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EVOLUTION EQUATIONS AT RESONANCE

Piotr Kokocki, Toruń
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Abstract. We study the problem of existence of orbits connecting stationary points for the
nonlinear heat and strongly damped wave equations being at resonance at infinity. The main
difficulty lies in the fact that the problems may have no solutions for general nonlinearity. To
address this question we introduce geometrical assumptions for the nonlinear term and use
them to prove index formulas expressing the Conley index of associated semiflows. We also
prove that the geometrical assumptions are generalizations of the well known Landesman-
Lazer and strong resonance conditions. Obtained index formulas are used to derive criteria
determining the existence of orbits connecting stationary points.

Keywords: semigroup; evolution equation; invariant set; Conley index; resonance

MSC 2010 : 37B30, 35L10, 35P05

1. Introduction

Consider the differential equations

u̇(t) = −Au(t) + λu(t) + F (u(t)), t > 0,(1.1)

ü(t) = −Au(t)− cAu̇(t) + λu(t) + F (u(t)), t > 0(1.2)

where A : D(A) → X is a positive sectorial operator on a Banach space X and

F : Xα → X is a continuous map on the fractional space Xα := D(Aα), α ∈ (0, 1).

Our objective is to study the existence of orbits connecting stationary points for

these equations in the case of resonance at infinity, i.e.,

Ker(λI −A) 6= {0} and F is bounded.
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The main difficulty lies in the fact that, in the presence of resonance, even the problem

of existence of bounded orbits may have no solution for general nonlinearity F . This

fact is explained in detail in Remark 3.1. Our aim is to overcome this difficulty by

proving theorems determining the existence of orbits connecting stationary points for

equations (1.1) and (1.2), in terms of appropriate geometrical assumptions imposed

on the nonlinearity F . To this end we formulate below assumptions (G1) and (G2)

and use them to prove the two main results: Theorems 3.2 and 3.3 which express

the Conley index of the invariant set contained in a sufficiently large ball in terms

of assumptions (G1) and (G2). These theorems are complements of results from

[10], [12], where the parabolic equation with non-resonance conditions at infinity is

considered.

Finally, we provide applications for particular partial differential equations. First

of all, in Theorems 4.1 and 4.2, we prove that if F is a Nemytskii operator associated

with a map f : Ω×R → R, then the well known Landesman-Lazer (see e.g. [8]) and

strong resonance conditions (see e.g. [1]) are actually particular cases of assumptions

(G1) and (G2). Then we derive criteria determining the existence of orbits connecting

stationary points for the heat and strongly damped wave equations.

2. Spectral decomposition

Let A : D(A) → X be a positive sectorial operator on a Banach space X such

that:

(A1) the operator A has compact resolvents,

(A2) there is a Hilbert space H endowed with a scalar product 〈·, ·〉H and norm ‖·‖H
and a continuous injective map i : X →֒ H ,

(A3) there is a linear self-adjoint operator Â : H ⊃ D(Â) → H such that Gr(A) ⊂

Gr(Â), where the graph inclusion is understood in the sense of the product

map X ×X
i×i
−→ H ×H .

R em a r k 2.1. One can prove (see e.g. [5], Remark 3.1) that the spectrum σ(A)

consists of the sequence of eigenvalues λ1 < λ2 < . . . < λi < λi+1 < . . . which is

finite or λi → ∞ as i → ∞. Furthermore, dimKer(λiI −A) < ∞ for i > 1.

In the following theorem we obtain spectral decomposition for the operator A.

Theorem 2.2 ([4], Theorem 2.3). If λ = λk for some k > 1 is the k-th eigenvalue

of the operator A and X0 := Ker(λI −A), then there are closed subspaces X+, X−

of X such that X = X+ ⊕X− ⊕X0 and the following assertions hold:
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(i) We have inclusions X− ⊂ D(A), A(X−) ⊂ X−, A(X+ ∩ D(A)) ⊂ X+ and,

furthermore, X− is a finite dimensional space such that X− = {0} if k = 1 and

X− =
k−1⊕
i=1

Ker(λiI −A) if k > 2.

(ii) If A+ : X+ ⊃ D(A+) → X+ and A− : X− ⊃ D(A−) → X− are parts of the

operator A in X+ and X−, respectively, then σ(A+) = {λi ; i > k + 1} and

σ(A−) = ∅ if k = 1 and σ(A−) = {λi ; i = 1, . . . , k − 1} if k > 2.

(iii) The spaces X0, X−, X+ are mutually orthogonal, that is, 〈i(ul), i(um)〉H = 0

for l 6= m, where ui ∈ Xi for i ∈ {0,−,+}.

