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Les résultats auxquels on arrive sont donnés par le tableau XL 
On voit de ce tableau que les méthodes B' et C donnent, elles-aussi, de 

très bons résultats: dans tous les exemples considérés, Terreur relative est 
inférieure à 0.4%. Dans l'ensemble de tous ces exemples elle diminue jus­
qu'à 0,04% et devient donc absolument négligeable. 
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1. I N T R O D U C T I O N 

§ 1. Biometrics as an exact science, 

The population problem, which is now engaging the attention of experts 
more than ever before,, needs more perfect methods for the exact investiga­
tion of demographic phenomena. With the progress of natural sciences and 
in particular of mathematics, since the 17th century, the science of popula* 
tion which began with mere description and simple empirical numbers has 
succeeded, within recent decades, in defining exact demographic characterise 
ics. In population studies we are no longer satisfied with elementary measu­
res such as birth-rate, crude death-rate, matrimonial and vital indexes etc. 
These measures which depend on the age distribution of the population 
of ten give us a distorted picture of underlying facts and must, therefore, be 
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replaced by more precise characteristics such as measures derived from a 
mortality table, rates of fecundity, of reproduction, laws of evolution etc. 

Besides the description of the state of population at a given instant of 
time there is the dynamic aspect of demographic phenomena which, at 
present, is of the greatest importance. While, for centuries, there was no 
distinct secular trend in the fluctuations of biometric functions, a persistent 
striking decline in mortality — especially in infantile mortality — has been 
observed over a period of time and this decline has led, in the 19th and 20th 
centuries, to an increase of population in all civilized countries. This increase, 
however, has been retarded by an equally remarkable decline in the birth­
rate during past few decades. These seem to be the main exceptional features 
in recent population development. 

Biometrics is the branch of science which creates methods for the study 
of population problems by means of consistent application of mathematics 
and especially of mathematical statistics. Like astronomy and physics, after 
years of empiricism, biometries has now become an exact science with 
considerable application of deductive methods. 

It is obvious that the changes in population which we have experienced 
are not without far-reaching economic, social and political consequences. 
Declining death rates cause changes in the age distribution and they result — 
along with falling birth rates — in a higher proportion of aged persons in the 
population. How deep these changes have been is to be seen from the fact 
that the life expectation of a live-born infant has been doubled in the course 
of 130 years. 

Statisticians are faced with the task not only of reviewing the present 
status, but also of estimating the probable future development of population. 
The long-standing character of population phenomena, richer sources of 
statistical data and improved methods enable them to perform this task. 
Such estimates are necessary in economic planning and in the building up of 
social insurance schemes and play an important part in international rela­
tions. 

The investigations into population development have been carried out 
in two directions. Firstly, efforts to discover the mortality law have resulted 
in establishing the life table and in defining the biometric functions; se­
condly, the whole population has been investigated in regular censuses and 
attempts have been made to foretell the future population trend by analy­
tical extrapolation of the given data. 

The study of population development as a function of time brings many 
more interesting problems, some of which we have treated in papers (55), 
(56).*) There exists abundant literature on the subject. 

*) Small figures in brackets refer to the bibliography at the beginning. 
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§ 2. Summary, 

The lay-out of the present paper is as follows: 
In section IL we shall recapitulate the main laws of growth, especially 

those writh a general applicatipn, 
In section III we present some methods for the application of the nor­

mal and generalized logistic curves and point out how the least squares and 
successive approximation methods may be used in evaluation of the para­
meters. Further we shall mention a method of estimating limits for the pro­
bable development of the phenomenon in question. Then we shall deal with 
a method developed by Aitken and present a simple numerical evaluation, 
taking advantage of TchebyshefFs polynomials. 

In section IV we shall analyse the functional relations between various 
biometric functions and apply integral and integro-differential equations to 
a special problem. We pay special attention to the deduction of the natality 
law in a closed logistic population with a constant or declining mortality. 

In section V we apply integral and integro-differential equations to the 
estimation of reproduction and evolution coefficients and discuss a method 
for solving the fundamental integral equation. 

In section VI we pay attention to some other branches of applied 
mathematics in which the methods mentioned above may be used analogi­
cally, and in particular we deduce the function of industrial renovation. 

