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Hypergeometric orthogonal systems of polynomials. 
By Dr. L. Truksa. 

INTRODUCTION. 

The orthogonal systems of polynomials have become a very impor­
tant tool of mathematical analysis. They play an essential part in the 
solution of a whole set of difficult mathematical problems as e. g. the 
expansion of arbitrary functions in series of polynomials, the solution 
of integral and sum equations etc. Orthogonal polynomials occupy an 
important position in numerous fields of applied mathematics. We may 
refer especially to their application in the theory of probability, in 
mathematical statistics connected with it, in the calculus of graduation, 
the theory of interpolation and numerical integration and summation. 

It is generally known that every orthogonal system of polynomials 
corresponds to a certain function <P(x), which we call characteristic 
function1) and further to a certain finite or infinite interval of integration 
or summation (a, ft). The principal condition of orthogonality of the 
polynomials P*(x) is expressed by the integral: 

i '-
I Pn(x) Pm(x) 0(x) dx = 0, n 4. m; I Ptt

2(x) ®(x) dx zj= 0 

a " a 

or by the sum: 

. y j%(*> s ) $»*(*' *)0(x>*) <» ̂  ° > n + m : S %2(%, *) *(^, *) <»+o, 
a a 

where * denotes the number of terms of summation, (s — I) OJ is the 
interval of summation. There is not hitherto any established special term 
which would distinguish the two groups of polynomials. For the sake of 
brevity, the systems of the first group will in this paper be called integral 
systems, those of the second group summation systems. In some cases 
the summation systems change into integral systems in the limit s -V 6o, 
o) ~> 0 and are therefore more general in this respect. If in such a case, 
a special term for the integral systems is already established, we shall 

1) Belegungsfunktion, Gewicht, poid. 
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add only the adjective ,,generalized4*, while referring to the respective 
summation systems. 

To every orthogonal system of polynomials corresponds further 
a definite system of polynomials, which satisfies the same functional 
equation as the original polynomials. We shall use the term: polynomials 
of the second kind to express the difference between these polynomials 
and the original polynomials, which we call polynomials of the first kind. 

A. M, Legendre was the first to introduce the simplest orthogonal 
system of polynomials into mathematical analysis while applying the 
theory of least squares advanced in his treatises ,,Recherche sur Fattrac-
tion des spheroides homogenes1' (1785) and „Recherches sur la figure 
des planetes'* (1784). This is a system of polynomials corresponding to 
the characteristic function 0(x) ~~~- const, and to a finite interval of 
integration ( ^ 1), which we call Legendre polynomials or spherical 
functions. A considerable part of the other known integral systems was 
deduced from the problem of the Gaussian numerical integration 
(Gauss's mechanical quadrature) of the product of the given and the 
characteristic function.2) 

Because of the close connection with the subject of this paper let us 
refer here, among the numerous integral systems of polynomials 
oc6uring in mathematical analysis, only to the integral system of hyper-
geometric or Jaeobi's polynomials. These polynomials of the characte­
ristic function 

(p(x) -= (a -f x)n (/} — x)m 

ami of a finite interval of integration are the source of a whole group 
of orthogonal systems corresponding either to a simple specialization 
of the parameters of the characteristic function or to a degeneration of 
this function in limiting cases. The best known are the polynomials 
corresponding in a finite interval to the function 

1 

further in an infinite interval to the functions 

Ф(x) =r 1 and Ф(x) ~ v 

<P(x) -- xa er~*, 0(x) =r x~~a e1^. (f(x) = e~*\ 

It may be remarked further that the principal properties of the 
integral systems of orthogonal polynomials have been very clearly 
summarized by X. Abramesco in his paper: ,,Resume des principales 
proprietes des polynomes orthogonaux."3) Analogous properties hold 
good also for summation systems. 

F p to a very recent time, the summation systems of polynomials 

. 3> See e. &. C. Runge — Fr. A. Willers, Numerisehe mid graphische 
Quadratur, Ene. tier math. Wiss. II C-2. 

3) Nouvelles Anilities de Mathematiques, 1923. 
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were, compared to the systems of integration, considerably neglected 
in mathematical research. Nevertheless the simplest system of this group 
of polynomials corresponding.to the characteristic function <P(x,s)^ 
•=- const, and to the finite interval of summation [:L i(#— 1)OJ] was 
deduced already at the beginning of the second half of the 19th century 
by Tchebychef in his treatise ,,Sur les fractions continues**1) (1855). 
These polynomials change into the integral system of the above men­
tioned Iiegendre polynomials in the limit s -> cx>, OJ ~> 0. They acquired 
special importance in the numerical calculus of the theory of interpola­
tion and approximation. 