3. Index formulas for invariant sets

Let A : D(A) → X be a positive sectorial operator on a Banach space X satisfying

assumptions (A1), (A2), (A3) and let F : Xα → X be a continuous map on the

fractional space Xα := D(Aα), where α ∈ (0, 1). Assume that

(F1) for every x ∈ Xα there is an open neighborhood V ⊂ Xα of x and a constant

L > 0 such that for x1, x2 ∈ V we have ‖F (x1)− F (x2)‖ 6 L‖x1 − x2‖α,

(F2) there is a constant m > 0 such that ‖F (x)‖ 6 m for x ∈ Xα,

(F3) F is completely continuous, that is, for any bounded set V ⊂ Xα the set F (V )

is relatively compact in X .

We recall that a mild solution of the equation (1.1) starting at x is a continuous

map u : [0,∞) → Xα such that

u(t) = eλtSA(t)x +

∫ t

0

eλ(t−s)SA(t− s)F (u(s)) ds for t > 0.

It is the standard theory (see e.g. [3], Theorem 3.3.3, Corollary 3.3.5) that under the

above assumptions, for any x ∈ Xα, there is a unique mild solution u(· ;x) : [0,∞) →

Xα of (1.1) such that u(0;x) = x. Therefore we are able to define the semiflow

Φ: [0,∞) × Xα → Xα for the equation (1.1) by Φ(t, x) := u(t;x) for t ∈ [0,∞),

x ∈ Xα. Furthermore, note that equation (1.2) may be written as

(3.1) ẇ(t) = −Aw(t) + F(w(t)), t > 0,

where A : E ⊃ D(A) → E is the linear operator on E := Xα ×X given by

D(A) := {(x, y) ∈ E ; x+ cy ∈ D(A)},

A(x, y) := (−y,A(x+ cy)− λx) for D(A),
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and F : E → E is given by F(x, y) := (0, F (x)) for (x, y) ∈ E. Since A is a sectorial

operator we can prove that A is also a sectorial operator (see e.g. [2], [9]). Therefore,

just as before we can define the semiflow Φ : [0,∞)×E → E for the equation (1.2)

by Φ(t, x) := w(t; (x, y)) for t ∈ [0,∞), (x, y) ∈ E, where w(·; (x, y)) : [0,∞) → E is

a solution for (3.1) starting at (x, y) ∈ E.

We say that a map u : R → Xα or w : R → E is an orbit provided

Φ(t, u(s)) = u(t+ s) or Φ(t, w(s)) = w(t+ s), respectively, for t > 0, s ∈ R.

We call the set K ⊂ Xα invariant provided for every x ∈ K there is an orbit u for

the semiflow Φ such that u(0) ∈ K and u(R) ⊂ K. Similarly, K ⊂ E is an invariant

if for every (x, y) ∈ K there is an orbit w for Φ such that w(0) ∈ K and w(R) ⊂ K.

Assume that λ = λk for some k > 1 and consider the direct sum decomposition

X = X0 ⊕ X− ⊕ X+ obtained in Theorem 2.2. Let Q1, Q2, P : X → X be the

continuous projections onto X−, X+ and X0, respectively. Define

Xα
+ := Xα ∩X+, Xα

− := Xα ∩X− and Q := Q1 +Q2.

R em a r k 3.1. If equation (1.1) is at resonance at infinity then the problem of

existence of compact orbits connecting stationary points may have no solution for

general nonlinearity F .

To see this it is enough to take F (x) = y0 for x ∈ Xα, where y0 ∈ Ker(λI−A)\{0}.

Indeed, if u : R → Xα is a bounded orbit, then

u(t) = eλ(t−t′)SA(t− t′)u(t′) +

∫ t

t′
eλ(t−τ)SA(t− τ)y0 dτ, t > t′.

Since Ker(λI −A) ⊂ Ker(I − eλtSA(t)) for t > 0 it follows that

u(t) = eλ(t−t′)SA(t− t′)u(t′) + (t− t′)y0, t > t′,

and therefore, after acting by the operator P , we have

Pu(t) = eλ(t−t′)SA(t− t′)Pu(t′) + (t− t′)Py0 = Pu(t′) + (t− t′)y0, t > t′,

and finally Pu(h) = Pu(0) + hy0 for h > 0. This contradicts the assumption that u

is bounded and proves our assertion.

To overcome this obstacles we introduce the following geometrical assumptions:

(G1)





for every balls B1 ⊂ Xα
+ ⊕Xα

− and B2 ⊂ X0 there is R > 0

such that 〈F (x+ y), x〉H > −〈F (x+ y), z〉H

for (y, z) ∈ B1 ×B2, x ∈ X0 such that ‖x‖H > R,
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and

(G2)





for every balls B1 ⊂ Xα
+ ⊕Xα

− and B2 ⊂ X0 there is R > 0

such that 〈F (x+ y), x〉H < −〈F (x+ y), z〉H

for (y, z) ∈ B1 ×B2, x ∈ X0 such that ‖x‖H > R.

