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Abstract. The purpose of the present paper is to study the existence of solutions to initial
value problems for nonlinear first order differential systems subject to nonlinear nonlocal
initial conditions of functional type. The approach uses vector-valued metrics and matrices
convergent to zero. Two existence results are given by means of Schauder and Leray-
Schauder fixed point principles and the existence and uniqueness of the solution is obtained
via a fixed point theorem due to Perov. Two examples are given to illustrate the theory.
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1. Introduction

Nonlocal problems for different classes of differential equations and systems are

intensively studied in the literature by a variety of methods (see for example [2], [4],

[5], [6], [10]–[17], [21], [23], [24], [28], [30], [33], [35]–[38], [41], [42], [46], [48]–[54] and

the references therein). For problems with nonlinear boundary conditions we refer

the reader to [3], [18]–[20], [22], [25]–[27], [29], [31], [32], [34], [44] and the references

therein.

The first author was supported by the Sectorial Operational Programme for Human Re-
sources Development 2007-2013, co-financed by the European Social Fund, under the
project POSDRU/159/1.5/S/137750 - “Doctoral and postoctoral programs - support for
increasing research competitiveness in the field of exact Sciences“ and by a grant of
the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project
number PN-II-ID-PCE-2011-3-0094. The third author was supported by a grant of the
Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project num-
ber PN-II-ID-PCE-2011-3-0094
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In the recent papers [8], [9], [39], [40], a new method based on vector-valued norms

and matrices convergent to zero was used for the treatment of first order differential

systems under nonlocal conditions expressed by linear functionals. The aim of this

paper is to extend the use of that technique to nonlocal conditions given by nonlinear

functionals.

We shall consider the problem

(1.1)























x′(t) = f1(t, x(t), y(t)),

y′(t) = f2(t, x(t), y(t)), a.e. on [0, 1],

x(0) = α[x, y],

y(0) = β[x, y].

Here, f1, f2 : [0, 1]×R
2 → R are L1-Carathéodory functions, α, β : (C[0, 1])2 → R are

nonlinear continuous functionals, and the solution (x, y) is sought in W 1,1(0, 1;R2).

The technique we use differs from that in [9], [39], [40] by the necessity of working

with nonlinear operators on the product space C[0, 1]× R. This way, the nonlinear

functionals expressing the nonlocal conditions become part of the nonlinear operators

associated to the problem. More exactly, we rewrite the problem (1.1) as a system

of the form

xa =

(

a+

∫ t

0

f1(s, x(s), y(s)) ds, α[x, y]

)

,

yb =

(

b+

∫ t

0

f2(s, x(s), y(s)) ds, β[x, y]

)

,

where by xa, yb we mean the pairs (x, a), (y, b) ∈ C[0, 1] × R. This, in turn, can

be viewed as a fixed point problem in (C[0, 1] × R)2 for the completely continuous

operator

T = (T1, T2) : (C[0, 1]× R)2 → (C[0, 1]× R)2,

where T1 and T2 are given by

T1[xa, yb] =

(

a+

∫ t

0

f1(s, x(s), y(s)) ds, α[x, y]

)

,

T2[xa, yb] =

(

b+

∫ t

0

f2(s, x(s), y(s)) ds, β[x, y]

)

.

In what follows, we introduce some notations, definitions and basic results which are

used throughout this paper. Three different fixed point principles are used in order

to prove the existence of solutions for the problem (1.1), namely the fixed point

principles of Perov, Schauder and Leray-Schauder (see [45], [46]). The technique

that makes use of the vector-valued metrics and matrices convergent to zero has an
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essential role in all three cases. Therefore, we recall the fundamental results that are

used in the next sections (see [1], [43], [46]).

Let X be a nonempty set.

Definition 1.1. By a vector-valued metric onX we mean a mapping d : X×X →

R
n
+ such that

(i) d(u, v) > 0 for all u, v ∈ X and if d(u, v) = 0 then u = v;

(ii) d(u, v) = d(v, u) for all u, v ∈ X ;

(iii) d(u, v) 6 d(u,w) + d(w, v) for all u, v, w ∈ X .

Here, if x, y ∈ R
n, x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), by x 6 y we mean

xi 6 yi for i = 1, 2, . . . , n. We call the pair (X, d) a generalized metric space. For such

a space convergence and completeness are similar to those in usual metric spaces.