Jn his paper ,,Sur Interpolation des valeurs equidistantes*" (1875), 
Tchebychef discussed a very general summation system of orthogonal 
polynomials. These are polynomials of a finite interval of summation 
and of the characteristic function: 

<hi,A r(x+a)r(m — x+ fi) 
1 {X) ~~~ " r(x)T(m ~x). 

This paper is devoted to this system of polynomials and to the 
systems derived from it. As far as I know, nobody except Tchebychef 
has ever discussed them up till now. The term ,,Jacobi's generalized 
polynomials*", which I am using, is derived from the fact that the above 
mentioned polynomials of Jacobi are the limiting case of this summation 
system of polynomials. 

• Hypergeometric or Jacobi's polynomials are, as it is well-known, 
a special case of a function very important in mathematical analysis, 
i.e. the Gauss hypergeometric series. Also Jacobi'sgeneralized polynomials 
are in the same relation to the hypergeometric series of the third order, 
w'hieh was introduced into mathematical analysis by J. Thomae in his 
paper ,,t)ber die hoheren hypergeometrischen Reihen".5) This hyper­
geometric series of the third order is reduced in the limiting case into 
the above mentioned series of Gauss and fulfils the same function in 
the solution of the hypergeometric difference equation of the second 
order as the ordinary hypergeometric series in the solution of the Gauss 
differential equation. 

A further important summation system of orthogonal polyno­
mials was deduced by C V. L. Charlier in his paper ,,t)ber die zweite 
Form des Fehlergesetzes".6) These are polynomials of the characteristic 
function: 

mx c — m 
0{X)= , ! -

and of the infinite interval of summation (0, ~^). To this system accedes 

4) Oeuvres 11/12. 
5) Math. Annaleii Bd I I . 
6) Arkiv for Mat., Astron. och Fvsik 11/15, 1905. 

5* 
* 4 
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finally the system of the same interval of summation and of the cha­
racteristic function 

Ф(x) 
x: 

the principal properties of which are listed in my article: .,Application 
of Bessel coefficients in approximative expressing of collectives.t;?) 

The generalized Legendre polynomials, the polynomials of Charlier 
and some other systems of summation, which — as we have explained 
above — generalize the group of hypergeometric integral polynomials 
can be deduced, as will be shown below, from the systems of Jacobi's 
generalized polynomials. For the definition of this summation system 
of polynomials contained in the 1st part of this paper, we shall use — 
analogously as Tchebychef does — an extension of the well-known 
expression of Jacobi's polynomials Jx(p,q> x) in the form: 

A — i (\ xW~v d 

•/,<»**>--•• -A-y)--L_.5-t^-' a-**--*-], 
if we substitute in principle the i-th power of the variable x, in this 
expression by the corresponding factorial product: 

(*>i)^.x(z + l)(z + 2)...(z+i — l)=(x+i — l, — i)=lX^'~ \ t! 

(a\ 0) - 1 

From the principal properties of the system of polynomials under 
consideration we shall deduce besides the orthogonality investigated 
already by Tchebychef, their relation to the hypergeometric series of 
the third order, further their functional equation, the respective hyper­
geometric difference equation, the expression of the polynomials in form 
of a determinant and by continued fraction. 

By application of Jacobi's generalized polynomials we shall deduce 
a very general definite approximative series and a series of interpolation 
respectively, of the form 

0(x) [aQ P0(x) + a, Px(z) + ... + an Pn(z)]9 

in which the coefficients a* will be determined by the method of moments. 
This series — convenient especially for the approximative expression of 
frequency functions — is reduced into Charlier's series of the type A and 
B in limiting cases. 

In part two, while investigating the properties of the characteristic 
function, we shall summarize, above all, the remarkable views of Pro­
fessor G. Polya on the deduction of the characteristic function from the 
concrete problem of the theory of probability and on the application 
of this function in mathematical statistics. At the same time we shall 

7) Aktuárské vědy, 1/1, Praha 1929. 
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refer to the close connection of the characteristic function with the 
frequency curves of K, Pearson . 

The general form of the characteristic function will enable us to 
give the theoretical deduction of. the approximative expression of this 
function on the base of a greater number of practical calculations in the 
manner proposed by Professor K. Pearson in his paper ,,On the method 
of ascertaining limits of the actual number of marked members in 
a population of a given size from a sample**.8) 

In the following, some cases of the characteristic function correspon­
ding to special values of the arbitrary constants which appear in it will 
be considered and especially the degeneration of the function in limiting 
cases will be investigated. 

