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Abstract. We focus on the special type of the continuous dynamical system which is
generated by Euler equation branching. Euler equation branching is a type of differential
inclusion ẋ ∈ {f(x), g(x)}, where f, g : X ⊂ R

n → R
n are continuous and f(x) 6= g(x) at

every point x ∈ X. It seems this chaotic behaviour is typical for such dynamical system.
In the second part we show an application in a new formulated overall macroeconomic

equilibrium model. This new model is based on the fundamental macroeconomic aggregate
equilibrium model called the IS-LM model.
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1. Introduction

In this paper we would like to briefly introduce the problem of dynamical behaviour

of the continuous dynamical system generated by Euler equation branching without

describing the details. We will show that there can typically exist a chaos in such

systems.

The application of this problem is also interesting and we try to shortly indicate

this application in macroeconomics, precisely in the new macroeconomic equilibrium

model.

The research was supported, in part, by the Student Grant Competition of Silesian
University in Opava, grant No. SGS/2/2013.
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2. Preliminaries

All definitions and theorems used in this section follow from [2] and are modified

to the special type of differential inclusion in the plane R2.

Definition 2.1. Let X ⊂ R
2 be an open set and let f, g : X → R

2 be continuous.

Let us consider the differential inclusion given by ẋ ∈ {f(x), g(x)}. We say that

there is Euler equation branching at the point x ∈ X if f(x) 6= g(x). If there is Euler

equation branching at every point x ∈ X then we say that there is Euler equation

branching on the set X .

In the sequel we consider X ⊆ R
2 is a nonempty open set with Euclidean metric d

and T := [0,∞] is the time index. Let F : X → 2R
2

be the set-valued function given

by F (x) := {f(x), g(x)} where f, g : X → R
2 are continuous and f(x) 6= g(x) is

satisfied for all x ∈ X . Let Z = {γ ; γ : T → X}, where the functions γ : T → X

are continuous and continuously differentiable a.e.

Definition 2.2. The dynamical system generated by F is given by

D := {γ ∈ Z ; γ̇(t) ∈ F (γ(t)) a.e.}.

Definition 2.3. We say that a nonempty V ⊂ R
2 is a compact F -invariant set,

if V is compact and for each x ∈ V there exists a γ ∈ D such that γ(0) = x and

γ(t) ∈ V for all t ∈ T .

Definition 2.4. V ∗ = {γ ∈ D ; γ(t) ∈ V for all t ∈ T } where V ⊂ R
2 is

a compact F -invariant set.

Definition 2.5. Let a, b ∈ X ⊆ R
2 and let D be a dynamical system in the

sense mentioned above. Let γ ∈ D, t0, t1 ∈ T such that t0 < t1. A simple path from

a to b generated by D is given by P := {γ(t) ; t0 6 t 6 t1} such that γ(t0) = a,

γ(t1) = b and γ̇ has finitely many discontinuities on [t0, t1] and a 6= γ(s) 6= b for all

t0 < s < t1.

Definition 2.6. Let V ⊂ X ⊆ R
2 be a nonempty compact F -invariant set and

V ∗ = {γ ∈ D ; γ(t) ∈ V for all t ∈ T }. Then V is so-called a chaotic set provided

(1) for all a, b ∈ V , there exists a simple path from a to b generated by V ∗,

(2) there exist U ⊂ V nonempty and open (relative to V ) and γ ∈ V ∗ such that

γ(t) ∈ V \ U for all t ∈ T (i.e., there exists γ ∈ V ∗ such that {γ(t) ; t ∈ T } is

not dense in V ).

According to Stockman and Raines [2] chaotic sets with nonempty interior lead to

the existence of chaos in the Devaney, Li-Yorke and distributional sense.
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Theorem 2.1. Let x∗ ∈ X ⊆ R
2, f(x∗) = 0 and g(x∗) 6= 0, let λ1, λ2 be

eigenvalues of Jacobi’s matrix of the system ẋ = f(x) at the point x∗ and let e1, e2
be the corresponding eigenvectors. We choose δ > 0 such that g(x) 6= 0 for every

x ∈ Bδ(x
∗). Let the solution of ẋ = g(x) be not bounded in some nonempty closed

subset Bδ(x
∗).

(1) We assume that there exists ε > 0 such that x∗ is a source (i.e., an unstable

node or focus) or a sink (i.e., a stable node or focus) for f on Bε(x
∗). Then F

admits a chaotic set.

(2) We assume that λ1 < 0, λ2 > 0 (i.e., x∗ is a saddle point) and g(x∗) 6= αe1,

g(x∗) 6= βe2, where α, β ∈ R\ {0}. Then F admits a chaotic set with nonempty

interior.

3. Chaotic behaviour of dynamical system generated

by Euler equation branching

In this section, we consider a continuous dynamical system generated by Euler

equation branching ẋ ∈ {f(x), g(x)}. We also consider only classical singular points,

which means with nonzero determinant of Jacobi’s matrix, of the system considered.

Further, we consider both the branches produce hyperbolic singular points and these

points lie at different points in R
2.

