ordered set which
is not a lattice (and not linearly ordered) naturally arises.

Now, the different options are presented in the Figure 2 (all possibilities instead of
D0F 0 above).

j

j

j
j

j
j

j
j

D+F+

D0F+ D+F 0

D−F+ D+F−

D−F 0 D0F−

D−F−

Fig. 2. Representation of different statements associated to the

comparison of two products without the option of equivalent

preferences.

• D−F−: x is preferred to y neither in design nor in functionality,

• D−F 0: x is not preferred to y in design and the functionality of both is approxi-
mately equal,

• D0F−: the design of both is approximately equal and x is not preferred to y in
functionality,

• D−F+: x is not preferred to y in design, but it is preferred to y in functionality,

• D+F−: x is preferred to y in design, but not in functionality,

• D0F+: the design of both is approximately equal and x is preferred to y in func-
tionality,

• D+F 0: x is preferred to y in design and the functionality of both is approximately
equal,
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• D+F+: x is preferred to y both in design and functionality.

Other examples where preference relations are not defined on a totally ordered set
appear in the case of binary relations evaluated in a linguistic scale, usually called
linguistic preference relations ([21, 23, 24, 25]). A framework to reach consensus in group
decision making under linguistic assessments was proposed in [23]; the linguistic ordered
weighted averaging operators to aggregate linguistic preference relations was presented
in [19, 21, 24]; the problem of finding a solution set of alternatives from a collective
linguistic preference relation was analyzed in [20]; finally, the satisfying consistency of
linguistic preference relations was discussed in [11, 12].

As it follows from the above examples, a bounded partially ordered set is worth
studying as the range (set of values) for certain preference relations.

1.2. Structure of the paper

The main purpose of this paper is to introduce in a coherent way the concept of a pref-
erence relation defined on a poset. This definition should be a generalization of the
preference or reciprocal relations defined on [0, 1], which were introduced by Bezdek et
al. [1] and later reinterpreted by Nurmi [32]. In order to do that, the paper is organized
as follows. In Section 2 we recall some definitions and previous results and introduce our
main order theoretic notion, weakly ortocomplemented poset. Section 3 is devoted to the
concept of poset-valued reciprocal preference relation. Its basic properties are analyzed
and a representation theorem (in terms of ordered structures) for such relations is given.
In Section 4 we present a cutworthy study of these relations. We prove that every binary
relation on some domain X can be a cut of particular poset valued preference on X. In
Section 5 we analyze transitivity of poset-valued reciprocal preference relations.

2. PRELIMINARIES

Here we recall some relevant notions from order theory, we introduce some special posets,
and we give a brief introduction to poset valued relations.

2.1. Partially ordered sets

The main notion here is a (partially) ordered set, a poset, (P,≤), i. e. a nonempty
set P with a reflexive, antisymmetric and transitive relation. As usual, we use a notation
a < b for a ≤ b and a 6= b. A poset (P,≤) is linearly, or totally ordered, a chain, if
every two elements in P are comparable (x ≤ y or y ≤ x). A poset is bounded if it
has the greatest element, the top, denoted by 1, and the smallest element, the bottom,
denoted by 0.

The greatest lower bound (or the infimum) of some elements a, b ∈ P under the
ordering relation ≤, (if it exists) is denoted by ∧. Dually, the least upper bound (or the
supremum) of elements a, b ∈ P under the ordering relation ≤, (if it exists) is denoted
by ∨.

A sub-poset of a given poset (P,≤) is a nonempty subset Q of P , ordered by the
restriction of order ≤ to Q. A sub-poset may be a chain if its elements are linearly
ordered, and it is an anti-chain if it does not contain distinct comparable elements. An
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atom in the the poset (P,≤) with the bottom element 0, is an element a ∈ P such that
0 < a and there is no x ∈ P such that 0 < x < a. Dually, in a partially ordered set
with the top element 1, a co-atom is an element b ∈ P , such that b < 1 and there is no
x ∈ P such that b < x < 1.