In par t I I I we shall deduce the respective summation systems 
of orthogonal polynomials in special cases of the characteristic function 
and refer briefly to the above mentioned hypergeometric integral 
systems resulting from them. In the first place the above mentioned 
generalized polynomials of Legendre will be considered as the simplest 
case. A further special case are the generalized polynomials of Tehe-
bychef which — as far as I know — have not been mentioned hitherto 
in the literature of the subject. They are connected with the integral 
system of Tchebyehef's orthogonal polynomials of the characteristic 
function I : | / l — x2 and of the interval of integration -£- 1. Another 
important limiting case of Jacobi 's generalized polynomials form the 
polynomials, the characteristic function of which is the binomial fre­
quency function. We might call them Hermite 's generalized polynomials, 
for in the limit OJ -> 0 they are reduced into the well-known polynomials 
of Hermite. The polynomials called generalized polynomials of Laguerre 
or Kummer are a summation system of special importance. These poly­
nomials are reduced for the limiting value of the variable parameter 
into the polynomials of Charher, in another limiting case, in which a t 
the same time o> -> 0, we obtain the integral system of Laguerre's poly­
nomials from them. 

I t is not the aim of this paper to consider in detail the applications 
of the orthogonal polynomials mentioned above in the different fields 
of applied mathematics. Nevertheless we shall not miss the opportunity 
to refer frequently to their practical application especially in concrete 
problems of mathematical statistics, numerical summation and integra­
tion etc. 

As to mathematics I generally used the elementary method . The 
single deductions are given all in considerable detail. The reason 
for tha t is, in the first place, the circumstance tha t in this paper a greater 
stress is laid on the constantly growing penetration of the orthogonal 
systems into numerous parts of applied mathematics, in which only 

8) Biometrika, Vol. XX A, 1928. 
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a general preliminary mathematical training is required, rather than to 
their great importance in pure mathematics. Nevertheless, especially in 
the first part of the paper a number of suggestions will be found which 
lead to interesting questions of purely theoretical value. We may cite 
as an example the reduction of the hypergeometric difference equation 
of the second order into the hypergeometric differential equation of Gauss. 

PART L 
Definition and principal properties of JacobPs generalized polyno­

mials. Belation to the hypergeometric series of the third order. Orthogo­
nality* Functional equation. Hypergeometric difference equation. Deter­
minant expression. Expression by aid of continued fraction. Interpolation 
and approximation of functions known only in a finite number of equidistant 
values of the argument. Polynomials of the second kind. Application of 
polynomials in numerical summation* The integral system of polynomials 
deduced from JacobFs generalized polynomials. 

Def in i t ion and p r inc ipa l p rope r t i e s of Jacobi ' s genera l i zed 
po lynomia ls . , 

Let the function 0o(ni m, x) of a real variable x be defined in * 
equidistant values of the argument x in the points 

s— 1 r 5 — 1 
— a =*= ---. —-— o>} — a + OJ, . . ., a — o>, a -=- ~ - - j — to 

by the expression 

Let the parameters nt m satisfy the following inequalities 
J. — 1 < n, m < — s * ~ - I 

n+ 1 
m+ 1 

By applying the known relation 

(x + i — 1 

> 0. (2) 

. (7h,Hf+r) . * 
we can express 0o(n, mt x) also in the form 
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/ — «+~T \ / — m + 'l \ . 
0o(n,m,x) = [s~l * L - i x\:o>l~,' + m + L\. (V) 

\~2 +~o7j\'2-— To/ X S~1 j 

On the above mentioned suppositions about the parameters n,w, 
the function &Q(n, m, x) takes on in s chosen points of the interval ^ a 
only positive values greater than zero, which is immediately evident 
from the expression (1) and (V). 

If n is equal to a positive integer c or to zero, the function Ffi[\(s —• 
— 1)OJ + ceo + x] is evidently a polynomial of the degree r 

1 ~ ^ ^ ^ ^ A ^ O r ^ " ' 0 " * " ^ ^" 4 1 T ' o)+co)+x\t . . 

/ « + l . \ 1 (s+l , \ 
. . . ! _ _ « + ^ „ _ | ^ _ w + a:, C^|B 

By application of the gamma-function it is possible to define the 
function &0(n, m, x) in all points of the interval + a by: 

0o(n, m, x) = 

ľ(n + m + s + \) 
:(X)T(n+m+%)Г(s) 

d") 
Function &0(n, m, x) will be discussed in detail in part II of this paper. 

