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‘Hypergeometric orthogonal systems of polynomials.

By Dr. L. Truksa,

INTRODUCTION.

The orthogonal systems of polynomials have become a very impor-
tant tool of mathematical analysis. They play an essential part in the
solution of a whole set of difficult mathematical problems as e. g. the
expansion of arbitrary functions in series of polynomials, the solution
of integral and sum equations ete. Orthogonal polynomials occupy an
important position in numerous fields of applied mathematics. We may
refer especially to their application in the theory of probability, in

-mathematical statistics connected with it, in the calculus of graduation,

the theory of interpolation and numerical integration and summation.

It is generally known that every orthogonal system of polynomials
corresponds to a certain function @(x), which we call characteristic
function') and further to a certain finite or infinite interval of integration
or summation (¢, 8). The principal condition of orthogonality of the
polynomials Pj(z) is expressed by the integral:

8 »

} Pp(x) Pp(z) D(2) dx =0, n F m; / PXx) P(x)de += 0
or by the sum:
3 B
\ Y , ’
L Balz, 8) Pol, 8) Pz, s) w = 0, n £ m: Z R,2x, ) Plx, 8y m &£ 0,
where s denotes the number of terms of summation, (s — 1) w is the
interval of summation. There is not hitherto anv established special term
which would distinguish the two groups of polvnomlals For the sake of
brevity, the systems of the first group will in this paper be called integral
systems, those of the second group summation systems. In some cases
the summation systems change into integral systems in thelimits > 5o,
w - 0 and are therefore more general in this respect. If in such a case,
a special term for the integral systems is already established, we shall

1) ]i:;l:}gungsﬁmktion, Gewicht, poid.
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add only the adjective ,.generalized”, while referring to the respective
summation systems. .

To every orthogonal system of polynomials corresponds further
a definite system of polynomials. which satisfies the same functional
equation as the original polynomials. We shall use the term: polynomials
of the second kind to express the difference between these polynomials
and the original polynomials, which we call polynomials of the first kind.

A. M. Legendre was the first to introduce the simplest orthogonal
system of polynomials into mathematical analysis while applying the
theory of least squares advanced in his treatises ,,Recherche sur I’attrac-
tion des sphéroides homogenes® (1785) and ,,Recherches sur la figure
des planetes™ (1784). This is a system of polynomials corresponding to
the characteristic function ®@(x) == const. and to a finite interval of
integration (-~ 1), which we call Legendre polynomials or spherical
functions. A considerable part of the other known integral systems was
deduced from the problem of the Gaussian numerical integration
(Gauss’s mechanical quadrature) of the product of the given and the
characteristic function.?) .

Because of the close connection with the subject of this paper let us
refer here, among the nnmerous integral systems of polynomials
octuring in mathematical analysis, only to the integral system of hyper-
geometric or Jacobi's polynomnials. These polynomials of the characte-
ristic funetion

D) = (a + ) (f — )"

and of a finite interval of integration are the source of a whole group
of orthogonal systems corresponding either to a simple specialization
of the parameters of the characteristic function or to a degeneration of
this function in limiting cases. The hest known are the polynomials
corresponding in a finite interval to the function

@(x) = 1 and P(x) =

1
N V] . 22 )
further in an infinite interval to the functions
Dr) == xr e, D) == x—rell?, g(x)=e¢""".

1t may be vemarked further that the principal properties of the
integral systems of orthogonal polynomials have been very clearly
summarized by N. Abramesco in his paper: ,,Résumé des principales
propriétés des polynomes orthogonaux.'®) Analogous properties hold
good also for summation systems.

U P to a very recent time, the summation svstems of polynomials

T E) See e. g. (. Runge — Fr. A, Willers, Numerische und graphische
Q!mdmhu, Ene. der math. Wiss, 1I C-2.
3) Nonvelles Annales de Mathématiques, 1923,

*
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were, compared to the systems of integration, considerably neglected
in mathematical research. Nevertheless the simplest system of this group
of polynomials corresponding to the characteristic function @(z, s) =
= const. and to the finite interval of summation [-:- §(s — l)w] was
deduced already at the beginning of the second half of the 19th century
by Tchebychef in his treatise ,,Sur les fractions continues™'?) (1855).
These polynomials change into the integral system of the above men-
tioned Legendre polynomials in the limit s » co, w — 0. Theyv acquired
special importance in the numerical calculus of the theory of interpola-
tion and approximation. )

In his paper ,,Sur Pinterpolation des valeurs équidistantes' (1875),
Tehebychef discussed a very general summation system of orthogonal
polynomials. These are polynomials of a finite interval of summation
and of the characteristic function:

Do) - L@ T QT n— 24 f)
I'(x) I'im — x).