Definition 1.2. A square matrix M with nonnegative elements is said to be

convergent to zero if

Mk → 0 as k → ∞.

The property of being convergent to zero is equivalent to each of the following

conditions from the characterization lemma below (see [7], pages 9, 10, [45], [46],

[47], pages 12, 88):

Lemma 1.1. Let M be a square matrix of nonnegative numbers. The following

statements are equivalent:

(i) M is a matrix convergent to zero;

(ii) I −M is nonsingular and (I −M)−1 = I +M +M2 + . . . (where I stands

for the unit matrix of the same order as M);

(iii) the eigenvalues of M are located inside the unit disc of the complex plane;

(iv) I −M is nonsingular and (I −M)−1 has nonnegative elements.

Note that, according to the equivalence of the statements (i) and (iv), a matrixM

is convergent to zero if and only if the matrix I −M is inverse-positive. Also, the

equivalence of (i) and (iii) shows that a matrix M is convergent to zero if and only

if ̺(M) < 1, where ̺(M) is the spectral radius of M .

The following lemma is a consequence of the previous characterizations.
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Lemma 1.2. Let A be a matrix that is convergent to zero. Then for each matrixB

of the same order whose elements are nonnegative and sufficiently small, the matrix

A+B is also convergent to zero.

Definition 1.3. Let (X, d) be a generalized metric space. An operator T :

X → X is said to be contractive (with respect to the vector-valued metric d on X)

if there exists a convergent to zero (Lipschitz) matrix M such that

d(T (u), T (v)) 6 Md(u, v) for all u, v ∈ X.

Theorem 1.1 (Perov). Let (X, d) be a complete generalized metric space and

T : X → X a contractive operator with Lipschitz matrix M . Then T has a unique

fixed point u∗ and for each u0 ∈ X we have

d(T k(u0), u
∗) 6 Mk(I −M)−1d(u0, T (u0)) for all k ∈ N.

Theorem 1.2 (Schauder). Let X be a Banach space, D ⊂ X a nonempty closed

bounded convex set and T : D → D a completely continuous operator (i.e., T is

continuous and T (D) is relatively compact). Then T has at least one fixed point.

Theorem 1.3 (Leray-Schauder). Let (X, |·|X) be a Banach space, R > 0 and

T : b̄X(0;R) → X a completely continuous operator. If |u|X < R for every solution u

of the equation u = λT (u) and any λ ∈ (0, 1), then T has at least one fixed point.

In this paper, by |x|C , where x ∈ C[0, 1], we mean

|x|C = max
t∈[0,1]

|x(t)|.

Also, the notation |x|L1 will stand for the L1-norm in L1(0, 1).

2. Existence and uniqueness of the solution

In this section we show that the existence of solutions to the problem (1.1) fol-

lows from Perov’s fixed point theorem in case that the nonlinearities f1, f2 and the

functionals α, β satisfy Lipschitz conditions of the type:

(2.1)

{

|f1(t, x, y)− f1(t, x̄, y)| 6 a1|x− x̄|+ b1|y − y|

|f2(t, x, y)− f2(t, x̄, y)| 6 a2|x− x̄|+ b2|y − y|,
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for all x, y, x̄, y ∈ R and a.e. t ∈ [0, 1], and

(2.2)

{

|α[x, y]− α[x̄, y]| 6 A1|x− x̄|C +B1|y − y|C

|β[x, y]− β[x̄, y]| 6 A2|x− x̄|C +B2|y − y|C ,

for all x, y, x̄, y ∈ C[0, 1].

For a given number θ > 0, denote

m11(θ) = max
{1

θ
, a1 + θA1

}

, m12(θ) = b1 + θB1,

m21(θ) = a2 + θA2, m22(θ) = max
{1

θ
, b2 + θB2

}

.

Theorem 2.1. Assume that f1, f2 satisfy the Lipschitz conditions (2.1) and α, β

satisfy the conditions (2.2). In addition assume that for some θ > 0, the matrix

(2.3) Mθ =

[

m11(θ) m12(θ)

m21(θ) m22(θ)

]

is convergent to zero. Then the problem (1.1) has a unique solution.