A unary operation ⊥ : P → P on P is an involution if for all x ∈ P , (x⊥)⊥ = x. If ≤
is a partial order over P , a unary operation is called antitone if x ≤ y implies y⊥ ≤ x⊥
for all x, y ∈ P . An antitone involution is also called an order reversing involution.
Obviously, for bounded posets, 0⊥ = 1 and 1⊥ = 0. An element x ∈ P is a fixed point
of the unary operation ⊥ if x = x⊥.

2.2. Weakly orthocomplemented poset

Let us recall (see [14]) that an orthocomplemented poset (P,≤,⊥, 0, 1) is a poset
(P,≤), equipped with the top 1 and a bottom 0, and with an antitone involution ⊥ over
P such that for all x ∈ P , the join x∨x⊥ exists and x∨x⊥ = 1. In an orthocomplemented
poset the notion of orthogonality is introduced as follows. Two elements x, y ∈ P are
called orthogonal if x ≤ y⊥ (for more, see [2, 35]).

We introduce the structure which is used throughout this investigation.
Let (P,≤, ⊥, 0, 1) be a bounded poset with a unary operation ⊥ , satisfying the

following: for all x, y ∈ P
(i) x⊥⊥ = x;

(ii) x ≤ y implies y⊥ ≤ x⊥;

(iii) if x is not comparable with x⊥, then the supremum x∨ x⊥ exists and x∨ x⊥ = 1.

We call such an ordered structure a weakly orthocomplemented poset.
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Fig. 3.

Obviously, the first two conditions determine the unary operation as an antitone
involution. Condition (iii) is weaker then the corresponding one for orthocomplemented
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posets. By (i) and (ii), we have that 0⊥ = 1 and 1⊥ = 0. In addition, if x ∨ x⊥ exists
and x ∨ x⊥ = 1, then also x ∧ x⊥ exists and x ∧ x⊥ = 0 (the proof is straightforward).
By (iii), this implication holds for all non-comparable x, x⊥ ∈ P . Observe that there
might exist fixed points under ⊥, and also that x could be comparable with x⊥ and the
posets presented by diagrams admit also other antitone involutions.

Let us mention that another similar generalization of an ortocomplemented poset is
an orthogonal poset introduced by Chajda in [3].

Examples of weakly orthocoplemented posets are Boolean lattices, orthcomplemented
posets (see [14]), bounded chains. Weakly orthocoplemented posets which do not belong
to the mentioned classes are depicted in Figures 3 (b), (c) and Figure 4.
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Fig. 4.

For our purposes, important weakly orthocomplemented posets are those which have
at least one fixed point under involution. All posets in Figures 3 and 4 possess this
property except the one in Figure 3 (b).

2.3. Poset valued relations

In our investigation we deal with mappings from a non-empty set X (domain) into
a poset P (co-domain) [38]. For such a mapping, we use the term a P -valued set,
a P -fuzzy set or just a fuzzy set, when there is no ambiguity.

Special cases of this notion are obtained when P is a complete lattice (L-fuzzy sets
[18]) or the unit interval [0, 1] of real numbers (classical fuzzy sets, [44]). Throughout
the present text P is a poset, and any additional properties of P are explicitly stated.

If µ : X → P is a fuzzy set on X then, for p ∈ P , the set

µp := {x ∈ X | µ(x) ≥ p}

is said to be the p-cut, a cut set or simply a cut of µ.
Particular fuzzy sets are fuzzy binary relations. Namely, a P -fuzzy set R : X×X → P

is a P -valued (binary) relation [34, 39] on X.
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For p ∈ P , a p-cut Rp of a fuzzy relation R on X is a classical relation on X: for
a, b ∈ X,

(a, b) ∈ Rp if and only if R(a, b) ≥ p.

In the collection RP of all cuts of a fuzzy relation R, the following hold (see [38, 40,
41]):

(a) If p ≤ q, then Rq ⊆ Rp.

(b) For a, b ∈ X
R(a, b) =

∨
{p ∈ P | (a, b) ∈ Rp}.

(The join on the right exists in (P,≤) for all a, b ∈ X and is equal to R(a, b).)

(c) If Q ⊆ P , and there exists a supremum of Q (
∨
{p | p ∈ Q}), then⋂

{Rp | p ∈ Q} = RW
{p|p∈Q}.

(d)
⋃
{Rp | p ∈ P} = X ×X.

