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INVERSE PROBLEM FOR SEMILINEAR ULTRAPARABOLIC
EQUATION OF HIGHER ORDER

NATALIYA PROTSAKH, L’viv
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Abstract. We study the existence and the uniqueness of the weak solution of an inverse
problem for a semilinear higher order ultraparabolic equation with Lipschitz nonlinearity.
The main aim is to determine the weak solution of the equation and some functions that
depend on the time variable, appearing on the right-hand side of the equation. The overde-
termination conditions introduced are of integral type. In order to prove the solvability of
this problem in Sobolev spaces we use the Galerkin method and the method of successive
approximations.
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1. INTRODUCTION

The equation of ultraparabolic type was first introduced by A.N. Kolmogorov [5]
when describing non-isotropic processes. Later on such type of equations was ap-
plied in physics, finance [7]. In the theory of partial differential equations a problem
in which the solution of the equation and some of the coefficients of the equation
are unknown, is called an inverse problem. Usually an inverse problem contains the
same conditions as the direct problem, and overdetermination conditions related to
the presence of additional unknown functions [3], [4], [6], [10], [11]. The inverse
problem of recovering one or several coefficients that depend on the time and/or on
spatial variables on the right-hand side for hyperbolic or parabolic equations was
investigated in [1], [3], [4], [6], [11]. The main aim of this paper is to determine
the solution of a semilinear higher order ultraparabolic equation and some functions
that depend on the time variable, appearing on the right-hand side of the equation.
In order to obtain the result we use the Galerkin method and the method of suc-
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cessive approximations. Note that the solvability of mixed problems for nonlinear
ultraparabolic equations is studied in [8], [9], [10].

2. FORMULATION OF THE PROBLEM

Let Q ¢ R® and D C R! be bounded domains with boundaries 9Q € C™° and
dD € C', respectively; x € Q, y € D, t € (0,T), T >0, Q- = Q x D x (0,7),

€ (0,T], G = Q x D. Denote Xp = 9Q x D x (0,T), Sp = Q x 9D x (0,T),
n,l,s,mg € N, v,a € N, D = 9l°1/9z%" .. 929", |a| = a1 + ...+ a,. In the
domain ()7 we consider the problem

l
(21) Ut + Z Ai ((E, Y, t)uyi + Z (_1)W|Dv(aav(xv Y, t)Dau)
=1 \a|—\'y|<mo

+e(a,y, thu+ g(@, y,t,u) = Zfzfcy, )gi(t) + folx,y, t);

u(x,y,O) - Uo(x,y), ( z,y ) € Ga

(2.3) Douls, =0, Jol <mo—1, ulgy =0
(2.4) / Ki(z,y)u(z,y,t)dedy = E;(t), te€[0,T], i=1,...,s,

G
where u(z,y,t), ¢;(t), i = 1,...,s, are unknown functions, v is the outward unit

!
normal vector to the surface St, Sk = {(x, y,t) € St > Ai(z,y,t) cos(v, y;) < O}.
i=1

Let us assume that condition
(S)  there exists Ty € 9D C R'™! such that the surface S&. = Q x T'y x (0,7)

holds. Denote I'; = 9D\ TI';. We shall use the following spaces: L>(-), L?(-), W12(.),
CH(), W (9), see [2], Vi(@r) = {w: @r — Rlw, D*w € L2(Qr), || < mo,
Dwly =0, bl < mo — 1}, Va(G) = L2(D; WZ™2()), Va(@r) = {w: Qr —
R; w, Dw, w,, € L?(Q7), o] < mo, 7 = 1,...,1, w|51 =0, DVw‘Z =0,
Al < mo — 1}, CQO.T]; 12(G) = {w: (0,T] — LGl 05 L5(G)| €
(0,7}, L0, T Vi (G)) = {wr (0,7) = V3 (G); Nl 0 Vi ()]l € L2(0,T)}.
According to [2], L%(0,T; Vs (G)) + L*(Q7) = {21 + z2: 21 € L*(0,T; V5 (Q)),
2y € L*(Qr)} is a Banach space with the norm | z; L2(0,T; V5 (G)) + L*(Qr)|| =

inf max{||z1; L2(0,T; V5 (G))|; || 22; L2(Qr)||}- Denote by (-, -) the scalar
21€L%(0,T;Vy (G)),
z22€L*(Qr), z1+22=2
product between the spaces V5 (G) and Va(G).

