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Abstract. The stability of the zero solution of a nonlinear nonautonomous Caputo frac-
tional differential equation is studied using Lyapunov-like functions. The novelty of this
paper is based on the new definition of the derivative of a Lyapunov-like function along
the given fractional equation. Comparison results using this definition for scalar fractional
differential equations are presented. Several sufficient conditions for stability, uniform sta-
bility and asymptotic uniform stability, based on the new definition of the derivative of
Lyapunov functions and the new comparison result, are established.
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1. Introduction

One of the main properties in the qualitative theory of differential equations is

stability of solutions. Stability enables us to compare the behavior of solutions

starting at different points.

The stability of fractional order systems is quite recent. There are several ap-

proaches in the literature to the study of stability, one of which is the Lyapunov

approach. As is mentioned in [15] there are several difficulties encountered when

one applies the Lyapunov technique to fractional differential equations. Results on

stability in the literature via Lyapunov functions could be divided into two main

groups:

⊲ continuously differentiable Lyapunov functions (see, for example, the papers [1],

[3], [6], [7], [12], [10]). Different types of stability are discussed using the Caputo

derivative of Lyapunov functions.
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⊲ continuous Lyapunov functions (see, for example, the papers [16], [9], [8]). In these

papers the authors use the derivative of a Lyapunov function similar to the Dini

derivative of Lyapunov functions in the literature, i.e., the Dini derivative

D+V (t, x) = lim sup
h→0+

1

h
(V (t, x)− V (t− h, x− hf(t, x)))

is generalized to

(1.1) Dq
+V (t, x) = lim sup

h→0+

1

hq
(V (t, x)− V (t− h, x− hqf(t, x))

where 0 < q < 1.

Stability for the zero solution of fractional nonlinear equations is studied in [1], [6],

which requires differentiability of the applied Lyapunov function. Also, the fractional

derivative of the Lyapunov function depends significantly on any solution of the given

fractional equation.

In this paper the stability of the zero solution of nonlinear nonautonomous frac-

tional differential equations is studied. We define in an appropriate way the Caputo

fractional Dini derivative of a Lyapunov function. Comparison results using this

new definition and scalar fractional differential equations are presented and suffi-

cient conditions for stability, uniform stability and asymptotic uniform stability are

obtained.

2. Notes on fractional calculus

Fractional calculus generalizes the derivative and the integral of a function to

a non-integer order [9], [13], [14] and there are several definitions of fractional deriva-

tives and fractional integrals.

General Case. Let the number q > 0, n − 1 < q < n be given, where n is

a natural number, and Γ(·) denotes the Gamma function.

1: The Riemann-Liouville (RL) fractional derivative of order q of m(t) is given by

(see, for example, 1.4.1.1 in [4], or [13])

t0D
q
tm(t) =

1

Γ(n− q)

dn

dtn

∫ t

t0

(t− s)n−q−1m(s) ds, t > t0.

2: The Caputo fractional derivative of order q of m(t) is defined by (see, for

example, 1.4.1.3 in [4])

c
t0D

q
tm(t) =

1

Γ(n− q)

∫ t

t0

(t− s)n−q−1m(n)(s) ds, t > t0.
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The Caputo and Riemann-Liouville formulations coincide when m(t0) = 0. The

properties of the Caputo derivative are quite similar to those of ordinary derivatives.

Also, the initial conditions of fractional differential equations with the Caputo deriva-

tive has a clear physical meaning and as a result the Caputo derivative is usually

used in real applications.

3: The Grunwald-Letnikov fractional derivative of order q of m(t) is given by (see,

for example, 1.4.1.2 in [4])

Dq
0m(t) = lim

h→0+

1

hq

[(t−t0)/h]
∑

r=0

(−1)r(qCr)m(t − rh), t > t0,

and the Grunwald-Letnikov fractional Dini derivative of order q by

(2.1) Dq
0+m(t) = lim sup

h→0+

1

hq

[(t−t0)/h]
∑

r=0

(−1)r(qCr)m(t − rh), t > t0,

where qCr are the binomial coefficients and [(t− t0)/h] denotes the integer part of

the fraction (t− t0)/h.