Starting from the function 

0x(n, m,x) = 

Fn+x I — ^ — €o + fuo+x\FmVA I ~ r̂—«> + moj+ Xo) — x\ 

Fn+m+M+t (n + m + & + * «>) 
(4) 

which is reduced into the function 0o(n, m, x) for X = 0, we define now 
the function 

(m+\ X) ...̂ -....... 
lIA(nym, x) =± ! _ _ ! _ K n + W l + 2 A + 1 (n + m + A + SOJ)-dA#;.(*, ™» *) (5) 

- * • < M 

and the Jacobi's generalized polynomials 

»im,X)^'m^\ -1— . (6) 

on the supposition, that A < a is a positive integer. 
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By applying the well-known formula of the difference calculus 

A><l<p(x)y(x)) = V l * \ A(<f(x + A — iro) _!>•-*>(*) 
at £**A ^ / <° tu 

í -0 

we obtain the following expression for fl?.(n> in, x) 

rii(v. wi, x) ~ 
_Jm+l , ; . ) v-/AV._.._, 

2* 
I o * 

£ ( ') (_);~'T" F;-' (~T^ W + » + A - f <O + arj X 

., /« —1 , . . \ ( « + l . A)»A/A\ . .. 
**».<.•! 2 M + m t i w - * l = 2;.- 2 J ( J ) ( ~ ) 

>: r« . I ,, w + ».«•» + a; J /',„+;.—,• ( (>- e) + rnto — x ) . 

With regard to the evident relations 

r„+A_, J 0 w + » + X — t to + x\— 

ft>;-~< » /« —] , , \ / S + J , , * . \ 
- ( T + a - . / - ( 2 M+™+x)-( 2 + » + i ^ — ) . . 

2 co + m+ ico — x\=z 

= / - - | i ^ w (—-r~co + wfl> —a : . - + m , i 
( m + 1 , 0 \ 2 / \ 2 co / 

follows for the polynomials &(n, m, x) the value 

•»( i+-+^:-H(-'« ,+"--"-') := -: 
(l,A)a>* -A. . . / » + A \ / m + A \ / s + l x \ 

i^O l^ 

. •(i+--»+'-ir---')- • (6,) 

To simplify this expression we use the expansion of the polynomial 
(x — a, i) in the series t 
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{x-ati)*= $ ] ( — ) * ( j . ) ( - * ? , ! - * ) ( « — * + l , f c ) and 
fc__o \ / 

{a _ a 9 _ i) ==- V (—)* | ^ j (#, — / + k) (a, k), respectively 

which can be easily deduced e. g. from the well-known Newton interpo­
lation formula. 

If we apply these relations to the polynomials 

/ * + 1 , x \ , .ix «s — 1 . A 
(*2 + W - - . ' * ) a a ( ~ ~ ) , U " ~ W 2 ' ' ' V 

( # .9 _J_. J . . \ 

+ n + -_ + A — i — 5 + w + w + A, .I, « 2 ; 

(•+'_. + «_;.._<).,_, .( :--4J+.-,- i + ()_ 

• .(.4i+__: :. j)_(_ )1 |(_,(i). 

x (* + n + - + - + A —t\i —„](«+» + -» + * — ~ + l , * ) , 

(_+i_. + (_:.._J)_,_v«g(_).(*r').. 
\ / fe=0 v ' 

x ( - ^ + i ^ - i ' - ^ + i + fc)^-A'*)- ( 7 > 
.We made the choice of values s + n + ra + A, and B — A with regard 

to the polynomial j - + n + - - ~ , A — i J and I — - i ~\ , i) re­

spectively in the formula (6') in order to be able to express the product 

/ * + 1 x „ .\ / x $ + 1 , . . . 7\ 
l _ . T _ + w + _ , ; . _ f W _ + w + , ~ + / _ f j l _ f c | 

we obtain: 

/Í? + 1 . , # A / # s — 1 . • » • . A 

{ _ __, + __, , ) ( - + - .,-AT. + *) 
i,'-— A + i + & J respectively 

ł 



u 
by a single symbol independent of t: 

(-r + ' + ̂ H " - (- + "^1'-i + *r . 
Inserting the value (7) in the expression (6') of the polynomials 

$x(n3 mf x) we obtain 

^--•-^^-^-••(ijrT^-?)' 
* (*"£ X + w + ^ . A—*)(* + » + « + A — £ + 1, *)-=-

x (_ -+ ^ ^ ^ , — A + *) (« — A, *). 

Using the known relations 

(:)(;B:4f+n#)(n=m 
we now carry out the summation 

V / » \ In + AWm + A\ _ A /« + A\ / » + A — * \ /m + A\ _ 

&UM * JU—"r&l * )\ *-* /u—•)" 
^ / » + A ) t i 7 » + A —few m + A \ _ / w + A \ / r a + w + 2A—fc\ 

~\ * )U v / u - * + * r \ * M *-* / 
and for the sake of control also the summation 

y M—A In +X\tm+X\tn+ X\ y l n + X — k\/m + X\ 

_ in+ X\/n+m+2X — k\ 

- \ * /I A - * /• 
It is obvious that the two sums are identical, After a short further trans­
formation, the expression for $*(»> #*, #) assumes the simple form ' 



л / . (—)АГ»/ и / л у ( » + я » + А + 1 , . Я — * ) } 

9 Ь ( 1 ц т | * ) - — - ^ ( _ г ^ ~{п+Х1^-^ .* 
х-\-п<*)-\ -—а>, Я — &/о>|(в+п+т+Я — & + 1ш.&/а>)== 

, A \ ( n + m + / + 1,A — i ) 
~ ( " w + 1, A — I f 

w 

2 ^ w J(* — Aa#, A —i/a>)ťo*. 