From Theorem 2.1 it follows that every combination of stable/unstable node/focus

or saddle can produce a chaotic set. Such chaotic sets we can see in Figure 1, showing

chaotic sets between a stable node and an unstable focus.

Figure 1. Chaotic sets between stable node and unstable focus.
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The trajectories corresponding to the first branch (for example ẋ = f(x)) are

figured by stable node type and the trajectories corresponding to the second branch

(for example ẋ = g(x)) are figured by unstable focus type. The chaotic sets are

displayed by hatched areas. The arrows show the directions of the trajectories.

Chaotic behaviour is caused also by switching between these two branches (f and g).

First the moving point goes for example along the trajectory of the stable node in

the direction given by the arrow, then the moving point switches its motion to the

second branch and goes along the trajectory of the unstable focus in the direction

given by the arrow etc.

In Theorem 2.1 we assume that g(x∗) 6= αe1, g(x
∗) 6= βe2. And now we research

the situation if g(x∗) = αe1 or g(x
∗) = βe2. We can formulate the following theorem

for linear f and g, but the nonlinear case behaves exactly analogously.

Theorem 3.1. Let x∗ ∈ X ⊆ R
2, f(x∗) = 0 and g(x∗) 6= 0, let λ1, λ2 be the

eigenvalues of Jacobi’s matrix of the system ẋ = f(x) at the point x∗ and e1, e2
the corresponding eigenvectors. We choose δ > 0 such that the solution of ẋ = g(x)

is unbounded in Bδ(x
∗). We assume that λ1 < 0, λ2 > 0 and g(x∗) = αe1 or

g(x∗) = βe2, where α, β ∈ R \ {0}. Let g(y∗) = 0, y∗ ∈ X .

Then only if

(1) the singular point corresponding to ẋ = g(x) is node and g(x∗) = µf(y∗), where

µ > 0,

(2) or the singular point corresponding to ẋ = g(x) is saddle and g(x∗) = −µf(y∗),

where µ > 0, or the other eigenvectors are collinear,

then F does not admit chaotic set with nonempty interior.

Outline of the p r o o f. The situation described by (1) or (2) (where F does not

admit chaotic sets with nonempty interior) can be displayed as in Figure 2. The

left figure corresponds to the item (1). It is a combination of the unstable node and

the saddle where the unstable node lies on the stable manifold of the saddle. The

same situation occurs if it is a combination of the stable node and the saddle where

node lies on the unstable variety of the saddle. This follows from the condition

g(x∗) = µf(y∗). The other figures (right and in the middle) correspond to the

item (2). It is the combination of two saddles. The middle figure follows from the

condition g(x∗) = −µf(y∗) and the right figure displays the situation when the other

eigenvectors are collinear. So, we can see that in such situations there cannot exist

the required flows (or trajectories) forming chaotic sets with nonempty interior.

Other cases admit chaotic sets with nonempty interior generated by F , see the

hatched areas in Figure 3. Let µ > 0. The left figure corresponds to the combination

of the saddle and the node with the condition g(x∗) = −µf(y∗) where the stable or
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Figure 2. Schematic sketch of proof outline.
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Figure 3. Schematic sketch of other cases forming chaotic sets with nonempty interior.

unstable node lies on the stable or unstable manifold. The middle figure corresponds

to the combination of two saddles with the condition g(x∗) = µf(y∗) and not collinear

other eigenvectors. And the left figure displays the situation described by condition

g(x∗) 6= µf(y∗). �

So, we can see that there are only few possibilities where F does not admit chaotic

sets with nonempty interior. Thus, the chaotic behaviour of such dynamical systems

generated by Euler equation branching is typically admitted.
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4. New macroeconomic equilibrium model

and its dynamical behaviour

This new macroeconomic equilibrium model describes a macroeconomic situation

in two sector economy, namely the goods market equilibrium and the money market

equilibrium simultaneously. The model follows from the fundamental macroeconomic

model called IS-LM. The new model eliminates the deficiencies of the original model.

These deficiencies are the assumptions of constant price level, of strictly exogenous

money supply and of strictly demand orientation of the model. The strictly exoge-

nous money supply means that money is a money stock determined by the central

bank, and the demand orientation means that the supply is fully adapted to the

demand. We newly model an inflation effect, add an endogenous view on the money

supply and add a supply oriented part of the model. The endogenous money supply

means that money is generated in the economy by credit creation, and the supply

orientation means that the demand is fully adapted to the supply.

So, our new macroeconomic equilibrium model consists of two branches—the for-

mer is demand oriented and the latter is supply oriented. We join these two branches

into one model by Euler equation branching. The switchings between these two

branches are provided by the economic cycle. The demand oriented sub-model holds

in the recession and the supply oriented sub-model holds in the expansion. At the

peaks and troughs the models are switched.