If m(t) ∈ Cn([t0, T ]), n − 1 < q < n then the Grunwald-Letnikov fractional

derivative is given by (see [11], Definition 1.3)

Dq
0m(t) =

n−1
∑

r=0

m(r)(t0)(t− t0)
−q+r

Γ(−q + r + 1)
+

1

Γ(n− q)

∫ t

t0

(t−s)n−q−1m(n)(s) ds, t ∈ (t0, T ].

Partial Case. In engineering, the fractional order q is often less than 1, so we

restrict our attention to q ∈ (0, 1). Then to simplify the notation we will use cDq

instead of ct0D
q
t and the Caputo fractional derivative of order q of the function m(t)

then is

(2.2) cDqm(t) =
1

Γ(1− q)

∫ t

t0

(t− s)−qm′(s) ds, t > t0.

Also, the RL fractional derivative of order q of m(t) is given by

Dqm(t) =
1

Γ(1 − q)

d

dt

∫ t

t0

(t− s)−qm(s) ds, t > t0.

In this paper, since 0 < q < 1, we are interested in the Caputo fractional Dini

derivative of a function m(t). Since the relation between the Caputo fractional
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derivative and the Grunwald-Letnikov fractional derivative is given by cDqm(t) =

Dq
0[m(t)−m(t0)], using (2.1) we define the Caputo fractional Dini derivative as

cDq
+m(t) = Dq

0+[m(t)−m(t0)],

i.e.

(2.3)

cDq
+m(t) = lim sup

h→0+

1

hq

[

m(t)−m(t0)−
[(t−t0)/h]

∑

r=1

(−1)r+1(qCr)(m(t − rh)−m(t0))

]

.

Definition 1 ([16]). We say m ∈ Cq([t0, T ],R
n) if m(t) is differentiable

(i.e. m′(t) exists), and the Caputo derivative cDqm(t) exists and satisfies (2.2)

for t ∈ [t0, T ].

R em a r k 1. If m ∈ Cq([t0, T ],R
n) then cDq

+m(t) = cDqm(t).

E x am p l e 1. Let m(t) = t and q = 0.5. Then using the formula (cf. [13])

(2.4) Dq
0+(t− t0)

m =
Γ(m+ 1)

Γ(m− q + 1)
(t− t0)

m−q

we obtain

cD0.5
+ m(t) = D0.5

0+(t− t0) =

√
t− t0

Γ(2− 0.5)
=

√
t− t0

Γ(1.5)
= 2

√

t− t0
π

and

cD0.5m(t) =
1

Γ(0.5)

∫ t

t0

ds√
t− s

= 2

√
t− t0

Γ(0.5)
= 2

√

t− t0
π

.

3. Statement of the problem

Consider the system of fractional differential equations (FrDE) with a Caputo

derivative for 0 < q < 1,

(3.1) cDqx = f(t, x), t > t0,

where x ∈ R
n, f ∈ C[R+ × R

n,Rn], f(t, 0) ≡ 0.

We will assume in the paper that the function f ∈ C[R+×R
n,Rn] is such that for

any initial data (t0, x0) ∈ R+ ×R
n the system FrDE (3.1) with the initial condition

x(t0) = x0 has a solution x(t; t0, x0) ∈ Cq([t0,∞),Rn). Note that some sufficient

conditions for global existence of solutions of (3.1) are given in [2], [5], [9].

The goal of the paper is to study the stability of the system FrDEs (3.1). In the

definition below we assume x(t; t0, x0) is any solution of (3.1) with x(t0) = x0.
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Definition 2. The zero solution of (3.1) is said to be

⊲ stable if for every ε > 0 and t0 ∈ R+ there exist δ = δ(ε, t0) > 0 such that for any

x0 ∈ R
n the inequality ‖x0‖ < δ implies ‖x(t; t0, x0)‖ < ε for t > t0;

⊲ uniformly stable if for every ε > 0 there exist δ = δ(ε) > 0 such that for t0 ∈
R+, x0 ∈ R

n with ‖x0‖ < δ the inequality ‖x(t; t0, x0)‖ < ε holds for t > t0;

⊲ uniformly attractive if for β > 0: for every ε > 0 there exists T = T (ε) > 0 such

that for any t0 ∈ R+, x0 ∈ R
n with ‖x0‖ < β the inequality ‖x(t; t0, x0)‖ < ε

holds for t > t0 + T ;

⊲ uniformly asymptotically stable if the zero solution is uniformly stable and uni-

formly attractive.