This paper is devoted to this system of polynomials and to the
systems derived from it. As far as I know, nobody except Tchebychef
has ever discussed them up till now. The term ,,Jacobi’s generalized
polynomials, which I am using, is derived from the fact that the above
mentioned polynomials of Jacobi are the limiting case of this summation
svstem of polynomials.

. Hypergeometric or Jacobi’s polynomials are, as it is well-known,
a special ease of a function very important in mathematical analysis,
i.e. the Gauss hypergeometric series. Also Jacobi’sgencralized polynomials
are in the same relation to the hypergeometric series of the third order,
which was introduced into mathematical analysis by J. Thomae in his
paper ,,Uber die héheren hypergeometrischen Reihen'.%) This hyper-
geometric series of the third order is reduced in the limiting case into
the above mentioned series of Gauss and fulfils the same function in
the sclution .of the hypergeometric difference equation of the second
order as the ordinary hypergeometric series in the solution of the Gauss
differential equation.

A further important summation system of orthogonal polyno-
mials was deduced by C. V. L. Charlier in his paper ,.Uber die zweite
Form des Fehlergesetzes.%) These are polynomials of the characteristic
function:

7n:E e-—-m

D(x) = -

and of the infinite interval of summation (0, ~). To this system accedes

4) Qeuvres II/12.
5) Math. Annalen Bd II.
8) Arkiv for Mat., Astron. och Fysik II/15, 1905.
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finally the system of the same interval of summation and of the Lhd-

racteristic function
m® e—m)2
(D( ) [’ W"V‘i - ] ’
x!

the principal properties of which are listed in my article: .,Application
of Bessel coefficients in approximative expressing of collectives.*7)

The generalized Legendre polynomials, the polynomials of Charlier
and some other systems of summation, which — as we have explained
above — gonerahye the group of hypergeometric integral polynomials
can be deduced, as will be shown below, from the systems of Jacobi’s
generalized polynomials. For the definition of this summation system
of polynomials contained in the Ist part of this paper, we shall use —
analogouslv as Tchebychef does — an extension of the well-known
expression of Jacobi's polynomials Jy(p, ¢, 2) in the form:

L] — 2)1—r d .
a0 =" P fait (1)

if we substitute in principle the :-th power of the variable z, in this
expression by the corresponding factorial product:

(v, ) =—x(x+1) (z+2). .. (x+ T —1)=(2+ im1,~1'):(x+:~l) i!
(2, 0) =

From the principal properties of the system of polynomials under
consideration we shall deduce besides the orthogonality investigated
already by Tchebychef, their relation to the hypergeometric series of
the third order, further their functional equation, the respective hyper-
geometric difference equation, the expression of the polynomials in form
.of a determinant and by continued fraction.

By application of Jacobi’s generalized polynomials we shall deduce
a very general definite approximative series and a series of interpolation
respectively, of the form

D(x) [ag Polx) + ay Py(x) + . .. + an Pa(@)],
in which the coefficients a; will be determined by the method of moments.
This series — convenient espécially for the approx1mat1ve expression of
frequency functions — is reduced into Charlier’s series of the type 4 and
B in limiting cases.

In part two, while investigating the properties of the characteristic
function, we shall summarize, above all, the remarkable views of Pro-
fessor (3. Polya on the deduction of the characteristic function from the
concrete problem of the theory of probability and on the application
of this function in mathematical statistics. At the same time we shall

7) Aktudarské védy, I/1, Praha 1929.
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refer to the close connection of the characteristic function with the
frequency curves of K. Pearson.

The general form of the characteristic function will enable us to
give the theoretical deduction of. the approximative expression of this
function on the base of a greater number of practical calculations in the
manner proposed by Professor K. Pearson in his paper .,On the method
of ascertaining limits of the actual number of marked members in
a population of a given size from a sample™.#)

In the following, some cases of the characteristic function correspon-
ding to special values of the arbitrary constants which appear in it will
be considered and especially the degeneration of the function in limiting
caxes will be investigated.