For special value, e. g. k = 0, 1, 2, there follow from this expression the 
following polynomials 

30(fi, m, x) = 1 

Зi« 

$2(TІ, m, я) = 

я + m + 2 . (л — m)(s — 1) 

&<«, m,.) = --j-jqл--« + 4 ( w + l Г - -

( » + m + 3 ) ( и + m + 4) » + 4)/ . * — 1 W , « — 3 \ 

5-—(*+ -I_«J(«+_«,)T 

(9) 

4(» + l)(w + 

- ? ^ + ^ ( ' - - ) » ( * + ^ » ) + * < ' - - - ) ( ' - ^ . 
Displacing the interval + ^ ( s — l)o> so that the extreme value 

— \(s—1) OJ coincides with the point x = 0, or substituting the variable 
x by the new variable 

,' s ~ 1 

z =. x + - — a>, 

we obtain the function ^ 0 (n, m, 2) and the polynomials $*(?&, m, s) 
corresponding to the interval (0, s — 1 o>). We shall make use of this 
modification later for the investigation of some extreme cases of the 
function <£0(n, m, z) and of the polynomials $A(W, m, z). With regard to (4) 
and (8) it is evident that 

Фд(n, m, z) ==: F«+л (nш + 2) Kw+л (m + Ă + s — lo)—z) : 
: Fî

я+-rt+2;..fi(w+m+Я + «й>). (4') 

I 
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•>/ . (—rvv u й < " + _ ± _ ± i _ l 

3«(».«,«)- 2Д 2j(-)*y—iгщržj 
- = » - . - • - ' • • * ) 

-A 
* (г + n + І fu, Д — k/oj) (s + n + m + X OJ, — kjoj) 

(8') 

( - ( ' W ,kIX\{n+m+ „ + 1 , _ — k) 

4i.0 W ' > + i , r - i ) -* 
.*< (s., — A — 4/o>) (B — A O)i kfoj) =-= 

J V í - 1 * (1'A) <W + m+^+1'fc)/„V: 

"*& MU-*) -(»+l,*) ^ 1 
x (s — X OJ, A — k/co) ojk. 

The relation to the hypergeometric series of the third order. 

By a simple transformation of the expression (8') it is possible to 
obtain an especially remarkable modification of the expression of poly­
nomials $i(th mt z); 

^,»,-)--fe)V-l)(*-2)...(.-Я)[r+<» + " 1 + Д + i

: i)(-Д) 
- • - > 

) 

X — • 
m (n + m + X + 1) (n + m + X + 2) (—A) (— X + 1) 

s — 1 ' " 1 , 2 ""(n' + Tj (ñ*+-2) " 

м 
•] + ... (Ю) 

д 
_, x 

( , _ 1 ) ( , _ 2 ) 
Anil 

»K «, *> « ( | f <* + » + « + ^ - A) [l + ̂ £ + £+ » =* 

i> + n + \ , ( n + w + A+ 1) (n + w + A + 2) (10') 
X * + n + m + 1 ~~" '(n+1) (n + 2) 

_ aw • , , . (-- + » +I I I -* + n+*2J V 

1 . 2 (s + n + m + 1) (s + n + m + 2) J 
respectively. 
The series in the brackets shows a complete analogy to the expression 
of ordinary Jacobi's polynomials by a finite hypergeometric series. 
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Using the notation 

n + m + A + l = a , — A = 0, n + 1 = y, 1 — ~ = £, 1 — a == <J. 

- + A, = ^, 5 + n + m + 1 -- (Y, 

we obtain in the brackets the series9) 

! + «•£ * <*(«+ l)flft+ 1) f(f + 1) 
"^ 1 . y d ^ ' 1 . 2 . 7 (y + 1) 'd(d + 1) "*" ' " 

and the series 

1 + l U <4«+DW + i) 5<5j+il r e s p c c t i v e l v 
l + l . y d ' + 1 . 2 y(y + 1) d'(S'+ 1) + ' ' ' r e s P t c t l v e l > • 

Using Norlund's 1 0 ) notation of the hypergeometric series of the 
third order 

Ft* ft v „ h\ i x a ^ ± a { a + l)M + l ) y { y + l ) x. 