In this paper we will use the followings sets:

K = {a ∈ C[R+,R+] : a is strictly increasing and a(0) = 0},
B(λ) = {x ∈ R

n : ‖x‖ 6 λ},
B(λ) = {x ∈ R

n : ‖x‖ < λ}, λ = const > 0.

We will use comparison results for scalar fractional differential equations of the

type

(3.2) cDqu = g(t, u), t ∈ J,

where u ∈ R, J = [t0,∞) ⊂ R+, g : J × R → R, g(t, 0) ≡ 0. Note that (3.2) with

u(t0) = u0 is called the initial value problem (3.2). We will assume in the paper that

the function g : J×R → R is such that for any initial data (t0, u0) ∈ J×R the scalar

FrDE (3.2) with u(t0) = u0 has a solution u(t; t0, u0) ∈ Cq(J ∩ [t0,∞),R). Also,

we assume that for any compact subset I ⊂ J there exists a small enough number

LI > 0 such that the corresponding FrDE cDqu = g(t, u) + η with η ∈ (0, LI ] has

a solution u(t; t0, u0, η) ∈ Cq(I ∩ [t0,∞),R) where (t0, u0) ∈ I × R. Note that some

existence results for (3.2) are given in [2], [5], [9].

E x am p l e 2. Consider the scalar fractional differential equation (3.2) with

g(t, u) = −2u, i.e. consider the scalar FrDE

(3.3) cDqu(t) = −2u.

The equation (3.3) with an initial condition u(t0) = u0 has a solution

(3.4) u(t; t0, u0) = u0Eq(−2(t− t0)
q).
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where the Mittag-Leffler function (with one parameter) is defined by

Eq(z) =

∞
∑

k=0

zk

Γ(qk + 1)
, q > 0.

From (3.4) and the inequality 0 < Eq(−2(t− t0)
q) < 1 for t > t0 we obtain

(3.5) |u(t; t0, u0)| 6 |u0|.

Inequality (3.5) guarantees that the zero solution of (3.3) is uniformly stable.

In this paper we will study the connection between the stability of the system

FrDE (3.1) and the stability of the scalar FrDE (3.2).

We now introduce the class Λ of Lyapunov-like functions which will be used to

investigate the stability of the system FrDE (3.1).

Definition 3. Let t0, T ∈ R+ : T > t0, and ∆ ⊂ R
n, 0 ∈ ∆. We will say that

the function V (t, x) : [t0, T )×∆ → R+ belongs to the class Λ([t0, T ),∆) if V (t, x) ∈
C([t0, T ) × ∆,R+) is locally Lipschitzian with respect to its second argument and

V (t, 0) ≡ 0.

Lyapunov-like functions used to discuss stability for differential equations require

an appropriate definition of the derivative of the Lyapunov function along the stud-

ied differential equations. For fractional differential equations some authors ([3],

[10], [12]) defined and used the so called Caputo fractional derivative of Lyapunov

functions. This approach requires the function to be smooth enough (at least contin-

uously differentiable) and also some conditions involved are quite restrictive. Other

authors use the Lakshmikantham et al. derivative of Lyapunov functions ([9], [8]) and

this definition requires only the continuity of the Lyapunov function. However, it can

be quite restrictive (see Example 4) and can cause some problems (see Example 5).

In this paper we introduce the derivative of the Lyapunov function. For this we

will use the Caputo fractional Dini derivative of a function m(t) given in (2.3). We

define the generalized Caputo fractional Dini derivative of the function V (t, x) ∈
Λ([t0, T ),∆) along the trajectories of solutions of the system FrDE (3.1) as follows:

(3.6) c
+D

q
(3.1)V (t, x) = lim sup

h→0+

1

hq

{

V (t, x)− V (t0, x0)

−
[(t−t0)/h]

∑

r=1

(−1)r+1qCr[V (t− rh, x− hqf(t, x))− V (t0, x0)]

}

for t > t0,

where t ∈ (t0, T ), x, x0 ∈ ∆, and there exists h1 > 0 such that t − h ∈ [t0, T ),

x− hqf(t, x) ∈ ∆ for 0 < h 6 h1.