In part ITI we shall deduce the respective summation systems
of orthogonal polynomials in special cases of the characteristic function
and refer briefly to the above mentioned hypergeometric integral
systems resulting from them. In the first place the above mentioned
generalized polynomials of Legendre will be considered as the simplest
case. A further special case are the generalized polynomials of Tche-
bychef which — as far as I know — have not been mentioned hitherto
in the literature of the subject. They are connected with the integral
system of Tchebychef’s orthogonal polynomials of the characteristic

function 1 :V 1 — 2?2 and of the interval of integration -}- 1. Another
important limiting case of Jacobi’s generalized polynomials form the
polynomials, the characteristic function of which is the binomial fre-
quency function. We might call them Hermite’s generalized polynomials,
for in the limit @ -» O they are reduced into the well-known polynomials
of Hermite. The polynomials called generalized polynomials of Laguerre
or Kummer are a summation system of special importance. These poly-
nomials are reduced for the limiting value of the variable parameter
into the polynomials of Charlier, in another limiting case, in which at
the same time w - 0, we obtain the integral system of Laguerre’s poly-
nomials from them.

It is not the aim of this paper to consider in detail the applications
of the orthogonal polynomials mentioned above in the different fields
of applied mathematics. Nevertheless we shall not miss the opportunity
to refer frequently to their practical application especially in concrete
problems of mathematical statistics, numerical summation and integra-
tion ete.

As to mathematics I generally used the elementary method. The
single deductions are given all in considerable detail. The reason
for that is, in the first place, the circumstance that in this paper a greater
stress is laid on the constantly growing penetration of the orthogonal
systems into numerous parts of applied mathematics, in which only

8) Biometrika, Vol. XX A, 1928.
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a general preliminary mathematical training is required, rather than to
their great importance in pure mathematics. Nevertheless, especially in
the first part of the paper a number of suggestions will be found which
lead to interesting questions of purely theoretical value. We may cite
as an example the reduction of the hypergeometric differenct equation
of the second order into the hypergeometric differential equation-of Gauss.

PART 1.

Definition and principal properties of Jacobi’s generalized polyno-
mials. Relation to the hypergeometric series of the third order. Orthogo-
nality. Functional equation. Hypergeometric difference equation. Deter-
minant expression. Expression by aid of continued fraction. Interpolation
and approximation of functions known only in a finite number of equidistant
values of the argument. Polynomials of the second kind. Application of
polynomials in numerical summation. The integral system of polynomialy

deduced from Jacobi’s generalized polynomials.

Definition and principal properties of Jacobi's generalized
polynomials. ’

Let the function @y(n, m, z) of a real variable ¥ be defined in «
equidistant values of the argument z in the points

- s—1 s—1
— T ,~§,.__0,, —a-twm,...,0—o0,a :MTU)
- by the expression
s—1 s —1
Fol——0+nw + 2y Fpy|[——0 +mo —=z
2 1 2
Dy(n, m, ) = - - s - I
(i}
Foimii(n 4+ m 4 sw) (1)
s—1 x s—1 x
1}
gt A4 5+ m—— .
o et 2 w w™ “ w c i tm+l n+m-+s
s—1 =z Ce—1 s—1 [
T2 T e 2 T o

Let the parameters n, m satisfy the following inequalities

4, —l<n m<—sg—1 . )
' n - 1 K !
‘m‘ > 0. (2)
By applying the known relation . '
—a\, e+ i—1 ,
B Tarn B

we can express Py(n, m, x) also in the form
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- —n+1\[ —m+1 T -
Dyn,m,2) =s—1 2z |ls—1 =« :m(*"'{"";“""‘). (1)
8-.—~

2 w 2 ©

On the above mentioned suppositions about the parameters n, w,
the function @y(n, m, x) takes on in 8 chosen pomts of the interval -
only positive values greater than zero, which is immediately LVIdent
from the expressu)n (1) and (1%).

If » is equal to a positive integer ¢ or to zero, the function Fe[$(s —
—1)w + cw + ] is evidently a polynomlal of the degree ¢

HF (s w+cw+ar) a 1—5

(s + 1w+ ) (1’1(—‘) (f%;—}-w 4+ a, c;w)_

By application of the gamma-function it is possible to define the
function @yn, m, z) in all points of the interval -+ « by:

( = a) + ew 4 x) (« -v.;‘;m +- oy -4~ z)

Dy(n, m, x) ==
s+l g\ fs41 x ,
___!F( 2 —I-n—}-m)l’( 2 +m_~;;;) _rl(n+m+s+l)
Tt 0 1(57 4 ) oo -H)r(“’+1 z) oA
(")

Function @y(n, m, x) will be discussed in detail in part II of this paper.
Starting from the function
. Pi(n, m, x) =
’ s—1 . ‘ s —1 R
F,.+,1( 5 w -+ nw -+ x)F,,.M ('«75—*«(»—1—- mo + Amwx)
= : . @)

Frimsoasy (n+m+ 1+ sw)

which is reduced into the function @yn, m, x) for 4 = 0, we define now
the function

1 .
Iin,m, )= »‘ﬁ+ A, Frimigisr (M m+ A+ 8w)AZ(D;(n m, z) (5)

and the Jacobi’s generalized polynomials
‘ Hl(n: m, 22) 1
Dy(n, m’ x) F’n+m+1 (mw)

on the supposition, that A <*.s.1s a positive integer.