we caii express the series (10) and (10') by the symbol 

rvr^- j- [t\F(n + m+k+l,-X,-S;\-s,n+l) I (s — /) \Z ] o) 

and 

| » j ^ + » + « + ^ + i ) F -
\ 2 ] r(s + n + m + 1) a.* 

n + 1, « + n + 7w + 1) respectively. 
9) J . T h o m a e first s tud ied th i s seri s a n d tłie series of oven more ge-

neral form 
aa'a" . . . a<*> , a(a + 1) a'(ď + 1) . . . aЩaW + 1) 

~l~ " ì ß'ß" . Г. ß(n)~ ^ 1 . 2 Л / Г + 1) . .T /Й~-)(/?<») + 1 ) ^ " ' 
in t h t r e a t i s e : U e b iчüe h ö h e r e n hypergeom. Reihen, insb sondere über die 
R e i h e 

1 _}- q 0 a i a - ~ J_ a o( q O.+ ł ) & l ( a l + I)«2(^2 + !) д.8 • 
"*" 16Л "^ ~ " 1 . 2 6 ^ + 1)62(62 + 1 ) """ ' ' ' 

(Math m. Arшalen, Bd I I 1870) and łater in the treatises: Int gration deг 
Differenzengleichung 

(n + x + 1) (n + л + 1) Jfy(n) + (a + 6n) Л<p(n) + c<p(̂ ) == 0 
(Math.-Phys. Z itschrift 16, 1871) and „tJeber di Funktionen, welcłie durch 
die Reihen 

1 л. PŹÏĹ .1. ... 
' 1 ? ' ? " • , 

dargestellt werden (Journal f. r ine u. angew. Math. 87, 1879). Tłюmae ealls 
tłies series hypergeometric series of higher order. 

1 0 ) S u r u n e ełasse de fonctions hypergéométr iques, Översigt danвke 
Vidsk. вełskaЪ F o r h a n d L , 1913. 
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From the relation 
F(atp,y;a,b)^ 

1 

- fum^yf fm p'b',y) *~x (1 ~ y)tt~ v~x dtJ 

0 

deduced in the papers of J. Thomae and in the above-quoted paper of 
Norlund there results the new integral expression of the polynomials 
$i(n, m z), in the form 

rio\ rv„ J t\ 
— — \F(n+ m + 

_ . . (mV r(s) r(n + 1) (' 

-Є) 

+ A + 1, — A, 1— «; y) yV ^ ( l - _ y)n+*dy, 

'co\kr(s + n+m+X+l) E(« + 1) 
Г(* + я + w + 1) Г(n + 1 + І ) r ( ~ i ) 

x />(» + m + ;. + 1, — A, « + 1; y) y°> " (1 — y)'"« * rfy. 
0 

With regard to the admissibility of the permutations of the elements 
«, /?, y « . . and the elements a, bf c,. . . in the series F(a, /?, y,. . . a, 6, c,..) 
we can express the polynomials $x(n, m, z) in several ways by analogous 
formulas. 

We proceed now to the deduction of some important properties of 
the function Ux(n, m, x) and of the polynomials $x(n> m, x). 

1. We shall prove first that IIx(n, m, x) and $[x(n, m, x) form orthogo­
nal systems with respect to the function 1 : &Q(n, m, x) and 0o(n, mt x) 
respectively as characteristic functions. The respective conditions of 
orthogonality are expressed by the following relations 

a a 

VJ/L rr,£ = o; JJ &&, #*» = o, A ̂ M. (U) 

To prove this property, we use the well-known summation formula 
rA—1 -j0 

o> + 
to to 

+ (— )*2JV( X + ho)A*<p(x)m 

Vf(#) áÅf(x) co «= I V ( — I M ^ ^ 1 V;(^+ *«>) ^9 (*) 
a m Ь^O «* to 

(13) 
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which results from the repeated application of the formula for partial 
summation. If R(x) denotes an arbitrary function, we can express 
•according to (13) the sum 

i j 2A F„ L W + 1 (n + m + ^ w) 

x^/JA<ř>;.(a:)R(^)o> 

in the form 

«Я 

A-1 

5 ] (—)* <4;— ^ 1
 ФA ( S + io)) A* R (x) 

O) 0Ì 

a 

*£j Фi(x + ш) Лx R(x)ш. 