P r o o f. We shall apply Perov’s fixed point theorem in (C[0, 1] × R)2 endowed

with the vector-valued norm ‖·‖(C[0,1]×R)2,

‖u‖(C[0,1]×R)2 =

[

|xa|

|yb|

]

,

for u = (xa, yb). Here

|xa| = |(x, a)| = |x|C + θ|a|,

which represents a norm on C[0, 1]× R.

We have to prove that T is contractive with respect to the convergent to zero

matrix Mθ, more exactly that

‖T (u)− T (ū)‖(C[0,1]×R)2 6 Mθ‖u− ū‖(C[0,1]×R)2,

for all u = (xa, yb), ū = (x̄ā, yb̄) ∈ (C[0, 1]× R)2.
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Indeed, we have

|T1[xa, yb]− T1[x̄ā, yb̄]|(2.4)

6

∣

∣

∣

∣

∫ t

0

|f1(s, x(s), y(s)) − f1(s, x̄(s), y(s))| ds

∣

∣

∣

∣

C

+ |a− ā|

+ θ|α[x, y]− α[x̄, y]|

6

∣

∣

∣

∣

a1

∫ t

0

|x(s)− x̄(s)| ds+ b1

∫ t

0

|y(s)− y(s)|

∣

∣

∣

∣

C

+ θA1|x− x̄|C

+ θB1|y − y|C + |a− ā|

6 (a1 + θA1)|x− x̄|C + (b1 + θB1)|y − y|C +
1

θ
· θ|a− ā|

6 max
{1

θ
, a1 + θA1

}

|xa − x̄ā|+ (b1 + θB1)|yb − yb̄|

= m11(θ)|xa − x̄ā|+m12(θ)|yb − yb̄|.

Similarly, we have

|T2[xa, yb]− T2[x̄ā, yb̄]|(2.5)

6 (a2 + θA2)|xa − x̄ā|+max
{1

θ
, b2 + θB2

}

|yb − yb̄|

= m21(θ)|xa − x̄ā|+m22(θ)|yb − yb̄|.

Now, both inequalities (2.4), (2.5) can be put together and be rewritten equivalently

as
[

|T1[xa, yb]− T1[x̄ā, yb̄]|

|T2[xa, yb]− T2[x̄ā, yb̄]|

]

6 Mθ

[

|xa − x̄ā|

|yb − yb̄|

]

or using the vector-valued norm

‖T (u)− T (ū)‖(C[0,1]×R)2 6 Mθ‖u− ū‖(C[0,1]×R)2,

whereMθ is given by (2.3) and assumed to be convergent to zero. The result follows

now from Perov’s fixed point theorem. �
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3. Existence of at least one solution

In the beginning of this section, we give an application of Schauder’s fixed point

theorem. More precisely, we show that the existence of solutions to the problem (1.1)

follows from Schauder’s fixed point theorem in case that f1, f2 satisfy a relaxed

growth condition of the type:

(3.1)

{

|f1(t, x, y)| 6 a1|x|+ b1|y|+ c1(t),

|f2(t, x, y)| 6 a2|x|+ b2|y|+ c2(t),

for all x, y ∈ R and a.e. t ∈ [0, 1], where c1, c2 ∈ L1(0, 1;R+). In addition, we assume

that

(3.2)

{

|α[x, y]| 6 A1|x|C +B1|y|C + C1,

|β[x, y]| 6 A2|x|C +B2|y|C + C2,

for all x, y ∈ C[0, 1].

Theorem 3.1. If the conditions (3.1), (3.2) hold and the matrix Mθ defined

in (2.3) is convergent to zero for some θ > 0, then the problem (1.1) has at least one

solution.