658



R em a r k 2. Let q = 1 and x0 = 0 in formula (3.6). Then using nCr = 0

for n < r, n, r > 0 integers, we obtain for any t > 0 the formula c
+D

1
(3.1)V (t, x) =

lim sup
h→0+

h−1{V (t, x)−V (t−h, x−hf(t, x))} which coincides with the known in the lit-
erature D+V (t, x) used for studying stability of zero solution of ordinary differential

equations.

We will give some examples to illustrate the application of the introduced Caputo

fractional Dini derivative of the function V (t, x) ∈ Λ([t0, T ),∆) along the trajecto-

ries of solutions of the initial value problem for the system FrDE (3.1) and make

comparisons with other derivatives of Lyapunov functions in the literature.

E x am p l e 3. Let V : R → R+ be given by V (t, x) = x2. Then the Caputo

fractional Dini derivative of the function V (t, x) is

c
+D

q
(3.1)V (t, x) = lim sup

h→0+

1

hq

{

x2 − x2
0 −

[(t−t0)/h]
∑

r=1

(−1)r+1qCr[(x − hqf(t, x))2 − x2
0]

}

= lim sup
h→0+

1

hq

{

x2 − x2
0 +

[(t−t0)/h]
∑

r=1

(−1)rqCr[(x − hqf(t, x))2 − x2 + x2 − x2
0]

}

= (x2 − x2
0) lim sup

h→0+

1

hq

[(t−t0)/h]
∑

r=0

(−1)rqCr − 2xf(t, x) lim sup
h→0+

[(t−t0)/h]
∑

r=1

(−1)rqCr

− (f(t, x))2 lim sup
h→0+

hq

[(t−t0)/h]
∑

r=1

(−1)rqCr.

Using the equalities lim
N→∞

N
∑

r=0
(−1)rqCr = 0, where N is a natural number, and

lim
h→0+

[(t− t0)/h] = ∞, we obtain

(3.7) lim
h→0+

[(t−t0)/h]
∑

r=1

(−1)rqCr = −1

and

(3.8) lim sup
h→0+

1

hq

[(t−t0)/h]
∑

r=0

(−1)rqCr = Dq
0(1) =

(t− t0)
−q

Γ(1− q)
.

Therefore, the Caputo fractional Dini derivative of V is given by

(3.9) c
+D

q
(3.1)V (t, x) =

x2 − x2
0

(t− t0)qΓ(1− q)
+ 2xf(t, x).

659



R em a r k 3. Consider the Lyapunov function which does not depend on t, V (x).

Then the Caputo fractional Dini derivative along the trajectories of solutions of the

initial value problem for the system FrDE (3.1) given by formula (3.6) is reduced to

(3.10) c
+D

q
(3.1)V (x; t0, x0) = lim sup

h→0+

V (x)− V (x− hqf(t, x))

hq

+ (V (x)− V (x0))
(t− t0)

−q

Γ(1− q)
.

Note that in [9] and [8] the derivative of the Lyapunov function from the class Λ

is introduced as

(3.11) DqV (t, x) = lim sup
h→0

1

hq
[V (t, x) − V (t− h, x− hqf(t, x)].

This derivative can be quite different from the classical one (see below).

E x am p l e 4. Let V : R+ × R → R+ be given by V (t, x) = x2/(t+ 1)2 and

consider the case t0 = 0, x0 = 0.

Apply formula (3.11) to obtain the derivative of V , namely

(3.12)

DqV (t, x) = lim sup
h→0

1

hq

[ x2

(t+ 1)2
− (x− hqf(t, x))2

(t+ 1− h)2

]

= lim sup
h→0

1

hq

x2(t+ 1− h)2 − (x − hqf(t, x))2(t+ 1)2

(t+ 1)2(t+ 1− h)2

= lim sup
h→0

1

hq

(−xh+ hqf(t, x)(t+ 1))(2x(t + 1)− xh− hqf(t, x)(t+ 1))

(t+ 1)2(t+ 1− h)2

= lim sup
h→0

(−xh1−q + f(t, x)(t+ 1))(2x(t+ 1)− xh− hqf(t, x)(t+ 1))

(t+ 1)2(t+ 1− h)2

=
2xf(t, x)

(t+ 1)2
.