L ѓ«0 

0) + (—)Дřl;.x 

The expression in the brackets, however, is in the limits + a equal 
to zero, because of 

-w-i ,„ 4 y 
,9 1 J A - i - 1 ф( 

+ w• + / — »" — lw 

* + i 0 , )--,5;( A ~í"" 1 )-- ř ^( 

) J " - ' - ' - i T)й+л ( - ү 1 

OJ 

o> + m + Я — io) — x I 

and the value under consideration is therefore given by the sum 

2j7r,i Fn+?.~r 
r, i 

( g I _ \ tg 1 

x + '„-.. 0 J - 4 - n + X _ r _ i (ú\ Fm+n r+i I - £ • 
# , 5 — 1 

+ m + r + 1 co — x\ ~~ V y-t 

' r,i 

(0 + 

+ - S + n+Л — Г—l 
oj 2 

x s — 1 

—ÿ~- + m + r+l — 
O) 

S'—1 . X 
O) tн + í» + A+i + l 

OJ 

which in the extreme points *>f the summation interval is equal to 
!&ero for all values of r, and i. There remains therefore for the original 
sum the expression 

a n 

- (_)A 0 . V &,,(x + -Jim) A* R(x) OJ =. ™ 3 , (*) &Q(x) ll{x) to. (13') 
* — > * * • w —a 

/ 
* f 
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If we choose e. g, a polynomial pi(x) of the i-th degree lower than X for 
the function R(x)y this sum is evidently equal to zero, so that 

fi 

y &(*) *o(*)P. (*) to =••»-= y U>.(x) lH(x) or. 0 £ « < / . 
—-a — a 

If we then substitute an arbitrary polynomial $An> m> x) i°T *u e polyno­
mial pi(x), we obtain the required condition of orthogonality 

a a 

y &(*) 3/.(') *•(*) «> = o = y n,(x) n,(x) "' 

This property is eharaeteristic for the polynomials ^ ( n , m, .c) and 
is sufficient - disregarding any multiplicative constant — for the complete 
definition of these polynomials. We can be convinced of this by a simple 
consideration: 

Let us suppose that there is another polynomial xSk(x) nf the degree /. 
of the same property. 

Then also the polynomial 
{a3i(z)—b3i(x));a,b'^0 

would possoss the same orthogonal property. If we choose a and b so, that 
the coefficient of the power xl vanishes, this expression will have the degree 
K ~ L But from the expression 

a 

y (a &(.-) — b%(x)f 0o(x) co = 
—a 

u 

= a y &(x) 0o(x) [a &(*) — 63-(.-)J w — 
—a 

a 

- b J J $,(*) 0O(X) [a 3.(x) - 6 0.(*)1« 
—a 

follows that, on the given supposition, it must be 
4? 

a  

VJ (a^,(x) — b$A(x)f 0o(x) o> = 0. 
—a 

Because 0o(-c) is in the interval of summation constantly positive *xnd 
different from zero, there follows from the mean-value theorem that (a$i(x)— 
— 6^;(a?)) is equal to zero in the whole interval of summation, i. e. it must be 

<*&(*) *=* b$i(x) 

If jit *=& A, the sum (12) presents a very important value, i. e. the 
value 

a 

h^^xHx)0o(x)co 
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which occurs especially in the approximative expression of arbitrary 
functions by the series 

&o(x) K 3o(*) + ai %i(x) + . . . | 

For the calculation of the value under consideration let us use the 
relations: 

a> v> - \ " T ^ l1) 

and insert them in the equation (13'), then 

a 

_ (1- A) (w + w + A + 1, A) (m + 1, A) Jn+m+gA+i(n + m + * + Aw) ^ 

2W (n + 1, A) f - + B + i ( » + « » + *«>) 

« - (14) 
x \ 0}{X + Xco) 0) 

— a v 

We can reduce the upper limit of summation in the sum on the right 
side of this equation to a' = \ s — 1 to — Xo>, for the function <P\(x + Xco) 
is constantly equal to* zero for arguments greater than a . 

The sum of the function @A(X + ho) in the limits — a, a can be 
written in the form 

Fn+m + 2A + l (^ + m + X + 8 0)) 

. x 8 — 1 \ /8 — 1 x \ 'V:;;t^jf &J 
a' / oJ + ~2~ + n + \ I "~~~ir~ + m ~~ m \ **> 
^' ^_+.f̂ i U=i_;. *'K*t«£ 

o) ^ 2 / \ 2 co J ^ * * ~ 

The function after the summation sign is, according to (3), equal to the 
expression 

* /— rT+T+'l\ I —m + X+'l 

ancl its sum in limits — a = — \ (s — 1) co, a = \ (s + 1) co — Aco can 
be carried out by aid of the known relation 

5(.)(..i.)-en fj7)(r-!vm<i6> 
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Putting 
x i $ — 1 

we obtain the value of the sum 

«' / — n+X+l\( —m + 'X+l 

+ -.--/l—s A--2 ' r,> 7 \ 2 CO / \ Z OJ , 

в—Л—l 

^ ( _ ) f _ i - * / - * + ro + 2A + 2 \ In + m + s + A\ 

__ Fn + m±2A + i(n + ^ + * + * 0>) 

If wo now insert this value in the equation (14) we obtain the re­
quired sum 4 

a 

h^Y$x*(x)&0(x)a>~ 

_ I 1 ' ^) (OT + *> A) (n + m+X+ 1, A) F„+m+2x+i(n+m+s+7.m) ^^ 

2 « ( » + M ) iVm+l(« + m+W) 