Definition 4.1. The dynamic overall macroeconomic IS-LM/QY-MLmodel (see

also [3]) is given by the differential inclusion

(4.1)

(

Ẏ

Ṙ

)

∈

{(

αd[I(Y,R)− S(Y,R)]

βd[L(Y, i)−M(Y, i)−MCB]

)

,

(

αs[Q(K(Y,R),L(Y,R), T (Y,R))− Y ]

βs[M(Y, i) +MCB − L(Y, i)]

)}

where

Y is the aggregate income (GDP, GNP),

R is the long-term real interest rate,

i = R−MP + πe is the short-term nominal interest rate,

I(Y,R) is the investment function,

S(Y,R) is the saving function,

Q(K,L, T ) is the production function,

K(Y,R) is the capital function,

L(Y,R) is the labour function,

T (Y,R) is the technical progress function,
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L(Y, i) is the money demand function,

M(Y, i) is the money supply function,

MCB > 0 is the money stock determined by the central bank,

MP > 0 is the maturity premium,

πe > 0 is the expected inflation rate,

αd > 0, αs > 0, βd > 0, βs > 0 are parameters of the dynamics.

In the previous sections we considered the differential inclusion ẋ ∈ {f(x), g(x)}.

Now, the separate branch ẋ = f(x) is the modified IS-LM model:

(4.2) IS : Ẏ = αd[I(Y,R)− S(Y,R)],

LM : Ṙ = βd[L(Y,R−MP + πe)−M(Y,R−MP + πe)−MCB].

We can find the description of the original IS-LM model e.g. in [1]. Moreover, we

distinguish two types of the interest rate (because of a modelling inflation)—the

short-term nominal interest rate on the money market (equation LM) and the long-

term real interest rate on the goods market (equation IS) using the well-known

relation i = R − MP + πe. Then, we furthermore add the money supply function

M(Y, i) as the endogenous part of the money supply. This sub-model is demand

oriented. The IS-LM model describes equilibrium on the goods market and on the

money market simultaneously from the demand oriented point of view. The economic

equilibrium is the equality between demand and supply. The equality on the money

market is obviously L(Y, i) = M(Y, i)+MCB in the static form. The demand side on

the goods market (in two sector economy) is represented by the sum of the investment

I and the consumption C and the supply side by the level of aggregate income Y

(we have the demand oriented model). S = Y − C holds. So, the equality of the

demand and supply sides on the goods market gives I(Y,R) = S(Y,R) in the static

form.

The separate branch ẋ = g(x) is a new model called the QY-ML model:

(4.3) QY : Ẏ = αs[Q(K(Y,R),L(Y,R), T (Y,R))− Y ],

ML : Ṙ = βs[M(Y,R−MP + πe) +MCB − L(Y,R−MP + πe)].

This model is supply oriented. The construction proceeds as follows. On the goods

market the demand side is represented by the level of the aggregate income Y (we

have the supply oriented model) and the supply side is given by the aggregate pro-

duction, more precisely by the aggregate production function Q. The production

depends on the capital K, labour L and technical progress T . So, the equality be-

tween the goods demand and goods supply gives Q(K(Y,R),L(Y,R), T (Y,R)) = Y
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in the static form. The equality between the money supply and money demand on the

money market is the same as in the demand oriented model, i.e., M(Y, i) = L(Y, i).

Every economic function has some properties. These properties influence the dy-

namical behaviour of the model. The type of the hyperbolic singular point of each

branch depends on the properties of the corresponding functions (i.e., I, S, L, M

and Q). Any of the above mentioned combinations of the singular points may appear.

The dynamical system generated by this special Euler equation branching with one

branch IS-LM (sub)model and the second branch QY-ML (sub)model can typically

produce a chaotic set with nonempty interior which leads to Devaney, Li-Yorke and

distributional chaos.

Thus, if we identify the types of singular points in the branch represented by the

IS-LM model and in the branch represented by the QY-ML model and their position

in the plane R2 (with coordinates Y and R), we will determine whether chaotic sets

with nonempty interior can or cannot in the economy arise. We can illustrate this

by the following example.

E x am p l e 4.1. The economic situation can be described by Figure 4. The

curve IS, curve LM and the corresponding trajectories display the dynamical be-

haviour of the branch f(x), i.e., the demand oriented IS-LM (sub)model. The

curve QY, curve ML and the corresponding trajectories display the dynamical be-

R LM
ML

IS

E1

E2

E3

X Y

Z

Figure 4. Example of IS-LM/QY-ML model.

haviour of the branch g(x), i.e., the supply oriented QY-ML (sub)model. Such

concrete shapes of these curves and types of singular points follow from the concrete

economic properties of the corresponding functions. This IS-LM (sub)model has

three equilibrium points E1, E2 and E3. Points E1 and E3 are stable foci, E2 is an
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unstable saddle. This QY-ML (sub)model has only one equilibrium point which is

an unstable saddle point. These two branches switch according to the phase of the

economic cycle. The gray-coloured areas are the chaotic sets arising in such economic

system.

5. Conclusions

The chaotic behaviour of the continuous dynamical system generated by Euler

equation branching in R
2 can be typical. There are only few possibilities which

cannot produce chaotic sets with nonempty interior.

Using the new overall macroeconomic equilibrium model IS-LM/QY-ML, we can

show that chaotic behaviour in macroeconomics can be equally typical.

For more details, explanations and generalizations see [3].
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