With these assumptions we proceed to prove the index formulas for first and second

order equations. Assume that λ = λk for k > 1 is an eigenvalue of A and put

d0 := 0 and dl :=
l∑

i=1

dimKer(λiI − A) for l > 1. The following index formula is

a tool to determine the Conley index of the maximal invariant set contained in an

appropriately large ball for equation (1.1).

Theorem 3.2 ([5], Theorem 3.4). There is a closed isolated neighborhood N ⊂

Xα such that, for K := Inv(N,Φ), the following statements hold:

(i) if condition (G1) is satisfied, then h(Φ,K) = Σdk ,

(ii) if condition (G2) is satisfied, then h(Φ,K) = Σdk−1 .

Here h is the Conley index and Σm is a homotopy type of pointed m-dimensional

sphere (for more information see e.g. [11]). The following theorem is an analogous

index formula for equation (1.2).

Theorem 3.3 ([6], Theorem 4.2.2). Then there is a closed isolated neighborhood

N ⊂ E such that, for K := Inv(N,Φ), we have the following assertions:

(i) if condition (G1) is satisfied, then h(Φ,K) = Σdk ,

(ii) if condition (G2) is satisfied, then h(Φ,K) = Σdk−1 .

4. Application to partial differential equations

Assume that Ω ⊂ R
n is an open bounded set with C∞ boundary and consider the

equations

ut(t, x) = ∆u(t, x) + λu(t, x) + f(x, u(t, x)),(4.1)

utt(t, x) = ∆u(t, x) + c∆ut(t, x) + λu(t, x) + f(x, u(t, x))(4.2)

where c > 0 is a damping factor, λ ∈ R is a parameter, ∆ is the Laplace operator

with Dirichlet conditions, f : Ω× R → R is a continuous, bounded map satisfying

(E1) for every R > 0 there is L > 0 such that |f(x, s1)− f(x, s2)| 6 L(|s1 − s2|) for

x ∈ Ω and s1, s2 ∈ R,
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(E2) f is a map of class C1 and there is a constant ν ∈ R such that ν = Dsf(x, 0)

for x ∈ Ω; furthermore f(x, 0, 0) = 0 for x ∈ Ω.

Put α ∈ (3/4, 1) and p > 2n and let X := Lp(Ω). Define Ap : X ⊃ D(Ap) → X

as the linear operator given by D(Ap) := W 2,p
0 (Ω) and Apū := −∆ū for ū ∈ D(Ap).

(1) It is known that Ap, p > 2, is a positive definite sectorial operator with compact

resolvents and one can prove that A2 is symmetric. Hence (A1) is satisfied.

(2) Take H := L2(Ω) with the standard inner product and norm. Since Ω is

bounded and p > 2, we derive that i : Lp(Ω) →֒ L2(Ω) is a continuous em-

bedding. Consequently, we obtain assumption (A2).

(3) Using again the boundedness of Ω, one can easily prove that for Ã := A2 the

inclusion Ap ⊂ Ã is satisfied in the sense of the map i× i. Therefore (A3) holds.

By Remark 2.1 it follows that the spectrum σ(A) consists of the sequence of

eigenvalues λ1 < λ2 < . . . < λi < λi+1 < . . . and dimKer(λiI − A) < ∞ for i > 1.

The embedding theorem for fractional spaces [3], Theorem 1.6.1, implies that the

inclusion Xα ⊂ C(Ω) is continuous. Therefore we can define the Nemytskii operator

F : Xα → X given for every ū ∈ Xα by the formula F (ū)(x) := f(x, ū(x)) for x ∈ Ω.

Under assumptions (E1), (E2) the following assertions hold.

(i) One can prove that the map F is continuous, bounded and satisfies assump-

tions (F1), (F2). Therefore, writing equations (4.1) and (4.2) in the abstract

form (1.1) and (1.2), respectively, we can associate with them semiflows Φ

and Φ.

(ii) One can also prove that F is differentiable at 0 and its derivative DF (0) ∈

L(Xα, X) is of the form DF (0)[ū] = νū for ū ∈ Xα.

Now we proceed to examine what assumptions should the mapping f satisfy in

order to the associated Nemytskii operator F meets the introduced earlier geomet-

rical assumptions. We start with the following theorem which says that well known

Landesman-Lazer conditions introduced in [8] are actually particular cases of (G1)

and (G2).

Theorem 4.1 ([7], Theorem 5.2). Assume that f+, f− : Ω → R are continuous

functions such that

f+(x) = lim
s→∞

f(x, s) and f−(x) = lim
s→−∞

f(x, s) for x ∈ Ω.