By means of the reciprocal value of the root of this expression, the poly-
o 

nomials $x(n, m, x) can be reduced to the normalized form ^(ra, m, x) 
satisfying the condition 

• y^h.(x)0f>(z)o)=sco. 
Jmd 

a 

2. F u n c t i o n a l e q u a t i o n of t h e p o l y n o m i a l s ^(w, w, #)- An 
arbitrary polynomial of the degree r can be expressed as a sum of po­
lynomials $t(x) 

]£<M*)> 
for the number of constants (t{ is exactly the same as the number of 
given coefficients of powers of the variable x in polynomial under 

4 consideration, i. e. r~4~T. E. g. for the polynomial x$x(%) the relation 

*&(*) « «A+i3m(*) + **&(*) + - • . + < U * ) ' - (16) 
holds good. 
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By successive multiplication of this equation with the product 
3*—t(a:) .<P0(x) and by carrying out the summation according to x in 
the limits -^ a we see that * 

a0 = at .=-. a 2 = , . . . *= Ojt—2 ^ ^ 

We obtain the coefficient a;v+i by equating the coefficients of the 
highest power of the variable x: 

v (—)'(»+^ + A-+M)^ (-)1"*(" + _™ + i + > ;* + I) 
2*{n + 1, A) " flA+1 ^ """ 2^rr(?, + 1; ;v + iy ^ • • 

hence the value 
- _ _ 2 f o + m + A + l)(w + A + 1) 

a A + 1 ~ ( w + ' m + 2A+l ) (w + w + 2A+2) 
results for a^v 

The remaining constants a;,, «;.„} can be calculated, if e. g. we 
substitute the following values for x 

s—l , 8—1 
#2 ==.; o> and a;2 == ^~ to 

in the equation (16). 
Using the expression (6') of the polynomials $A(X) after the snbsti* 

tut ion we obtain the two required equations 

(
v $ — x ico1 wA+1 

— ak — — «*(-;(* — ?- *) = «A^-i-^j-pr(« — A — 1 - A + 1) + 

+ a A _ 1 - ^ _ ( . s — A + l , A—1), 

i N; / , * —1 W , , ^ ( w + l - A ) 

„ ( - l * * 1 " ' * 1 , , , ; / . , n ( m + l , A + l ) - aw 2M (s - A - 1, A + 1) (w. + a - - T ) - + 

. ^ - . i ( _ ) A - . i ( W + I , A ~ 1 ) 

+ tt^1__::i_ 

yhich after the reduction by common factors assume the simple form: 

— (r/* + ~~T~~0)A V (* —^).=s=:aA+ii(«—A —1) (* — A)co2 + a^- i 

/ s ~ l \ m + A ; 

( m + A) (m + A + 1) . , 2 

6* 
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By an easy calculation we obtain the required coefficients 

jn +m)(a+l) — 2(X + 1) (n + m + X) 
(H ~ 2(n + m + 2X)(n + m + 2X+2) ™ * (* ~ M) C° ~ 

_ (a + m) (s — 2X — 1) — 2A (A + 1) _ 
2(w + w + 2A) (n + m + 2X+2) {H M) C° 

-... (a ~f- w + " + X) (m + X) X(s — X) 2 
aA~i ~* — ^ + m + 2 A ) ^ + ^ + 2A + 1) co" 

(To be continued.) 

Das jährliche mathematische Risiko der Versiche­
rungen, bei welchen zwei von einander verschiedene 
Ereignisse die vorzeitige Auflösung herbeiführen 

Icönnen. 
Von Hans Koeppler, Berlin. 

Unterliegen die drei Wahrscheinlichkeiten pv p2 und pz der Bedin­
gung 

Pu+ Pa+ P3= 1 

und sind eine große Zahl s Beobachtungen angestellt worden, so besteht 
nach dem Satze von Bernoulli die Wahrscheinlichkeit 

1 ^o*»1» >7 \Pt(l-~P*)oit+PiQ — Pi)"** + 2PiPt<'i<rt} 
P(a\y a2) - r e ~*PiM*1 . - j . 

daß die Abweichung ± ort von der wahrscheinlichen Ereignißzahl sp1 

und die Abweichung + a2 von der wahrscheinlichen Ereignißzahl sp2 

stattfinden wird. Setzen wir 

1 — D2 1 — p± 1 

2*ft?3 25P2P3 «IV 
sowie 

- 1 _ 0 ~ f t j ( l - - f t ) l _ Ä a a ^ a « Ä 4 ' 
^ Ä f t t t » 4**Piftp3* 4 * W n 2* 12 

so können wir der Wahrscheinlichkeit auch die bekannte allgemeine 
Jform geben; 
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