(e) For any (a, b) ∈ X ×X, ⋂
{Rp | (a, b) ∈ Rp} ∈ RP .

3. POSET VALUED PREFERENCE RELATIONS

3.1. Definition and basic properties

As mentioned, classical preferences are mostly investigated in connection with various
applications. In general, preferences are binary relations on a set of alternatives. A
preference on a set of alternatives A is often investigated within the framework of a
preference structure - ordered triple (P, I, J), in which P is a strict preference, I indif-
ference and J incomparability relation on A (see e. g [37]). More about this approach to
classical preferences can be found in e. g [15].

Associated to any classical preference structure without incomparable elements we
could consider a three-valued binary relation R such that R(a, b) = 1 if (a, b) ∈ P ,
R(a, b) = 1/2 if (a, b) ∈ I and R(a, b) = 0 if (b, a) ∈ P . A more realistic descrip-
tion of relations can be obtained if we consider R taking values on [0, 1] instead of just
{0, 1/2, 1}. This idea was already used in the fifties (see Menger [30]). Then, so-called
probabilistic relations have been studied and applied for decision making, mathematical
psychology, etc. They are often also called reciprocal or ipsodual relation. These rela-
tions are frequently used in representation of various relational preference models (see,
for instance, [6, 13, 42]). In the sequel we briefly present this notion.

Let X be the set of alternatives. The mapping R : X ×X → [0, 1] is a reciprocal
relation on X if for any a, b ∈ X

R(a, b) +R(b, a) = 1
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or, equivalently, R(a, b) = Rc(b, a), where Rc denotes the complement of R (Rc(x, y) =
1−R(x, y)), [15].

The definition above implies that for any a ∈ X, R(a, a) = 1
2 . Hence the value 1

2
represents indistinguishability for [0, 1]-valued reciprocal relations. Moreover, for any
a, b ∈ X, one of the numbers R(a, b), R(b, a) is in the interval [0, 1

2 ], while the other is in
[ 12 , 1]. Also, for a, b, c, d ∈ [0, 1], we have that R(a, b) ≤ R(c, d) implies R(d, c) ≤ R(b, a).
Hence, in this approach:

• R(a, b) = 1/2 indicates indifference between a and b,

• R(a, b) = 1 indicates that a is absolutely preferred to b, and

• R(a, b) > 1/2 indicates that a is preferred to b in some degree.

Motivated by the above and by possibilities of wider applications (our starting exam-
ple), we are interested in fuzzy relations with values in a bounded poset instead of [0, 1]
interval. We define a new preference structure, switching to infimum and supremum in
an order, instead of using addition. Our aim is to obtain preferences with properties
analogue (as much as possible) to the above ones, but having additional possibilities for
applications.

From now on, by (P,≤) (shortly by P ) we denote a bounded poset with the bottom
element 0 and the top element 1.

Definition 3.1. Let X be a nonempty set (universe of objects) and P a bounded poset.
The mapping R : X × X → P is a poset-valued reciprocal preference relation
(a P -valued preference relation) on X if for any a, b, c, d ∈ X,

R(a, b) ≤ R(c, d) implies R(d, c) ≤ R(b, a) and (1)

if R(a, b) and R(b, a) are not comparable, then R(a, b) ∨R(b, a) = 1. (2)

As an immediate consequence, we get that if the mapping R : X × X → P is a P -
valued preference relation, then for any a, b, c, d ∈ X we have the following equivalence:

R(a, b) ≤ R(c, d) if and only if R(d, c) ≤ R(b, a).

As another consequence we have the following: R(a, b) is incomparable with R(c, d)
if and only if R(b, a) is incomparable with R(d, c).

Using the fact that R(a, b) = R(c, d) is equivalent with R(a, b) ≤ R(c, d) and R(c, d) ≤
R(a, b), directly from the definition we have the following property for poset-valued
preference relations.