S, m, x) =
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By applying the well-known formula of the difference calculus
1

AJ lg(x) p(a)] = }J( -) Alglx 4 A — iw) Al'%)}(l‘)

o w
i-0

e A
we obtain the following expression for IT;(n, m, x)

Im. m, ) = )
_ (m+1 2) Z(’j)(__)zmipn H__‘.(f_.;_l o+n+d—iw x) x

2 i
i 0

T A (m+lz)‘
Xl’mu‘( 9 m+m—1—uu—~z) AL Z( )

. & — 1 , . s —1
»Fyy ( » O nm -+ :r) Foriwi ( g © + mw — x) .
With regard to the evident relations
Fusrs ( AT T e+ x)z
“ !
w i . fs—1 s+ 1 x ., .
“(774?’1’,7.*5)1"( 5 w—f—nw+m).(- R ,;,-_L),-

s—1  ——
F,,,‘;.(" ; w+m+zw—~x):

; . .
= (;’ -_:] h F, (§~~.;-~](u -J~mw—~x) (8'_; 1 + m«—f—, i’)
t s

follows for the polynomials Ja(n, m, z) the value
LG N, A m A
Jolm o0 = 1 1y B (" )(3)

‘x(8+1+ n - (i,;.—t) (8+1+m—— ¥ ,z):

’

b w
(I Z)cu’ ’ n-+ A m—}—l s-j:}_
Tn+ 1, }.)Z( (Z~@)( ) )( 2 + )
.(“‘;l~z+i—-%,z—_-i). . ©)

To simplify this expression we use the expansion of the polynomial
{2 — a, ¢} in the series .
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(x—a,i)= 2(-—-—)"‘(2) (v, 1 —k)(a—k <4 1,k) and

(#—d,—i)= E (—)¥ ( i) (2, — i+ k) (a, k), respectively

le==)

which can be easily deduced e. g. from the well-known Newton interpo-
lation formula.

If we apply these relations to the polynomials

gl y r —1
(-v~h;l + m— N ,i)ﬁ(““)‘(‘x *“""“‘"17,_‘ 4 ")“’
«) w

- P

:(4)"3(;' +)z+ 1+/—¢—~s-t n 4 mJ-l a)
s+ 1 . x . Y s+ 1
( 9 —7.‘{—@*(}),/-*"@): (=) (w “Q--——r/—-—t,——ﬂmh)

s—1

:PN"+~+~~~~¢—k¥A*2+ﬁ,

we obtain:

. s 1 x i : (¢
(54— erpen(i)

X(Z+n+_:‘ll+} 12———k)(3+n+m—}—/1-k—+—1 k),
A )
s+1 N A i N[ A L
( 2 '—;'+l‘ (,l)"A 1’)‘*—(‘—) Z( ) k )><
. =0
; %{+S:i*@~a+ﬁ+4w—Lm. o
] » 2 ~
. We made thé choice of values s 4+ n-+m-+ 4, and 8 — A with regard
s+ 1 x . . s+1 . =z .
to the polynomial C w4~ A—i)and|——— — {4 — 2} re-
: - 2 w 2 0
spectively in the formula (6') in order to be able to express the product

(sj:}_«}_ +W )“z)( +n+ 5 +/.-z t—~k)

and

( f’a.—..l_@+__ z)(x + s_l_i,;—i+i+k) respectively
y4 . w 2 < d

7
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by a single symbol independent of i:

(**1+ + »nﬂ md(£~F8?1y~2+k)

2] P4

Inserting the value (7) in the expression (6') of the IlOlyﬁélllials
Sa(n, m, ) we obtain

Sa(n, m, 7) = z(ll(nzzk(l F) R Zi} ( )(” T A) (’;:j) }

=k

x(8+l+n+§ }._~Ic)(s+n+m—{—).~k+l,k)= .
Ak (6”)
(1, ) (— o[ A (A fm A
st Z‘“’kz( k )(ﬂ~—-i)( )
x(_g+i%,-z+k)(.s—x,k).