We shall always bear in mind the possibility of generalization and wider 
application of the methods under discussion. ../**CtoT/\N 

I L LAWS OF G R O W T H (B miMU H 

§ 3. Determination of growth laws from differential relativity /v / 
\A> % * V * 

In the study of demographic phenomena, an accurate estimate~of the 
total population is often necessary. When we know the results of several 
censuses, the interpolation for the years between each two census-years is 
not a difficult problem. But when we are confronted with the task to foretell 
the future course of population, we cannot simply extrapolate the data from 
the latest census-year without considering the growth law of the population. 
The extrapolation, however, is indispensable not only in forecasting the 
future growth, but also in estimating the present status of the population, as 
the censuses are carried out only at ten year intervals and the necessary 
computations require much time. 

Many extrapolation formulae have been set up in attempts to find an 
analytical expression of growth laws. Most of these formulae may be easily 
deduced from elementary differential equations as we shall demonstrate in 
several examples* 
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Let its assume that y(t) denoting a total of population at a time t is 

ntinuous function < 

a) Let us suppose 

dv 
a continuous function of t and that there exists the derived function ~ * 

d/ 

dv 
~JL—«:==. const. (2,01) 

On integrating we get t /asa linear function of t 
y^at + k, (2,02) 

where k is a constant. For example, by substituting t ==-= 0, we obtain £ = i/0 

y^at + y0. (2,03) 

This is the simplest formula for short-term linear interpolation and 
extrapolation and is frequently used. 

§) Let us suppose 

&-•«--4- <2w 

On integration we get the equation for logarithmic growth 
y*r.k + at — c\%t (2,05) 

clearly illustrating growth with decreasing intensity. 
y) Similarly by integration of 

}jjL^a + U — c-j> (2,Wi) 

we obtain 
y ==- k + at + bt2 — c Ig t. (2,07) 

d) If growth is considered as a linear function of population, we can 
write 

-jjf =-«* + &. (2,08) 

After separating variables and appropriate substitutions we get 
y^A+Be«\ (2,09). 

which is the well known and commonly used geometrical law of growth. This 
exponential function has an extensive application in natural science (u) . 

f) Finally, like Verhulst (52), (*3), we can assume that growth is given 
by the relation 

~ ^ a + by~cyK ( ^ 0 ) 

where — cy% is a term expressing conditions and influences checking growth. 
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Assuming that a > 0, b > 0, e > 0 this equation gives the same solu­
tion arrived at by Cupr ( u ) . He obtained logistic growth as did Lotka (37), (3S) 
who expressedthe result in terms of the'hyperbolic "tangent. 

We then obtain the equation * 

y =z A+Bta,nhc{t — d)f (2,11) 

where A, B,C and d are constants. 
Let us write -

/ W - - - ~ j i ^ i + itanh.lrV. (2,12) 

We then have 

$ i. Derivation of rules of growth from the 
differential equations for the intensity of growth. 

Let y be the number of inhabitants in a certain place at time t. The in­
tensity of change in y is measured by a (J),'defined'by the equation 

By integration we obtain a general formula for the size of the population at 
time t 

" - • • ' ' • •• " t 
fa(t)dt 

y = y&° (2,15) 
where y0 signifies the number of inhabitants at time i = 0. 

This exponential function has a wide validity especially in natural 
science. I t is a general rule in biology, chemistry as well as in physics in all 
cases, wrhere a given number of units is continually changing in such a way 
that the rate of change is proportional to the number. 

In order to solve the given equation, the intensity of change «(£) must 
be an integrable function of t. Assuming that a(t) ~ .c , where c > 0 is a con­
stant we obtain the well known geometrical rule of growth: 

• ' - " • . " ' •> • •' rfdt - •••" • 

y^JM° - K . K (2,16) 

This rule, first formulated by Euler, clearly shows the quantitative 
growth of population, for example in the USA and in Australia in 18th and 
19th centuries. It cannot, however, be applied to populations which do not 
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have unlimited means of existence available (52), (53). Even Euler perceived 
that the geometrical law of growth in such cases leads to absurdity. Scepti­
cism of Eider's calculations led Mai thus to his well known criticism, and to 
the idea, tha t geometrical growth is checked by a certain retarding factor. 
This idea was formulated philosophically by Quetelet and then mathemati­
cally about a hundred years ago by the Dutch mathematician Verhulst 
(62)> (53)> who thus discovered the logistic formula of growth. His works were 
forgotten and only after the work of Pearl and Reed (5S) were they again 
studied. VerhulsVs discovery is important not only because of its, priority, 
but also because of the fact that he reached it by deduction thus demonstra­
ting the importance of mathematical methods in biometrics. 