P r o o f. In order to apply Schauder’s fixed point theorem, we look for a nonempty,

bounded, closed and convex subset B of (C[0, 1]×R)2 so that T (B) ⊂ B. Let xa, yb

be any elements of C[0, 1]× R. Then, using the same norm on C[0, 1]× R as in the

proof of the previous theorem, we obtain

|T1[xa, yb]| =

∣

∣

∣

∣

a+

∫ t

0

f1(s, x(s), y(s)) ds|C + θ|α[x, y]

∣

∣

∣

∣

(3.3)

6 |a|+

∣

∣

∣

∣

∫ t

0

(a1|x(s)|+ b1|y(s)|+ c1(s)) ds

∣

∣

∣

∣

C

+ θA1|x|C + θB1|y|C + θC1

6 a1|x|C + b1|y|C + |c1|L1 + θA1|x|C + θB1|y|C + θC1 + |a|

= (a1 + θA1)|x|C + (b1 + θB1)|y|C +
1

θ
· θ|a|+ |c1|L1 + θC1

6 max
{1

θ
, a1 + θA1

}

|xa|+ (b1 + θB1)|yb|+ c0

= m11(θ)|xa|+m12(θ)|yb|+ c0,

where c0 := |c1|L1 + θC1. Similarly

|T2[xa, yb]| 6 (a2 + θA2)|xa|+max
{1

θ
, b2 + θB2

}

|yb|+ C0(3.4)

= m21(θ)|xa|+m22(θ)|yb|+ C0,
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where C0 := |c2|L1 + θC2. Now, from (3.3), (3.4) we have

[

|T1[xa, yb]|

|T2[xa, yb]|

]

6 Mθ

[

|xa|

|yb|

]

+

[

c0
C0

]

,

where Mθ is given by (2.3) and is assumed to be convergent to zero. Next we

look for two positive numbers R1, R2 such that if |xa| 6 R1 and |yb| 6 R2, then

|T1[xa, yb]| 6 R1, |T2[xa, yb]| 6 R2. To this end it is sufficient that

Mθ

[

R1

R2

]

+

[

c0

C0

]

6

[

R1

R2

]

,

whence
[

R1

R2

]

> (I −Mθ)
−1

[

c0

C0

]

.

Notice that I−Mθ is invertible and its inverse (I −Mθ)
−1 has nonnegative elements

since Mθ is convergent to zero. Thus, if B = B1 ×B2, where

B1 = {xa ∈ C[0, 1]× R : |xa| 6 R1} and B2 = {yb ∈ C[0, 1]× R : |yb| 6 R2},

then T (B) ⊂ B. Also, the operator T is completely continuous since f1, f2 have

been assumed to be L1-Carathéodory. Thus Schauder’s fixed point theorem can be

applied. �

In what follows, we give an application of the Leray-Schauder principle and we

assume that the nonlinearities f1, f2 and also the functionals α, β satisfy more

general growth conditions, namely:

(3.5)

{

|f1(t, x, y)| 6 ω1(t, |x|, |y|),

|f2(t, x, y)| 6 ω2(t, |x|, |y|),

for all x, y ∈ R and a.e. t ∈ [0, 1], and

(3.6)

{

|α[x, y]| 6 ω3(|x|C , |y|C),

|β[x, y]| 6 ω4(|x|C , |y|C),

for all x, y ∈ C[0, 1]. Here ω1, ω2 are L
1-Carathéodory functions on [0, 1]×R

2
+, non-

decreasing in their second and third arguments, and ω3, ω4 are continuous functions

on R
2
+, nondecreasing in both variables.
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Theorem 3.2. Assume that the conditions (3.5), (3.6) hold. In addition assume

that there exists R0 = (R0
1, R

0
2) ∈ (0,∞)2 such that for ̺ = (̺1, ̺2) ∈ (0,∞)2

(3.7)















∫ 1

0

ω1(s, ̺1, ̺2) ds+ ω3(̺1, ̺2) > ̺1

∫ 1

0

ω2(s, ̺1, ̺2) ds+ ω4(̺1, ̺2) > ̺2

implies ̺ 6 R0.

Then the problem (1.1) has at least one solution.

P r o o f. The result follows from the Leray-Schauder fixed point theorem once we

have proved the boundedness of the set of all solutions of the equation u = λT (u),

for λ ∈ (0, 1). Let u = (xa, yb) be such a solution. Then xa = λT1(xa, yb) and

yb = λT2(xa, yb), or equivalently















(x, a) = λ

(

a+

∫ t

0

f1(s, x(s), y(s)) ds, α[x, y]

)

,

(y, b) = λ

(

b+

∫ t

0

f2(s, x(s), y(s)) ds, β[x, y]

)

.