Using the known relations

(D)= (a2 BN (7

we now carry out the summation

N\ mt A N2 A—k\ fm
()G =R 0TI 6
W A—k p P 20—
oA ) | S Y A [ (RS

i=0
‘ .
and for the sake of control also the summation

SEEECT) -1

=0

'}“k w4 A—k\/m+ 2 .
Yl i) (" )=
1=0 R
(e A - m 24—k
S =0T
It is obvious that the two sums are identical. After a short further trans-
formation, the expression for §a(n, m, ) assumes the simple form -
o . .

” ’ 4 - v
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<t

—)1 (n—}—m-}+ll-—-k)
S(n ™ & _*__ ;(—' (n’) (n—rl 2.*'—‘]6)

(x +nw-+ ~~jt w, A— k/w)(a—{—n—L-m +A—k-+lo,kio)=

__(——)4 2( )k( )(7@+m+)+1 Awk)x

21 ~ (n+1,2—k) -
§ (a:+ =l — i‘:k/w) (s — Jo, kfeo) = )
RS “, (LA (tm4 A+ 1Lk
A =k mE iR
8§ — ‘ 1 z
AT 0 6T e, A= ) ot
k

For special value, e. g. 1 = 0, 1, 2, there follow from this expression the
following’ polynomials

Soln,m, x) =1
' n -+ m-+ 2 (n—m)(s—1)

Saln, m, z) = ©)
_(n+m+43)(n4m+4) s—1 3
B eI (” El )( )T
2&”(“:?-“53'—’(8—2)0) <x+ f—;—‘lw) +36—2) (s — o,

Displacing the interval 4 J(s — 1)w so that the extreme value
— }(8—1) w coincides with the pomt x = 0, or substituting the Vauable
z by the new variable

we obtain the function Py(n,m,z) and the polynomials Ji(n, m, 2}
corresponding to the interval (0, s — 1 w). We shall make use of this
modification later for the investigation of some extreme cases of the
funetion ¢0(n, m, z) and of the polynomrals Sun, m, z). With regard to (4}
and (8) it is evident that

Pi(n, m, 2) = Fpa (o + 2) Fuga (m + A+ 5—10—2)
' t Frimpzagr (0 + m 4+ A+ sw). (4')
R ‘ ,
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A

=P, A m A A1, A—k)
Bt 2= N o ()
x (2 + E’:CT 0, A —klw) (s +n+m+ Ao, — kin)

- (4 mt A1, 2— k)
= o Z‘")‘() St r=1

(8%

(2, — A — kjow) (5 — Ao, kjw) =
2
1

Ly WA emtdt L)
LS N S R N R

x (8 — Aw, A — kjw) wk.

The relation tothe hypergeometric series of the third order

By a simple transformation of the expression (8) it is possible to
obtain an especially remarkable modification of the expression of poly
nomials J(n, m, z):

# . A1) (—
Sa(n, m, 2) - ( )(s~«1)(3—~2)...(s—vﬂ)[l+(n+”;—é;b_:_l))( A
o mtmt it Dt A 2) (A A+ 1)
¢ —1 +

1.2 mED)m+2)

[e4

(&)1
* oo™ '
x“@':"ﬁ(s“:“é)"+"'J (10)
and
f
3;(71,7}1,2)::(%’) (s—{—n—-!—m—f—l,-———l)[ ?~_tg~:£—:-+l~;l
) _w"*"f+lﬂ LeEmE At Y@t At2)  (0)
s+n4+m+1 (n+4+1)(n+2)
' z z ,
=R (=it ] (&i+"+l)(&)+"+2)
: 1.2 (s+n+m+l)(a+n+m+2)+'“
respectively,

The series in the brackets ehows a complete analogy to the expression
of ordinary Jacobi’s polynomials by a finite hypergeometric series,

¢
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Using the notation

ntmtAtl=a —Ai=f n4+1l=y, 1—" =§ 1l—sg=234.

®
;+n:17,s+n+m+1::é’,

we obtain in the brackets the series?)

a.Bé  aat+DBB+1) EE+ 1)

1 -
1y T T2 70FD) s6FD
and the series
1 + aﬁ oy e+ 1B+ 1) 1+ 1) -+ ... respectively.