Quetelet\s formula, in terms of the initial differential equation, is given 
by equation (2,10), and the result by equation (2,11). Verhulst, who pre­
sented the solution in various forms, assumed tha t constant intensity of 
growth is decreased by a retarding, linear function of population. 

Mathematically written, this gives 

I d// 
// d' 

and after integration [sec ref. (53)] we get 

By rearrangement and substitution we obtain the normal logistic law in the 
form 

y------ —~J~ -- . ' ' (2,19) 

'!/ (2,17) 

or in Verbu 1st\s notation 

- - 4 - * <2>20> 
1 + e « . 

i t is clear that the differential equation (2,17) is only a special case of 
equation (2,10), where a ==- 0, b > 0, c > 0. 

We have gone into the details of the properties of logistic curves and the 
significance of the parameters (53). (54) and can assume the results t o be 
correct. 

§ 5. Derivation of rules of quantitative growth from 
the differential equation* for acceleration. 

If we assume again, according to Quetelet, t ha t the resulting accelera­
tion of growth in a population is made up of two opposite components then 
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-?(/). (2.21) 

we can express this by the equation 

dhj dy 
df* * dt 

In order to solve this equation, we require to make certain assumptions 
about <p(t). 

Let us suppose [see Delevsky (54)] that 

Then, by substitution, tlie law of growth is given in its most general form by 
a differential equation of the second order and second degree, 

?/" - a ~ by + (e — <v) y' — fitf*, (2,22) 

where the quantities a, 6, oc, fi, a are considered to be positive and constant. 
If we wish to find the conditions under which the important property 

lim y(t) ^y>0 ' (2,23) 
t~>oo 

holds, we substitute in (2,22) 
y' ~ v, 

„ dv dv dy dv 
V ~~ Hi ~~ dy' d I ^ Vdy 

and thus obtain Ricatti's differential equation. We can solve the equation 

dv 
y ^. = a — by+(s — x)v— /Jr* (2,24) 

by making certain assumptions about parameters and under the condition 
(2,23), and thus obtain a number of solutions of which the following four 
are the most important. 

1. If /?=(), (e—oc) <0 , the solution represents development approach­
ing a state of equilibrium which, after rearrangement, can be written 

y = x — Cle
At — c2e

BK (2,25) 

2. If — (e —oc) > 0, /? = 0, b + 0, the solution is given by the equa­
tion 

(e— »)t 

y t== x + cxa
 2 cos (At + c2) (2,2ti) 

which indicates damped periodic motion. 

3. If (f — oc) = — n = 0, a = ]fb, then the solution is an even periodic 
function of time, given by the equation 

y ^ x + ct cos (]jbt + c2). (2,27) 
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4. For the special case of equation (2,21), where a = h = /? « 0. -

A «s cj/ we obtain the solution 

y = TTP=a <-2s> 
which is the equation for the logistic curve similar to those given in equa­
tions (2,13) and (2,20). 1 

It is clear that, by similar considerations, the rules of growth stated in 
section II can be deduced from the differential equation (2,22). We have 
dealt here with only a few of the many rules which can be derived and have * 
practical applications. As has already been pointed out (u), also Rhodes's 
equations, which are considered as a generalization of the population growth 
curve and are given by: 

— s-5. a JL ber-ft 4- cert . (2,29) 
y 

or 

y^ ksech2^^ (2,30) 

are onlv special cases of the solution to the general differential equation 
(2,22). * 

I I I . T H E G E N E R A L I Z E D L O G I S T I C C U R V E 
A N D I T S A P P L I C A T I O N 

£ 6. Derivation of generalized logistic curve. 