Lemma 3.2. Let X be a nonempty set and let P be a poset. If the mapping R :
X ×X → P is a P -valued preference relation on X, then for all a, b, c, d ∈ X, we have
that

R(a, b) = R(c, d)⇐⇒ R(d, c) = R(b, a).
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For P -valued preference relations in general, there is no single value representing
indistinguishability, corresponding to the value 1

2 from the unit interval case. How-
ever, from the definition of a P -valued preference relation, we obtain a kind of a set of
equilibria, as follows:

Lemma 3.3. Let X be a nonempty set and P a poset. If the mapping R : X ×X → P
is a P -valued preference relation on X, then for any a, b ∈ X the values R(a, a) and
R(b, b) are either equal or incomparable.

By the definition, for a, b ∈ X, if R(a, b) ≤ R(c, c) for some c ∈ X, then

R(a, b) ≤ R(c, c) ≤ R(b, a).

Obviously, by transitivity, it follows that R(a, b) ≤ R(b, a). Using the contraposition we
obtain also the following.

Proposition 3.4. Let R be a poset valued preference relation on X. For any a, b ∈ X,
if R(a, b) and R(b, a) are incomparable, then for every c ∈ X, both R(a, b) and R(b, a)
are incomparable with R(c, c).

Further, if R(a, b) ≤ R(c, c) and R(b, a) ≤ R(d, d) for some c, d ∈ X, then R(a, b) =
R(b, a) = R(c, c) = R(d, d).

By the above analysis, whenever R(a, b) and R(c, c) are comparable, then R(c, c) is
between R(a, b) and R(b, a), with respect to the order in P .

Thus, the class {R(a, a) | a ∈ P} is a kind of equilibrium for R.
In particular, if the poset of membership values is a chain, then all this “medium”

values coincide, as follows.

Corollary 3.5. Let R be a P -valued preference relation on X, where P is a bounded
chain. Then, for all a, b, c ∈ X, a 6= b,

R(a, b) ≤ R(c, c) ≤ R(b, a) or R(b, a) ≤ R(c, c) ≤ R(a, b) and

R(a, a) = R(b, b).

The proof follows directly from the definition of a poset-valued preference relation,
and from the fact that in the chain all elements are comparable.

An example for the statement in Corollary 3.5 is the case when P is a linguistic term
set, that is, an ordered structure providing the term set distributed on a scale with a
total order [22, 43]. E.g., a set of seven terms, P , could be given as follows:
P = {p0 : none, p1 : very low, p2 : low, p3 : medium, p4 : high, p5 : very high, p6 :

perfect}.
In this case the order is total, hence R(a, a) = R(b, b) for all a, b ∈ X, therefore the

equilibrium is just one point. Obviously, we have the same situation if the membership
values structure is the real interval P = [0, 1].
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Remark 3.6. When dealing with fuzzy notions, one can analyze the classical case,
taking the membership values structure to be the two-element poset. In our case of
poset valued preferences, the crisp version of formula (1) is a simplified version of the
notion that we intend to model, as explained in our motivating example. Namely, for the
classical preferences, usually either aRb or bRa but not both, while in the poset valued
case, R(a, b) and R(b, a) could be two different values, which is much more appropriate
way to deal with preference structures. In addition, we can compare P -valued preferences
with fuzzy preferences having numerical values.

3.2. Properties of the set of membership values

A P -valued preference has a particular impact on the structure of membership values.
For a P -valued relation R : X ×X → P , by Ran(R) we denote the range of R, i. e.,

the sub-poset of P , consisting of membership values under R:

Ran(R) = {p ∈ P | p = R(a, b) for some a, b ∈ X}.

Proposition 3.7. Let R be a P -valued preference relation on X with values in a par-
tially ordered set P . For a, b ∈ X, define

R(a, b)⊥ := R(b, a). (3)

Then, ⊥ is an order reversing involution on a sub-poset Ran(R) of P . In addition, for
any a, b ∈ X, R(a, b) ∨R(a, b)⊥ exists and for non-comparable R(a, b) and R(a, b)⊥,

R(a, b) ∨R(a, b)⊥ = 1. (4)

P r o o f . If p ∈ Ran(R), then p = R(a, b), for some a, b ∈ X. Then p⊥ = R(b, a). If in
addition p = R(c, d) for some c, d ∈ X, then by Lemma 3.2 we have R(d, c) = R(b, a),
and ⊥ is well defined as a unary operation on Ran(R).