78 T Iy D SOED
Usmg Norlund’sw) notation of the hypergeometric series of the
third order

P foyi a9 =14 BV -+1ﬁw+~nyyﬂ—>L

a.b 1.2ala+ 1)bb+1)
we can express the series (10) and (10°) by the %vmbol

I'(s) w ‘
I’(s~—})( )F( n+m-+ A4+ 1, —1, ———w,1—~—8, n-4 1)

~and

L+n+m+Ai+1)
(4 Ttntmry TOFmEitl—4 *WH

n+1,s4+n-4+m-+ ) respectively.
8) J. Thomae first stu(lled this series and the series of even more ge-
neral form
1+ aa’a” . (»L»(zt)ﬂ . ala + 1) a(a” + 1) ... a@la® 4 1)
TRp”...poy T TR+ 1) ﬁ<"><ﬂ<”) +1)
11:? t}}lle treatise: bebel die htheren hypergeom. Relhen, insbesondere iiber die
eithe

. 1+

ey e+ an(f_zo_‘_‘ bl(al_j—__l) ﬁg(az 1) JERT

b6, 1.2by(by + 1) by(by 4 1)
(Mathem. Annalen, Bd II 1870) and later in the treatises: Integration der
Differenzengleichung

(n 4 x4+ 1)(n + 1 4 1) L2pn) + (a -+ bn) Ap(n) = ep(n) = 0
(Math.-Phys. Zeitschrift 16, 1871) and ,,Ueber die Funktionen, welche durch
die Reihen

L P

‘ i q q T e e ;
dargestellt werden (Journal f. reine u. angew. Math. 87, 1879). Thomae calls
these series hypergeometric series of higher order.

10) Sur une classe de fonctions hypergéométriques, Oversigt danske
Vidsk. Selskab Forhandl., 1913.

#

|
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From the relation
Fla,p,y;a,b) =
‘ 1

F(a)

Y . pe=l (] e )= y—1
= Fip) Fla — y)[ﬂm&QMy (1—1y) dy

deduced in the papew of J . Thomae and in the above-quoted paper of
Norlund there results the new integral expression of the polynomials
Sa(n,m 2), in Athe form

!
Jaln, m, z) == (gf) F({;@ 2 Lo+ — \F(n +om+
- ]’(-——f-)l’(n—{—l—{—‘i);,
w «
. =1 _— n+;

wwqﬂu+n+m+i+n I'n + 1) 5
=13 Ns+n-+m+41) f(n+1+f~)l"(-—i)‘
w w

i 2 —z
></F(n +m+ri+1L,—A4n4 1y y“*+n(1 —y)e ldg/.’
]
With regard to the admissibility of the permutations of the élements
a, B,y ...and theelementsa, b, ¢, . . . in the series F(a, 8,7, ...a, b, ¢, ..)
we can express the polynomials Ja(n, m, 2) in several ways by analogous
formulas. \
We proceed now to the deduction of some important properties of
the function ITi(n, m, ) and of the polynomials Ju(n, m, x).
1. We shall prove first that IT;(n, m, ) and Si(n, m, x) form orthogo-
nal gystems with respect to the functlon 1 :@y(n, m, x) and Dy(n, m, x).
respectively as characteristic functions. The respective condmons of
orthogonality are expressed by the following relations

N\ \
\ ][; ﬂ¢ == 0 2.'8;,,3” Dy = 0, 2 #‘u. (12)
To prove this property, we use the well-known summation formula

B
Em( ) P p(z) o = {Zwm ~i=1 pla 4 ie) zif«;o(x)]o)+

a=0
(13)
(——)*}] pla + 70) dip(a) o



) 79

which results from the repeated application of the formula for partial
summation. 1f R(z) denotes an arbitrary function, we can express

according to (13) the sum
(m.+ 1, 2) I')H»m«(-"lH (n + m + 8 +»}..Ci,).

- XYk R(x)w =
;3;(:1)%(70) (x) m 9. Fn mn(" _.I- m—l-sa))

XZ A*D;(x) R(x) w
in the form a

[ V ()t A"““lﬁb (2 - 1) A‘ R(x )J w -+ (—)a;x

-1

Z==U
a

XZ D {x + iw) 4* R(z) w.

[

The expression in the brackets, however, is in the limits -= ¢ equal
; e )

to zero, because of

A—i—1
: y R : §—1
A==l (x4 iw) = E (A :, ]) A F, (JL -} i’}; - W+

w re={)

e . s—1 U
+ A A —r— lm) Ar—r—i=1 F. 3 (""o" w+m-+ A —im— x)
" 2

and the value under consideration is therefore given by the sum

1 §—1 :
Zyre n«?—r(r"}_"“'" (’)_"‘n”f‘l‘—r—“l(’))ﬁmwir—%l( 35 o -
X =
. z  s—1
T T i b n A —r—1
dmtr+lo—a D YET 2 x
4 ) — = :
’ g 7 x  s—1 A
7 S, o — 1
o 2
N \
8§—1 z
b1
% X = . w wrtmtitivd
b
s—1 X
e e e ']
2 w