We also assume that the following hypotheses hold:
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(A) aay € L=(Qr), |a] = 7] < mo,

/aw(x y, 1) D*wD wdx > ao/ Z “w|? dz
Q

lal=]v|<mo |al=mo

for almost all (y,t) € D x (0,T) and for all w € WJ"2(Q2), ag > 0;

) c € L™(Qr), c(z,y,t) = co for almost all (x,y,t) € Qr, ¢y being a constant;

) B e Wh2(0,T),i=1,....s;

) fi € C([0,T); L3(@)), i =0,...,s;

) g(z,y,t,€) is measurable with respect to (x,y,t) in the domain Q7 for all ¢ € R*
and is continuous with respect to & for almost all (z,y,t) € Qr; moreover, there
exists a positive constant ¢g¥ such that |g(z,y,t,€) — g(z,y,t,1)| < g°|¢ — ]| for
almost all (z,y,t) € Q7 and for all £, € R';

(K) K; € CI(D;Cl(ﬁ_)), Ki|8ng =0, Ki|Q><F2 =0forali=1,...,s;

(L) A € L=®(0,T;C(G)), Aiy, € L®(Qr) for alli =1,...,1;

(U) wo,uo,y, € L*(G),j=1,...,1, u0|anD =0, u0|erl =0.

We shall use Friedrichs’ inequality:

/Z | D*w]* dz < ’Yk,g/ Z | Dw|? dz,

la|=j la|=k

j=0, 1}; Lk w e Wg’Q(Q), where the constant vy ; depends on €, k, j. Denote
L =251 e

3. MAIN RESULTS

First we assume that ¢;(t) = ¢/ (t), i = 1,...,s in (2.1), where ¢f € L?(0,T) are
known functions, and we introduce the operator

Llu,v] := /OT<ut, dt—l—/QT {Z)\ z, Y, t)uy, v

i=1

+ Z Aary (2, Yy, ) D*uD Vv + c(z, y, t)uv + g(x, y, t, u)v] dx dy dt.
la|=]v[<mo

Definition 3.1. A function u*(x,y,t) is a weak solution to the problem (2.1)-
(2.3) if u* € V3(Qr) N C([0,T); LA(G)), u; € L*(0,T;V5(G)) + L*(Qr) and if it
satisfies the equality L[u*,v] fQ (Z filz,y,0)q; (t) + folz,y, ))vdxdydt for all
functions v € V1(Qr) and the condition (2.2) holds.
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Theorem 3.1. Suppose that the hypotheses (A), (C), (G), (L), (F), (U), (S)
hold. Then the problem (2.1)—(2.3) has at most one weak solution. Moreover, if we
add the following assumptions:

1) ays D%ay, ¢y, € L>(Qr), |af = |y[ < mo, k = 1,...,1, ¢f € L?(0,T),
fi7yk €L2(QT),i:0,...,S,k:].,...,l,j:].,...,s,'

2) |gy: (2, y,t,8)| < g, i =1,...,1 for almost all (x,y,t) € Qr and for all £ € R*,
where g' is a positive constant;

3) fils1 =0,i=0,1,...,5,

then a weak solution to the problem (2.1)—(2.3) exists.

The proof is carried out according to the scheme of proof of Theorem 2 in [9],
where we use the Galerkin method, and we build the sequence {u* 1, that
converges in V3(Qr) weakly to the solution u* of the problem (2.1)—(2.3) as N — oo,
and the sequence {u;"" }3_, converges to u} in L2(0,T; Vs (G)) + L2(Qr) weakly.

O

Definition 3.2. A set of functions (u(zx,y,t),q1(t),q2(t),...,qs(t)) is a weak
solution to the problem (2.1)—(2.4) if u € V3(Qr) N C([0,T]; L*(G)), us € L*(0,T;
V(@) + L3(Qr), ¢; € L*(0,T),i=1,...,s, and it satisfies the equality

(3.1) Dlul = [ (Z iy Has(t) + fo<x,y,t>)vdx dydi

Qr

for all functions v € V1(Qr) and the conditions (2.2) and (2.4) hold.