Moreover, by (3) and by the definition of a poset-valued preference relation, for any
p, q ∈ Ran(R), the following hold:

p⊥⊥ = p and p ≤ q =⇒ q⊥ ≤ p⊥.

Hence ⊥ is an order reversing involution on Ran(R).
The existence of the supremum of R(x, y) and R(x, y)⊥ as well as property (4) follow

directly by the definition of a P -valued preference relation. �

Corollary 3.8. IfR is a P -valued preference relation onX, then the sub-poset Ran(R)∪
{0, 1} of P is a weakly orthocomplemented poset under the unary operation ⊥, defined
by R(a, b)⊥ = R(b, a), and with constant 0 and 1 being respectively the bottom and the
top of P , so that 0⊥ = 1.

Remark 3.9. By the definition of the operation ⊥ on Ran(R), for every a ∈ X we have
R(a, a)⊥ = R(a, a). Hence, for each p ∈ Ran(R) which is a value of R(a, a) for some
a ∈ X, we have p⊥ = p, i. e., p should be a fixed point of this operation on Ran(R).
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3.3. Representation theorem

In the following we present a representation theorem for poset-valued preferences that
generalize Proposition 3.7. Actually, we show that the essential property of poset valued
preferences is the order reversing involution defined on its range.

Theorem 3.10. Let (P,≤) be a bounded poset with the top 1 and the bottom 0, and
X 6= ∅. Let R : X ×X → P be a P -valued relation.

Then, R is a P -valued preference relation on X if and only if there is an order
reversing involution ⊥ on Q = Ran(R)∪{0, 1}, such that the (Q,≤, ⊥, 0, 1) is a weakly
orthocomplemented poset, fulfilling the following:

If R(x, y) = p for some x, y ∈ X, then R(y, x) = p⊥. (5)

P r o o f . Suppose that a relation R : X × X → P is a P -valued preference relation.
Then, we define a unary operation ⊥ on Q as follows:

If q ∈ Q and q = R(a, b), then q⊥ := R(b, a), and 0⊥ = 1, 1⊥ = 0.
By Proposition 3.7, ⊥ is a well defined order reversing involution on Q, and axioms

of weakly orthocomplemented poset are satisfied on Q.
To prove the converse, suppose that R is a P -valued relation on X, such that an order

reversing unary operation ⊥ is defined on Q = Ran(R) ∪ {0, 1}, so that (Q,≤, ⊥, 0, 1)
is a weakly orthocomplemented poset. Then, R is a poset valued preference relation.
Indeed, if R(a, b) = p for some a, b ∈ X, a 6= b, then R(b, a) = p⊥. Since ⊥ is an order
reversing involution, we get

R(a, b) ≤ R(c, d) implies R(d, c) ≤ R(b, a).

In the case a = b, by (5) we have that R(a, a) = R(a, a)⊥, which proves (1). Further,
suppose that for some a, b ∈ X, R(a, b) and R(b, a) are not comparable. By property
(iii) of weakly ortocomplemented posets, we get that (2) holds. �

As a consequence, we have a characterization theorem for posets having an order
reversing involution with fixed points, in terms of poset valued preferences.

Corollary 3.11. Let P be a bounded poset such that there exists a P -valued preference
relation R with Ran(R) = P . Then, there is a unary operation ⊥ on P under which P
is a weakly orthocomplemented poset with a nonempty set of fixed points.

Following the case of [0, 1]-valued relations (see [9]), we introduce a particular P -
valued preference relation.

Definition 3.12. Let X be a nonempty set and let (P,≤,⊥, 0, 1) be a weakly orthocom-
plemented poset. A mapping R : X×X → P is a P -valued probabilistic preference
relation on X if for any a, b ∈ X we have that

R(b, a) = R(a, b)⊥. (6)

From Corollary 3.8 and Theorem 3.10, it is straightforward that this notion is equiv-
alent to the previous one. Namely, we have the following.
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Corollary 3.13. Let X be a nonempty set (universe of objects) and let (P,≤,⊥, 0, 1)
be a bounded poset with a unary operation ⊥. Then, the mapping R : X ×X → P is
a poset-valued probabilistic preference relation on Ran(R) ∪ {0, 1} if and only if it is a
poset-valued preference relation on Ran(R) ∪ {0, 1}.