Use (3.6) to obtain the derivative of V , namely

(3.13) c
+D

q
(3.1)V (t, x) = lim sup

h→0+

1

hq

{

x2

(t+ 1)2
−

[t/h]
∑

r=1

(−1)r+1qCr
(x − hqf(t, x))2

(t+ 1− rh)2

}

= x2 lim sup
h→0+

1

hq

[t/h]
∑

r=0

(−1)rqCr

(t+ 1− rh)2

− 2xf(t, x) lim sup
h→0+

[t/h]
∑

r=1

(−1)r+1qCr

(t+ 1− rh)2
.

660



Applying (3.7), (3.8) and simplifying (3.13), we obtain

(3.14) c
+D

q
(3.1)V (t, x) =

2xf(t, x)

(t+ 1)2
+ x2Dq

0

( 1

(t+ 1)2

)

.

Now consider the well known case q = 1. The derivative of the Lyapunov function

with respect to an ordinary differential equation is

(3.15) DV (t, x) =
2xf(t, x)

(t+ 1)2
+ x2

( 1

(t+ 1)2

)

′

.

In formula (3.11), we obtain only the first term of DV (t, x) in (3.15). Formulas

(3.14) and (3.15) are quite similar.

The formula (3.11) also leads to some problems.

E x am p l e 5. Let V : R+ × R → R+ be given by V (t, x) = sin2 tx2. It is locally

Lipschitz with respect to its second argument x.

Apply formula (3.11) to obtain the derivative of V , namely

DqV (t, x) = lim sup
h→0

1

hq
[sin2 tx2 − sin2(t− h)(x− hqf(t, x))2]

= lim sup
h→0

1

hq
{(sin2 t− sin2(t− h))x2 + sin2(t− h)hqf(t, x)(2x− hqf(t, x))}

= x2 lim sup
h→0

sin2 t− sin2(t− h)

hq
+ lim sup

h→0
sin2(t− h)f(t, x)(2x− hqf(t, x))

= 2x sin2(t)f(t, x).

Let f(t, x) ≡ 0. Then the solution of (3.1) for n = 1 and t0 = 0 is x(t) ≡ x0, t > 0

and V (t, x(t)) = x2
0 sin

2 t. All the conditions of [8], Corollary 2.2, are satisfied so

the inequality V (t, x(t)) 6 V (t0, x0), t > t0 has to hold. However, in this case the

inequality x2
0 sin

2 t 6 x2
0 sin

2 0 = 0 is not satisfied for all t > t0.

4. Fractional differential inequalities and comparison results

for scalar FrDE

Again in this section we assume 0 < q < 1.

Lemma 1. Let m ∈ C([t0, T ],R) and suppose that there exists t
∗ ∈ (t0, T ] such

that m(t∗) = 0 and m(t) < 0 for t0 6 t < t∗. Then if the Caputo fractional Dini

derivative (2.3) of m exists at t∗ then the inequality cDq
+m(t∗) > 0 holds.

661



P r o o f. From (2.1) (note that m(t∗) = 0, r − q > 0 for r = 1, 2, . . ., and

0 < q < 1) we obtain

Dq
0+m(t∗) = lim sup

h→0+

1

hq

[(t∗−t0)/h]
∑

r=0

(−1)r(qCr)m(t∗ − rh)

= m(t∗) + lim sup
h→0+

1

hq

[(t∗−t0)/h]
∑

r=1

(−1)r
q(q − 1) . . . (q − r + 1)

r!
m(t∗ − rh)

= lim sup
h→0+

1

hq

[(t∗−t0)/h]
∑

r=1

q(1 − q) . . . (r − 1− q)

r!
(−m(t∗ − rh)).

Since all the terms of the above series are positive we obtain Dq
0+m(t∗) > 0. From

the relation cDq
+m(t) = Dq

0+[m(t)−m(t0)] we get

(4.1) cDq
+m(t∗) = Dq

0+m(t∗)− m(t0)(t
∗ − t0)

−q

Γ(1− q)
.

Now m(t0) < 0, t∗ > t0, Γ(1− q) > 0, and (4.1) completes the proof. �

Now we present a comparison result.

Lemma 2 (Comparison result). Assume the following conditions are satisfied:

1. The function x∗(t) = x(t; t0, x0), x
∗ ∈ Cq([t0, T ],∆), is a solution of the FrDE

(3.1), where ∆ ⊂ R
n, 0 ∈ ∆, t0, T ∈ R+ : t0 < T are given constants, x0 ∈ ∆.