“which in the extreme pomts of the summation interval is equal to
zero for all values of 7, and i. There remains therefore for the original

sum the e\rpresswn

C(—la By + o) A1 R(@) o = Z 3 (z) By(z) B(z)w

po

*
¥

(13)
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If we choose e. g. a polynomial pi(z) of the i-th degree lower than A for
the function R(x), this sum is evidently equal to zero, so that

): Q@) Do) p;i (2) o3 = 0 = ‘\: Ui(2) pixyer: 0=Zi< 7

—q —ua

If we then substitute an arbitrary polynomial 3,(n, m, z) for the polyno.
- mial pi(x), we obtain the required condition of orthogonality

_E (@) Ju(2) Pofx) 0 == 0 = E ITy(2) I,(2) q,o({;)

This property is characteristic for the polynomials J,(n, w. ) and
ix sufficient -~ disregarding any multiplicative constant —- for the complete
definition of these polynomials. We can be convinced of this by a simple
consideration: )

Let us suppose that there is another polynomial J;(z) of the degree i
of the same property. :

Then also the polynomial

(@ i) — b3a(2)): @, b < 0

would possess the same orthogonal property. If we chovse a and & su, that
the coefficient of the power x? vanishes, this expression will have the degree

A- - 1. But from the expression

(@ Ja(x) — bS3(2)) Dylx) @ =

Aot

==

L2-

Salx) Dolx) [a Ja(x) — bFa(2)] 0 —

|

/L

—b'Y Q) Do() [a Ja(x) — b Fa(@)] @

-a

follows that, on the given supposition, it must be
&
o
Z (@J(x) — bFa(2))2 Pyl2) 0 = 0.
— ’

Because Dy(x) is in the interval of summation constantly positive und
different from zero, there follows from the mean-value theorem that (a3 ,(«)-~

— b §,(x)) is equal to zero in the whole interval of summation, i. e. it mnust be
a Ja(x) = b3a(x)
If i = A, the sum (12) presents a very important value, i. e. the
- value

I; = Esﬂx) Dy(x)

—
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which ocecurs especially in the approximative expression of arbitrary
functions by the series
. Dy(x) [ag Jol@) + a; Jsla) + .. ]
For the calculation of the value under consideration let us use the

relations:

Aret = (1, A): A‘SA x) J;n

)

(A, A (n+m~+ A4+ 1, 7)
‘ 4”(72—1‘*_1/1)

and insert them in the equation (13'). then

Iy = E z) Doz} o ==

1 A) (n mf"{_ l"i‘l 1) (WL+1 /)I'n+mrﬂ~rl(n+'m”‘¥'Q+}w)
2% (n 4 1, ;)I’l1+)1141(n+m+3w)

(14)
xE Di(x + o) w

We can reduce the upper limit of summation in the sum on the right

side of this equationtoa’ = } ¢ — 1 » — Am, for the functlond) Wz + Aw)
is constantly equal to zero for arguments greater than «'.

The sum of the function @,(x 4 Am) in the limits — ¢, ¢’ can be
written in the form

T

wn+mTZA f \_v'%; 5#.& '

o T S
x s—1 s—1 z\ Tanee .
o [+ Ty +n-4 A Ty +m— - i :f
V ) RN .
ol + 8——1 s—1 3 x| ra Y«‘Zf‘:"}'i
“ 2 w T

The function after the summation sign is, according to (3), equal to the
expression A ] ,
s —n+ A1 —m+Ai+1
el D PR | P
2, w 2 103
and its sum in limits — ¢ = — } (é——- Dw,a =1 (s+ 1) w— Aw can
be carried out by aid of the known relation

B -EE) S - o

i=0 =0
6
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Putting
z, e—1_ .
* w 2 t R
we obtain the value of the sum
- —nt+Ad+10N\ [ —mFaA+1
(—)p1t —_— — x| =
_Za ”‘)1_}__3’_‘ ,‘L’m{_.;___“f_
2 w 2 w
e et e et e e,
— (__,)s~1m;.az (wn+2+l)(-——m+l+ I)
b i 8§ —A—1—1
_ (___)s.—l*z(”“ n-+m-4 244 2)2 (n+m+s+l) _
‘ 8§—A1—1 s—Ai—1 |
1’n+m +J+1(;-:}T’% + 8 '+‘ ;;0))
BT T

If we now insert this value in the equation (14) we obtain the re- .
quired sum ]