The equation (2.1) and the conditions (2.4) imply the equality

(32) ZQ'L(t)/ K](xay)fl(xayvt) d(Edy = F](t)v te [OaT]v ] = ]-a' -5 S,
i=1 G

where

l

Fy(0) = Ej0) - | <Kj(fc7y)fo($,y,t) S il 0K (2, 9)) o

=1
— > DVKj(,y)aas(z,y, ) D% — K;j(z,y)e(w, y, t)u

|a|=]v|<mo

— K;(z,y)g(z, v 1, u>) dedy.
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Denote B(t) := [bij(t)]sxs, where bjj(t) = [, Ki(z,y)fi(z,y,t)dedy, At) =
det B(t), A;;(t)—the algebraical complements of the elements of B(t). Let A(t) # 0,

s (1) = Asu(H)(A(D) ( K5 y)e(, 9, 1) +Z (K )y )
B (21.) = — A ((AL) VDK 02 5)00r (2518,

By (1) = Apu(O)(AWD)~" (E;-of) - [ Ko 0da dy>.

Then from (3.2) we obtain

(33) )= (Eij(t)— /G (ozij(a:,y,t)u—i— 3 ,Bijw(a:,y,t)Dau) da dy

j=1 lel=[vI<mo

+/ A (A®) K j(z,y)g(z,y, t,u) da:dy), tel0,T],i=1,...,s.
G

Theorem 3.2. Let the conditions of Theorem 3.1 and hypotheses (K), (E) hold.
The set of functions (u(x,y,t), q1(t), g2(t), . .., qs(t)) is a weak solution to the problem
(2.1)—(2.4) if and only if this set satisfies (2.2), (3.2) and (3.1) for all v € V1(Qr).

The proof is carried out with the use of Lemma 2.2 in [4]. O
Denote: \! = maxesssup|)\w7 (z,y,t)|, f1 = maxr[{)la%)}(|fi(x,y,t)|2, G o= I\ —
K]

)

2co +2¢° + 1+ 1/Ty, Where 0<Ty <T, My := fle©*Tr /min{1, 2a0},

S

M5 :=3s max{ sup Z (/ (Oéij(xvyat))Q dz dy
G

[0,71] ij=1

(A (1) (A1) g0 /G (5 (2, ))? da dy);

mOFmO max sup Z (/G(,Bijw(a:,y,t))Q dz dy) }

B [0,11] ij=1

Let a number T} satisfy the inequalities

(3.4) Cl > 0, |M1M2T1| < 1.
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Theorem 3.3. Let A(t) # 0 for allt € [0,T] and let the hypotheses (A), (C), (F),
(L), (U), (G), (E), (K), (S) hold. Then the problem (2.1)—(2.4) has at most one weak
solution. If, besides, Goyy,, Doy, ¢y, € L®(Q1), fiy, € L*(Qr), |a| = 7] < mo,
1=20,...,s, k=1,...,1l, and fi|5; =0,7=0,...,s then a weak solution to the
problem (2.1)—(2.4) exists.

Proof. The proof is divided into three parts.

Part I. Let T = Tj. Similarly to [1], we construct the approximation of the
solution to the problem (2.1)—(2.4) in such way: ¢}(t) :==0,i=1,...,s,

(35) ") =3 <E~j<t)

=1

- / (aij(x7y)t)um_l + Z 6ija’y(x7yat)Daum/_l) dz dy
G

la]=]v|<mo

Kj(z,y)g(z,y,t,u™ ") dz dy) ,

tel0, 7], i=1,...,8 m>=2,

Aji(t)

T Je 20

u™ satisfies the equality

(3.6) L[um,fu]:/ (Zfi(x,y,t)q;”(t)+f0(x,y,t)>vdxdydt, m>1
Qry

i=1

for all v € V1(Qr,) and the condition
(37) Um(ilj,y,()) :’U,O(l',y), (xay) €G.

It follows from (3.5) that ¢™ € L%*0,T1), m > 2, i = 1,...,s. According
to Theorem 3.1 for each m € N there exists a unique function u™ € V3(Qr,) N
C([0,Ty]; L*(@)), u* € L*(0,T1; V5 (G)) + L*(Qr, ), which satisfies (3.6), (3.7).