Thus, a reciprocal fuzzy relation on [0, 1] is a [0, 1]-valued preference relation with the
order reversing involution: x⊥ = 1− x, that is, the complement. Therefore, the concept
introduced here over poset generalizes the classical fuzzy notion.

4. CUTS OF PREFERENCES

Cut sets and relations are known as a useful tool for investigation of fuzzy structures.
A poset valued preference is not a cut-worthy notion, i. e., the complexity of its fuzzy

properties is not preserved by cuts. In Example 4.1 we show that the crisp version of
property (1), need not be true for cut relations.

j

j
j

j j

j
j

1

p q

r

s t

0

Fig. 5.

Example 4.1. Let P be a poset represented in Figure 5. An order reversing involution
⊥ on P is given by

x 1 p q r s t 0
x⊥ 0 s t r p q 1

Let X = {a, b, c, d} and let R : X ×X → P be defined by the table.

R a b c d
a r p p p
b s r 1 1
c s 0 r q
d s 0 t r

This relation is a P -valued preference by Theorem 3.10.
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Now, we consider the cut relation Rs as a characteristic function Rs : X×X → {0, 1},
where

Rs(a, b) =

{
1 for R(a, b) ≥ s,
0 otherwise.

We can easily check that the implication

Rs(x, y) ≤ Rs(z, t) =⇒ Rs(t, z) ≤ Rs(y, x)

is not true in general, since
Rs(c, d) = Rs(a, b) = Rs(b, a) = 1 and Rs(d, c) = 0. �

Next we prove that for every finite set of alternatives there exists a poset valued
preference relation whose cuts are all crisp relations on this domain.

Theorem 4.2. Let X be a finite nonempty set. Then, there is a poset P and a poset
valued fuzzy preference relation R : X ×X → P , such that every relation on X is a cut
of R.

P r o o f . Let n be a cardinality of X. Let P be a Boolean lattice with n2 atoms, and let
C be the set of co-atoms of P . Further, let f : X×X → C be a bijection from X×X to
C. Now, we define a poset valued relation R : X×X → P , with R(x, y) := f(x, y). This
relation is a preference relation, since all the elements from the range of the function are
incomparable, and for any a, b, c, d ∈ X, the implication

R(a, b) ≤ R(c, d) =⇒ R(d, c) ≤ R(b, a)

is trivially true. In addition,since all the images are co-atoms in P , we have also that
for all a, b ∈ X

R(a, b) ∨R(b, a) = 1.

Here the range of the relation is an anti-chain C, and since R is a one to one function,
we can define an order reversing unary operation on C ∪ {0, 1} as in Theorem 3.10.

Now, we analyze the cuts of this poset valued relation.
Let Q ⊆ X × X be an arbitrary non-empty relation on X × X. We consider an

element
α =

∧
(a,b)∈Q

R(a, b).

It is straightforward to check that Rα = Q. For Q = ∅, we have R1 = ∅, where 1 is the
top element of P . �

5. TRANSITIVITY

As already mentioned, transitivity is a frequent property of preference structures which
are used for modeling in different fields. In particular, in the framework of [0, 1]-valued
preferences, some types of transitivity have been developed and investigated, specifically
for reciprocal relations (e. g, various types of stochastic transitivity [13, 31, 36]). In this
part we mention some possible approaches to transitivity for poset valued preferences.

Recall that a two variable mapping g is said to be commutative if for all x, y from
the domain, we have that g(x, y) = g(y, x).
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Definition 5.1. Let (P,≤,⊥, 0, 1) be a weakly orthocomplemented poset and let g be
a commutative increasing P × P → P mapping. Let also R be a P -valued preference
relation on X and

P (R) := {p ∈ P | (∃a ∈ X)R(a, a) ≤ p}.
Then, we say that R is g-stochastic transitive if for any a, b, c ∈ X

R(a, b) ∈ P (R)
R(b, c) ∈ P (R)

}
⇒
{
R(a, c) ∈ P (R)
g(R(a, b), R(b, c)) ≤ R(a, c).