== Z JA (@) Py(x) 0 =

( Hm4+1,)n+m+4i41,4) Fn+m+"l+1(n +m-+s +} ) (14)
1.4 Fapmer(n + m + 50)
By means of the reciprocal value of the root of this expression, the poly-

nomials Ja(n, m, x) can be reduced to the normalized form §z(n, m, x)
satisfving the condition :

25‘}5@)’ Dy(x) 0 = so»

‘2. Functional equation of the polynomials J(n, m, 2). An
arbitrary polynomial of the degree r can be expressed as a sum of po-
Iynomials §;(a)

T - ) ’
Y, i),
i=0 .
for the number of constants a; is exactly the same as the number of
given coefficients of powers of the variable x in polynomial under
‘consideration, i. e. 7 + 1. E. g. for the polynomial 25u(z) the relation

: xSA(x) = apn S (@) + adalz) + ..+ 2 Jolx) (16)
“holds good.
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By successive multiplication of this equation with the product
J2—(x) . Py(x) and by carrying out the summation according to x in
- the limits — « we see that M

Ay==ay == Q= ..., == g == 0
We obtain the coefficient ;41 by equating the coefficients of the
highest power of the variable x:
(P tmtd+ LA ()t m At 22+ 1)
Pn+ 1, 4) A P 1 A 1) ’

hence the value

pyy == — 2(n + m—+ A+ 1) (n+ A+ 1)
m4+-m+24+1D) (n+m+2242)
results for a;4. '
The remaining constants a;, a;_; can be calculated, if ¢. g. we
substitute the following values for x

s—1 s—1
y=-— - o and ¥= ;-0
in the equation (16). .
Using the expression (6') of the polynomials J,(x) after the substi-
tution we obtain the two required equations

Se—1 A+l
(——a;‘——'g»é (c;l(s AA) = a1 (~),}+1 (s—Ai—12+ 1)+
a1
+alw1%__~l‘~(s~z+ 1, A—1),
g—1 |\t (m+1,2)
(_____)). (—-‘ a; + 2 ‘ (J)) ( ) }.) (m =
()41 @i+l (m+4+1,1+1)

(n4+ LA+ T)
(m+1,l~;_)
(7L+1,2-—-1)’

which after the reduction by common factors assume the simple form:

:Cll+1'—;'~;2*‘"p:fl“~—‘(8—~l‘—~l,‘;»+ 1) g e

wl-—l(.,__)}.-l

7 (s—Ai+1,A—1)

“+ Ay ——

((13‘“—%—-1-9))- - (SMA)*a;+1.}(3*]_1) (5—7)w2+a,1.,

s—1 )m-—}—ﬂ (6 — Ay =

~(__a)'+ 2 )2+ 2)
(m+ A (m+i+1)
4n 4+ ) (n 4+ A - 1)(5“1—1)(8~1)w2+a4_‘1‘

‘ "

1

-+ az41
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By an easy calculation we obtain the required coefficients
nt+m@E+1)—2i+1)(n+m+ )

T T 3w+ m+ 22) (n + m+ 24+ 2)
_(m4my(s—2—1)—24(A+ 1)

T 2m - m A 24) (n+m A4 24+ 2)
(s+m+n++A(m+ HAs—12) ,
St mEr2mtmEoitn

(To be continued.)

Ar—m)m =

n-—m)ow

U)o =% =

’

Das jihrliche mathematische Risiko der Versiche-

rungen, bei welchen zwei von einander verschiedene

Ereignisse die vorzeitige Auflosung herbeifiihren
%onnen.

Von Hans Koeppler, Berlin.
Unterliegen die drei Wahrscheinlichkeiten p;, p, und p; der Bedin-

gung
Pt Pt py=1

und sind eine groBe Zahl s Beobachtungen angestellt worden, so besteht
nach dem Satze von Bernoulli die Wahrscheinlichkeit
1
i_,,,,,,, ¢ T {l (1 pg) 0,? ”Px(]—“l’x)ﬂu“‘i'qpxpafhﬂz}
2n V32P1 Pels .
dafl die Abweichung -~ o, von der wahrscheinlichen EreigniBlzahl sp,

und die Abweichung -} oy von der wahrscheinlichen EreigniBizahl sp,
stattfinden wird. Setzen wir

P/(O';, Ug) ==

E

1— 1)3 1—p 1
58 e 4y, e =y und = 2a.,,
. ~ splpzs W 2spaps 22 Py 12
sowie . _ .
2 ). Do o == (l13lge — A :A’
18 1’11’2103 482p1p2p32 457p.2 1%z 12

8o konnen wir der Wahrscheinlichkeit auch die bekannte allgememe
Form geben:
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