First, we obtain that

|x(t)| = λ

∣

∣

∣

∣

a+

∫ t

0

f1(s, x(s), y(s)) ds

∣

∣

∣

∣

6 |a|+

∫ t

0

|f1(s, x(s), y(s))| ds(3.8)

6 |a|+

∫ 1

0

ω1(s, |x(s)|, |y(s)|) ds 6 |a|+

∫ 1

0

ω1(s, ̺1, ̺2) ds

where ̺1 = |x|C , ̺2 = |y|C . Also

(3.9) |a| = |λα[x, y]| 6 ω3(̺1, ̺2).

Similarly, we have

(3.10) |y(t)| 6 |b|+

∫ 1

0

ω2(s, ̺1, ̺2) ds

and

(3.11) |b| 6 ω4(̺1, ̺2).

Then from (3.8)–(3.11), we deduce















̺1 6

∫ 1

0

ω1(s, ̺1, ̺2) ds+ ω3(̺1, ̺2),

̺2 6

∫ 1

0

ω2(s, ̺1, ̺2) ds+ ω4(̺1, ̺2).
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This by (3.7) guarantees that

(3.12) ̺ 6 R0.

It follows that

(3.13) |a| 6 ω3(R0) =: R1
1, |b| 6 ω4(R0) =: R1

2.

Finally (3.12) and (3.13) show that the solutions u = (xa, yb) are a priori bounded

independently of λ. Also, the operator T is completely continuous since ω1, ω2 have

been assumed to be L1-Carathéodory.

Thus Leray-Schauder’s fixed point theorem can be applied. �

4. Examples

In what follows, we give two examples that illustrate our theory.

E x am p l e 4.1. Consider the nonlocal problem

(4.1)







































x′ =
1

4
sinx+ ay + g(t) ≡ f1(t, x, y),

y′ = cos
(

ax+
1

4
y
)

+ h(t) ≡ f2(t, x, y),

x(0) =
1

8
sin

(

x
(1

4

)

+ y
(1

4

))

,

y(0) =
1

8
cos

(

x
(1

4

)

+ y
(1

4

))

,

where t ∈ [0, 1], a ∈ R and g, h ∈ L1(0, 1). We have a1 = 1/4, b1 = |a|, a2 = |a|,

b2 = 1/4 and A1 = B1 = A2 = B2 = 1/8. Consider θ = 2. Hence

(4.2) Mθ =

[ 1
2 |a|+ 1

4

|a|+ 1
4

1
2

]

.

Since the eigenvalues of Mθ are λ1 = −|a|+ 1/4, λ2 = |a|+ 3/4, the matrix (4.2) is

convergent to zero if |λ1| < 1 and |λ2| < 1. It is also known that a matrix of this

type is convergent to zero if |a| + 1/4 + 1/2 < 1 (see [45]). Therefore, if |a| < 1/4,

the matrix (4.2) is convergent to zero and by Theorem 2.1 the problem (4.1) has

a unique solution.
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E x am p l e 4.2. Consider the nonlocal problem

(4.3)











































x′ =
1

4
x sin

( y

x

)

+ ay sin
(x

y

)

+ g(t) ≡ f1(t, x, y),

y′ = ax sin
( y

x

)

+
1

4
y sin

(x

y

)

+ h(t) ≡ f2(t, x, y),

x(0) =
1

8
sin

(

x
(1

4

)

+ y
(1

4

))

,

y(0) =
1

8
cos

(

x
(1

4

)

+ y
(1

4

))

,

where t ∈ [0, 1], a ∈ R and g, h ∈ L1(0, 1). Since

|f1(t, x, y)| 6
1

4
|x|+ |a||y|+ |g(t)|,

|f2(t, x, y)| 6 |a||x|+
1

4
|y|+ |h(t)|,

we are under the assumptions from the first part of Section 3. Also, the matrix Mθ

is that from Example 1 if we consider θ = 2. Therefore, according to Theorem 3.1,

if that matrix is convergent to zero, then the problem (4.3) has at least one solu-

tion. Note that the functions f1(t, x, y), f2(t, x, y) from this example do not satisfy

Lipschitz conditions in x, y and consequently Theorem 2.1 does not apply.

A c k n ow l e d g em e n t. The authors express their thanks to the anonymous

referees for careful reading of the manuscript and valuable suggestions.
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