Let us start out from the intensity of the change in population and let us 
assume it to be given generally by the equation 

In order to solve this equation, we must again make a certain assumption 
about the nature of rp(yf t), Let us suppose, according to Reed (53), that 

cf(y>t)^(a~-~hy)cp(t) (3,02) 

and substitute in the equation (3,01). After integration we get 
t 

a ajip{t)dt+ac 

T e o 
— (3,03) 

Í 

1 _L J*Í¥Li)dt+*e i 4- e 0 

which, after rearrangement, and the substitutions 
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a - r 
T~L> 

t 

— afv(t)dt=*0(t), 
o 

e ~ w ==- A 

gives the general formula for quantitative growth as 

We may assume that the function 0(t) can be expressed in terms of 
Taylor's series and the equation (3,04) then becomes 

L 

where />, A, a.̂  a2, ,,., an are parameters. 
It is clear that we can also replace the function 0(t) by Tchebysheff s 

series of orthogonal polynomials. We have tried this successfully in several 
practical cases with a view mainly to ease in calculation of the constants — 
in particular, by expressing the orthogonal polynomials in the form deve­
loped by Lorenz. 

If we can write . 

0(t) - A0 + AXX\ + A2K2 + ... 4- AnXn 

where A% are constants and K# are the known Lorenz\s polynomials, then 
equation (3,04) becomes 

L 
J _|_ eAol-Aa^AzXr 

In this paper we do not concern ourselves with the analysis and charac­
teristics of the normal and generalized logistic curve. This was thoroughly 
dealt with in refs. (53), (54) and we therefore consider the properties derived 
there to hold true or refer to what has already been discussed. In practice, 
the calculation of the constants from empirical data is not an easy problem. 
In ref. (53), we have shown the current methods of determining the constants 
as well as the conditions of application of the normal logistic curve. 

# 7\ Derivation of the criterion of application, 
and further methods in the determination of constants. 

a) If we are given a series of n equidistant empirical quantities 

y<»yv .-»y«-i 
which.we wish to express analytically by a logistic function, it is necessary 
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first to bo quite sure that it is logistic growth which is implicated, and then 
to determine parameters and theoretical values. The empirical series of va­
lues under consideration mu>t comply with certain conditions if we are to 
express it by means of a normal logistic curve. The preliminary conditions 
stated in rcfs. (53), {hi) arc not sufficient since it is not always possible to 
apply a logistic curve even when they are fulfilled. 

The best method of procedure is to use the so called criterion of appli­
cation, derived on the basis of the characteristics of the reciprocal values of 
the logistic curve by the elimination of constants. 

The derivation of the criterion of application and the necessary condi­
tions for applicability can be found in the references. 

The cri terion is 

derived from 4 equidistant values, where \ is a constant characteristic of 
the curve, and h is the size of the interval between the observed values. In 
other words, the criterion is 

rh rh 

I' r V -;• 1 - t V 

where r denotes the number of observations made at these intervals and cal­
culated by the method of sums and has necessarily a value between the 
limits (3. x ) . The ease of calculation and also the fact that further con­
stants can immediately be determined from the value of the criterion y or / 
has undoubted advantages . 

In a similar manner Cupr ( n ) derives a criterion and seeks the necessary 
and sufficient conditions tha t the logistic curve should be determined by 
five points. 

b) Besides the above methods we can also compute the constants of 
the normal logistic curve by the method of least squares. Let us write the 
equation of a logistic curve (2.H)) in the form 

and then substitute 

YVe then havt 

X •<•• /.!'"' 

1 

// 

-••- x -r- ?yu. (3.08) 

.By a suitable transformation, we can change this into a linear funotion of 
time to which we then apply the method of least squares. First we take the 
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' **. л ^.f^r . 

derivative 

dt 

and then the logarithm 

log ÍІ- « log («Â) + « Ьg ғ . L (3,0.1) 
(it 

Ц | ) = Г or log(|): 

By the substitutions 

ldz\ jAz\ 

r, 
log (a?,) = A, a log e =-. B 

we get 
Y--A+HL (3,10) 

x\fter calculating the constants a, /, by the method of least squares from 
equation (3,10), we easily calculate x from the equation (3,08). 

c) If it is not possible to use this method, especially where the relation­
ships 

#o < y\ < 2/2 < • • • < 2/H-I 
or 

2/o > Vi> yi> ••• > ^ - i 

do not hold, we use the method of successive approximations. 
By means of the criterion of application we calculate as the first appro­

ximation the constant a0 for. the equation 

y==7+h* (3-ll) 

i. e, for the equation 

Now we have only to determine the constants K, x, e or a since a ~- a0 + v. 
We call e the correction term. 