Intuitively, P (R) represents the values with a “positive” relationship between the
elements of X. In particular, when R is a [0, 1]-valued preference relation, i. e., when
P = [0, 1], then P (R) = [12 , 1].

In the case of P being a bounded chain, by Corollary 3.5, the condition R(a, b) ∈ P (R)
is equivalent with requiring that R(b, a) is orthogonal to itself. Finally, for P = [0, 1]
and with ⊥ being the complement, the above condition becomes R(b, a) ≤ 1/2, or
equivalently, R(a, b) ≥ 1/2. Thus, in the [0, 1]-case we obtain the usual definition of a
g-stochastic transitivity.

Proposition 5.2. If g2 ≤ g1, then g1-stochastic transitivity implies g2-stochastic tran-
sitivity.

P r o o f . If R is g1-stochastic transitive, then g2-stochastic transitivity follows from the
definition, by g2(R(a, b), R(b, c)) ≤ g1(R(a, b), R(b, c)) ≤ R(a, c). �

Let us introduce particular cases of g-stochastic transitivities:

• Strong stochastic transitivity: g = ∨ (supremum).

• Moderate stochastic transitivity: g = ∧ (imfimum).

• Weak stochastic transitivity: g = 0 (constant zero-function).

Clearly, for strong and moderate stochastic transitivity, P should be a lattice.

Proposition 5.3. A P -valued preference relation R on X is weak stochastic transitive
if and only if

If R(a, b) ∈ P (R) and R(b, c) ∈ P (R) then R(a, c) ∈ P (R).

P r o o f . Straightforwardly by the fact that the condition g(R(a, b), R(b, c)) ≤ R(a, c)
is fulfilled in case g is constant zero function. �

Proposition 5.4. Strong stochastic transitivity implies moderate stochastic transitiv-
ity, and moderate stochastic transitivity implies weak stochastic transitivity.

P r o o f . The proof follows from the fact that 0 ≤ R(a, b) ∧R(b, c) ≤ R(a, b) ∨R(b, c).
�

The converse implications do not hold in general, as we can see in the following
example.
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Example 5.5. Let us consider again the linguistic term set P , as follows:

P = {p0 : none, p1 : very low, p2 : low, p3 : medium, p4 : high, p5 : very high, p6 : perfect}

with the logical order, under which it is a chain. Let also the order reversing involution
on P be defined by p⊥i = p6−i. On a set X = {a, b, c} we define the following P -valued
relations:

Ri a b c
a p3 p4 pi
b p2 p3 p5

c p6−i p1 p3

, i = 1, . . . , 6.

In this case, P (R) = {p3, p4}, and according to the above particular cases of the
operation g, we have that:

• R6 is strong stochastic transitive, and therefore it is also moderate and weak
stochastic transitive.

• R4 is moderate stochastic transitive, but it is not strong stochastic transitive.

• R3 is weak stochastic transitive, but it is not transitive in the sense of other two
transitivities.

• R2 is not transitive for any g, since R(a, b) = p4, R(b, c) = p5, hence these two
values belong to P (R), but R(a, c) = p2 6∈ P (R).

6. CONCLUSIONS

A model for preferences with values in a partially ordered set is introduced and discussed.
It turned out that to maintain reasonable properties of a preference, the values should
create a weakly orthocomplemented poset (as a sub-poset of a given poset). After
presenting properties of poset valued preferences, we have analyzed transitivity. This
property provides a wide field for the future research. Namely, our model is aimed at
comparing objects which are not necessarily linearly ordered. Thus, for a set of objects,
we are able to create several poset-valued preference relations (possibly with different
weakly orthocomplemented posets of the values). However, for decision processes it
would be useful to aggregate these into a single structure describing the global preference
on the given set. Clearly, the role of transitivity here would be crucial. In particular,
we intend to generalize the concept of cycle-transitivity for reciprocal relations ([7, 8]).
It could be useful in some applications, since it does not exclude cyclic behavior, as it
happens usually for reciprocal relations.
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e-mail: vladimir.janis@umb.sk

Susana Montes, Department of Statistics and Operational Research, University of Oviedo,
Gijon. Spain.

e-mail: montes@uniovi.es
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