(i) If the condition

(LL1)

∫

{ū>0}

f+(x)ū(x) dx+

∫

{ū<0}

f−(x)ū(x) dx > 0

is satisfied for ū ∈ Ker(λI −Ap) \ {0}, then condition (G1) holds.
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(ii) If the condition

(LL2)

∫

{ū>0}

f+(x)ū(x) dx+

∫

{ū<0}

f−(x)ū(x) dx < 0

is satisfied for ū ∈ Ker(λI −Ap) \ {0}, then condition (G2) holds.

The following lemma proves that conditions (G1) and (G2) are also implicated by

the strong resonance conditions, studied for example in [1].

Theorem 4.2. Assume that there is a continuous function f∞ : Ω → R such that

f∞(x) = lim
|s|→∞

f(x, s) · s for x ∈ Ω.

(i) Condition (G1) is satisfied provided

(SR1)





there is h ∈ L1(Ω) such that f(x, s) · s > h(x) for (x, s) ∈ Ω× R

and

∫

Ω

f∞(x) dx > 0.

(ii) Condition (G2) is satisfied provided

(SR2)





there is h ∈ L1(Ω) such that f(x, s) · s 6 h(x) for (x, s) ∈ Ω× R

and

∫

Ω

f∞(x) dx < 0.

The following theorem is a criterion on existence of orbits connecting stationary

points with Landesman-Lazer type conditions.

Theorem 4.3. Assume that f+, f− : Ω → R are continuous functions such that

f+(x) = lim
s→∞

f(x, s) and f−(x) = lim
s→−∞

f(x, s) for x ∈ Ω.

There is a nonzero compact orbit u : R → Xα of equation (4.1) such that either

lim
t→−∞

u(t) = 0 or lim
t→∞

u(t) = 0, provided one of the following conditions is satisfied:

(i) (LL1) holds and λl < λ+ ν < λl+1, where λl 6= λ;

(ii) (LL1) holds and λ+ ν < λ1;

(iii) (LL2) holds and λl−1 < λ+ ν < λl, where λ 6= λl, l > 2;

(iv) (LL2) holds and λ+ ν < λ1, where λ 6= λ1.

In the proof of this theorem we need the following propositions.
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Proposition 4.4 (see [11], Theorem 3.5, [6], Proposition 4.3.3). If λ + µ /∈

σ(A), then h(Φ, {0}) = h(Φ, {0}) = Σbl , where bl := 0 if λ + µ < λ1 and bl :=
l∑

i=1

dimKer(λiI −A) if λl < λ+ µ < λl+1.

Proposition 4.5 (see [11], Theorem 11.5).

(i) Let K ⊂ Xα be an isolated invariant set such that 0 ∈ K and Φ(t, 0) = 0

for t > 0. If h(Φ,K) = Σm, where m > 0 is an integer, h(Φ, {0}) 6= 0 and

h(Φ, {0}) 6= h(Φ,K), then there is a nonzero compact orbit u : R → K of Φ

such that either lim
t→−∞

u(t) = 0 or lim
t→∞

u(t) = 0.

(ii) Let K ⊂ E be an isolated invariant set such that 0 ∈ K and Φ(t, 0) = 0 for

t > 0. If h(Φ,K) = Σm, where m > 0 is an integer, h(Φ, {0}) 6= 0 and

h(Φ, {0}) 6= h(Φ,K), then there is a nonzero compact orbit w : R → K of Φ

such that either lim
t→−∞

w(t) = 0 or lim
t→∞

w(t) = 0.

Now Theorem 4.3 is a consequence of Theorems 3.2, 4.1 and Propositions 4.4, 4.5.

In a similar way, but using Theorem 3.3 instead of Theorem 3.2 we can obtain the

following criterion for the existence of connecting orbits with strong resonance type

conditions.

Theorem 4.6. Assume that there is a continuous function f∞ : Ω → R such that

f∞(x) = lim
|s|→∞

f(x, s) · s for x ∈ Ω.

Then there is a nonzero compact orbit w : R → E of equation (4.2) such that either

lim
t→−∞

w(t) = 0 or lim
t→∞

w(t) = 0, provided one of the following conditions is satisfied:

(i) (SR1) holds and λl < λ+ ν < λl+1, where λl 6= λ;

(ii) (SR1) holds and λ+ ν < λ1;

(iii) (SR2) holds and λl−1 < λ+ ν < λl, where λ 6= λl, l > 2;

(iv) (SR2) holds and λ+ ν < λ1, where λ 6= λ1.
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@mat.umk.pl.

455


		webmaster@dml.cz
	2020-07-01T19:10:25+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