In equation (3,12) we expand eet using Taylor's series. For small e, we 
can neglect terms from the second degree upwards. We then get 

y-7T^(iTir) (:M3) 

and after rearrangement 

yy + ye"*1 + yeuM - K. (3,14) 
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' . • %.'•',.' -
That is 

K-"-yx-^-ytee*** ~ yea%t. (3,15) 

We now apply the method of least squares to equation (3,15), That is, if we 
have the function 

y « a0 AQ(t) + «i AW + % A ( 0 + • • • + Or A9(t) (3,16) 

where ak are constants, and Ak(t) are known functions of f, then, in order to 
calculate the constants by the method of least squares, we can easily derive 
a set of normal equations: 

<h I 'MoJ 4 «i [A*AX] + ... + o, \A0AV] - [AnYk] 
«o UMol 4 «i [-Mil + .. . + a, [AtAr] =- [^I ' r i ( 3 1 7 ) 

o«I-4A1 + ai[A,Ax] + ... + a/\AvAv] « [A,)'*] 

where the brackets [J, according to Gauss, indicate the sums of all values 
fromO to (w — .1). 

If we write in equation (3,15) 

A0 « I 
At ~ — ?/Xr 
4 2 — — y&i**** 

then we have the following three equations for calculating the constants of 
the logistic curve: 

Kn — x£yk — eEyiitf^k -^ Zy&n*k, 
— KEyk + y.Zyk* + eZykH^k - ^ * V ^ , (3,18) 

— KEy&**k + xZyfiuF** + eZyk%
2e^lk = Eyk

2e2a^k, 

We have then found the necessary constants for the analytical function 

y. + e« У = .. , „.• 

In a similar manner constants were calculated by Pacak (41), who 
applied the logistic curve to the estimation of the future development of 
a certain enterprise* 

When a logistic curve is used in practice it may be simplified in diff­
erent ways, some of which are illustrated in the next paragraph. 

Finally it is necessary to mention that the method of least squares is one 
of several possible methods by which empirical data can be expressed by an 
analytical law if the number of empirical values exceeds the number of 
parameters in the analytical relationship. A well known method for example 
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is that of Pearson's £2 criterion where the condition is that y* must be a min­
imum. Another method, elaborate and equally valuable from the theore­
tical standpoint, is that of Cauchy (Cauchy, Collected Works) which is not 
used probably only because no-one has taken the trouble to put it into 
a form suitable for computation (cf. the normal equations derived by Gauss, 
so useful for computation in the method of least squares)* 

(To be continued,) 

R E F O R M O F S T U D I E S I X M A T H E M A T I C A L 
S T A T I S T I C S , A C T U A R I A L M A T H E M A T I C S A N D 

E C O N O M E T R I C S I N C Z E C H O S L O V A K I A 

Courses of study in Mathematical Statistics, Actuarial Mathematics 
and Econometrics in Czechoslovakia are provided in the Faculty of Science 
of King Charles' University in Prague and at the University of Technical 
Sciences in Prague; both these courses have been reorganised by the Act of 
May 16, 1946, No 122 of the Collection of Laws and Ordinances. The two 
years' course of lectures at the University of Technical Sciences — origi­
nally mainly devoted to the study of Insurance Technique and in existence 
since 1905 — has been fundamentally reformed and transformed into a four 
years course in the Department of Statistical and Actuarial Engineering. 
The course of lectures at the University, in existence since 1921 as a four 
year course, has also been reformed in view of the recent developments in 
actuarial science. The above mentioned act provides also for some facilities 
and lectures to be held jointly for students of both courses. 

The subject matter covered by the course on Mathematical Statistics, 
Actuarial Mathematics and Econometrics in the Faculty of Science of King 
Charles' University may be seen from the Regulations concerning Examina­
tions issued by the Ministry of Schools and Education on Feb. 12, 1947, 
No A-273.71l-40.VY 

According to these Regulations, the purpose of the course is to equip 
students with proficiency in carrying out mathematical-statistical, actuarial, 
and econometric work; students must display this proficiency in two State 
Examinations taken before a Board of Examiners appointed by the Mi­
nister of Schools and Education from the ranks of professors and lecturers 
in the Faculty of Science as well as from outstanding experts acjtive in practi­
cal profession. 

The First State Examination must be taken not sooner than in tbeffourth 
semester (L e, half-year term) of studies. To be allowed to enter for this exa-
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