Now we show that {(v™(z,y,t),q¢"(t), ¢ (t),..., ¢ (t))}°_, converges to the
weak solution of the problem (2.1)-(2.4). Denote 7I™(t) := ¢ (t) — ¢* *(t), 2™ :=
2@,y t) = um(z,y t) —um Ha,y,t), s = [ [P+ Y DYz ?] dedy,

|al=m

i=1,...,8, m > 2. From (3.7) we get z™(z,y,0) =0, (z,y) € G, m > 2. Moreover,
using (3.6), Lemma 2 in [9] and considering L[u™, z™e~ %] — Llu™™1, 2Me~%1t] we
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obtain the equality
1 l
(3.8) 5/ |zm(x,y,7)|2e’<”dxdy+Z)\i(x,y,t)zy z
G i=1

Cl m a,m m
+/T {3|z |2 + Z Ao~ (2,y,t)D*2" D7 2

la|=]v[<mo

+ (@, y, )(2"™)? + (g(a,y, t,u™) — gla,y, t,u™ 1))z e de dy dt
/ Zfz z,y, )" (t)zme” M dadydt, 1€ (0,T1], m > 2.
T =1

After using the inequality |ab] < 26a? + 5b%, a,b € R, with § = T} and hypotheses
(A)—(F) in (3.8) we obtain the estimates

(3.9) / sm(t)dthlMl/ Z|r t2dt, 7€ (0,T1], m=>2,
0

10) [ P aedy < it [ S IPORd e 0.1 m>2

i=1

Now we estimate |} (t)|, m > 3, using (3.5), Holder’s and Friedrichs’ inequalities:

(3.11) /Z|r ()2 dt < /sm_l(t)dt, 7€ (0,T1], m > 3.
0

Moreover, (3.9) and (3 11) imply the inequalities [ E|7"m+1( H2dt < Msx
=1

Jo s™(t)dt < Ty Ms ] Z |rm(¢)|2 dt, m > 2, T € (0, Ty], M3 := M;Ms. Therefore

(3.12) /Zv ()2 dt < (T1M3m1/ Z|r )2 dt, 7€ (0,T1], m>3.

Let k € N. Taking into account (3.4) and (3.12), we obtain the inequalities

m+k T M
m+k (4 2 2 173 2
[t -aroras S [Trora< S0 1S ok
Jj=m+1
€ (0,T1], m > 3. Then for all s = 1,..., s and for each € > 0 there exists m such

that for all k € N and m > m the 1nequahty g (t) — g (t); L?(0, T1)|| < € holds.
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Thus the sequence {g"}2°_, is fundamental in L%(0,T}). Then from (3.9) and (3.10)
we obtain that {u™}°°_, is fundamental in Vi (Qr,) N C([0, T1]; L*(G)), therefore for
m — 00

(3.13) u™ —u in Vi(Qr)NC(0,Th]; L*(G)),

¢" —q in L*0,Ty),i=1,...,s.
Moreover, the following estimates were obtained for u™" (here u™"
mations of v in the Galerkin method), see [9], page 4, (16) and (18):

are approxi-

S

l Ty
(3.14) / Z|u;’:’N(x,y,7)|2dxdy< Cl/ Z|q§n(t)|2dt+C2, 7 € [0,T1],
G =1 0 =1
lu™™; L2(0,T1; V5 (@) + L*(Qny) || < Cs,

where the constants C7, Cs, C3 do not depend on N. The boundedness of the right-
hand side of (3.14) follows from (3.13). Passing to the limit as N — oo and taking into
account the estimate ||v; L?(Qr,)|? < A}im lo™V; L2(Q1,)||?, see [2], page 20, we ob-
1 — 00
tain [, 3 [uyi(z,y, 7)|? dody < Cy, 7 € (0,71, [|ui; L2(0, T1; V5 (G)) + L*(Qr) || <
i=1

C5, where the constants Cy, C5 do not depend on m. Consequently, we can choose
a subsequence from {u}2°_; such that

(3.15) Uyt — uy,  in L*(Qq,) weakly as my — o0, i =1,...,1,
u™ —u; in L2(0,T1; V5 (G)) + L*(Qr,) weakly as my, — 0.

Taking into account (3.13), (3.15), from (3.6), (3.5) and Theorem 3.2 we conclude
that (u,q1,q2,...,qs) is a weak solution to the problem (2.1)—(2.4) in Qr,.

Part IT. Let (u'V), qgl), .. ,q,gl)), (u®, q§2), ey q§2)) be two weak solutions to the
problem (2.1)—(2.4) in Qp,. Then their difference (u, q~1(1),...,§5(1)), where © =
u® —u? G = qil) - q§2), satisfies the equality L[u,we= ¢! — L{u®), ge= ¢t =
fQTl i:lfi(x,y,t)('ji(t)v dzdydt for all functions v € Vi(Qr,) and the condition

=

u(z,y,0) = 0 holds. Further, using hypotheses (A)—(F) we find

S

T1
(3.16) / {|a|2+ 3 |D°‘ﬂ|2} dxdydthlMl/ SGE@Rd, w2
T 0 =1

1 |a]=mg
Moreover, (3.2), Holder’s and Friedrichs’ inequalities imply the estimate
™ s
/ Zlq?(t)pdthz/ [|a|2+ 3 |D“ﬂ|2} dz dy dt.
0 = @n la|=mo
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Applying here (3.16) we find
T, S8 T, S
| S @wra<nt [CY gk
0 =1 0 =1

According to (3.4), we obtain fOTl S @i (t))? dt < 0, therefore ¢; = 0,i = 1,...,s, and
i=1

q§1) = q§2), 1 =1,...,s. Then (3.16) implies fQT |u)? dz dy dt < 0, so, u™ = u?
in Qp, . '

Part III. If Ty < T, then we divide [0,7] into intervals [0,T4], [T, 2T4],. ..,
[((N — 1)Ty, NTi], where NT; = T, and the number T} satisfies (3.4). The unique
solvability of (2.1)—(2.4) is proved in Qr,. Denote the solution by (u1(z,y,t),q1,1(t),
q2,1(t)7 ) QS,l(t))'

Let t € [T1;2T1]. Consider the problem (2.1), (2.3), (2.4) with the condition
u(z,y,Th) = ui(z,y,T1), (z,y) € G. Let us change variables t = 7 + Ty, 7 € [0;T7]
in this problem. Denote qil)(T) =q(t+T),i=1,...,8 Ulx,y,7) = ulz,y, 7+ T1).
We obtain a problem similar to (2.1), (2.3), (2.4) as 7 € [0;T1] with the condition
U(z,y,0) =u1(z,y,T1), (z,y) € G for the set (U(z,y, 1), q%l) (1), qél)(T), . ,qél)(T)).
It is obvious that all new coefficients and initial data of the problem satisfy the same
conditions as the functions appearing in the problem (2.1)—(2.4). According to I, II
there exists a unique weak solution in @7, to the problem. Therefore problem (2.1),
(2.3), (2.4) admits one and only one solution in Q7 o7, with u(z,y,T1) = ui(x,y, T1),
(z,y) € G. Denote the solution by (uz(x,y,t),q1,2(t),g2,2(t), ..., ¢s2(t)). Following
a similar reasoning on the intervals [27%;3T1],...,[(N — 1)Ty; NTy], we prove the
existence and uniqueness of weak solutions (ug(z,y,t),q1,5(t),q2.x(t), ..., ¢s.x(t)),
k=3,...,N,in Qu_1yr, ,kr, = G x ((k —1)T1,kTy) for the problem (2.1), (2.3),
(2.4) with u(x,y, (k — 1)T1) = up—1(z,y, (k —1)T1), (x,y) € G. Evidently, the set of
functions (u(x,y,t),q1(t), g2(t),...,qs(t)), where u(z,y,t) = u;j(z,y,t) if (z,y,t) €
Qu—1)1i,511» (here Qo = Qr1y), ¢i(t) = qi () if t € [(j —1)T1,jTh],i=1,...,s,
j=1,...,N,is a weak solution for the problem (2.1)—(2.4) in Q7.

The uniqueness of the weak solution for the problem (2.1)—(2.4) in Q7 is proved
by computations similar to those used in parts II, III. O
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