2. The function g ∈ C([t0, T ]× R,R).

3. The function V ∈ Λ([t0, T ],∆) and for any points t ∈ [t0, T ] and x ∈ ∆ the

inequality
c
+D

q
(3.1)V (t, x) 6 g(t, V (t, x))

holds.

4. The function u∗(t) = u(t; t0, u0), u
∗ ∈ Cq([t0, T ],R), is the maximal solution of

the initial value problem (3.2).

Then the inequality V (t0, x0) 6 u0 implies V (t, x∗(t)) 6 u∗(t) for t ∈ [t0, T ].

P r o o f. Let η > 0 be an arbitrary number and consider the initial value problem

for the scalar FrDE

(4.2) cDqu = g(t, u) + η for t ∈ [t0, T ], u(t0) = u0 + η,

where η is small enough (i.e. η 6 L[t0,T ] as described after (3.2)). The function

u(t, η) is a solution of the scalar fractional differential equation (4.2) if and only if it
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satisfies the Volterra fractional integral equation ([5], Lemma 6.2)

(4.3) u(t, η) = u0 + η +
1

Γ(q)

∫ t

t0

(t− s)q−1(g(s, u(s, η)) + η) ds for t ∈ [t0, T ].

Let the function m(t) ∈ C([t0, T ],R+) be m(t) = V (t, x∗(t)). We now prove that

(4.4) m(t) < u(t, η) for t ∈ [t0, T ].

Note that the inequality (4.4) holds for t = t0, since m(t0) = V (t0, x0) 6 u0 <

u(t0, η). Assume that inequality (4.4) is not true. Then there exists a point t
∗ such

that m(t∗) = u(t∗, η), m(t) < u(t, η) for t ∈ [t0, t
∗). Now Lemma 1 (applied to

m(t)− u(t, η)) yields cDq
+(m(t∗)− u(t∗, η)) > 0, i.e.

(4.5) cDq
+m(t∗) > g(t∗, u(t∗, η)) + η > g(t∗,m(t∗)).

Due to condition 1 of Lemma 2 the function x∗(t) satisfies the following initial value

problem for the system of FrDE:

(4.6) cDq
+x = f(t, x), x(t0) = x0, t ∈ [t0, T ].

Then for t ∈ (t0, T ) the equality

lim sup
h→0+

1

hq
[x∗(t)− x0 − S(x∗(t), h)] = f(t, x∗(t))

holds, where

S(x∗(t), h) =

[(t−t0)/h]
∑

r=1

(−1)r+1qCr[x∗(t− rh)− x0].

Therefore,

S(x∗(t), h) = x∗(t)− x0 − hqf(t, x∗(t))− Λ(hq)

or

(4.7) x∗(t)− hqf(t, x∗(t)) = S(x∗(t), h) + x0 + Λ(hq)
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with Λ(hq)/hq → 0 as h → 0. Then for any t ∈ (t0, T ) we obtain

(4.8) m(t)−m(t0)−
[(t−t0)/h]

∑

r=1

(−1)r+1qCr[m(t− rh) −m(t0)]

=

{

V (t, x∗(t)) − V (t0, x0)

−
[(t−t0)/h]

∑

r=1

(−1)r+1qCr[V (t− rh, x∗(t)− hqf(t, x∗(t))− V (t0, x0)]

}

+

[(t−t0)/h]
∑

r=1

(−1)r+1qCr{[V (t− rh, S(x∗(t), h) + x0 + Λ(hq))− V (t0, x0)]

− [V (t− rh, x∗(t− rh)) − V (t0, x0)]}.

Since V is locally Lipschitzian in its second argument with a Lipschitz constant

L > 0, we obtain

(4.9)

[(t−t0)/h]
∑

r=1

(−1)r+1qCr{V (t− rh, S(x∗(t), h) + x0 + Λ(hq))

− V (t− rh, x∗(t− rh))}

6 L

∥

∥

∥

∥

[(t−t0)/h]
∑

r=1

qCr(S(x∗(t), h) + Λ(hq)− (x∗(t− rh)− x0))

∥

∥

∥

∥

6 L

∥

∥

∥

∥

[(t−t0)/h]
∑

r=1

(−1)r+1qCr

[(t−t0)/h]
∑

j=1

qCj(x∗(t− jh)− x0)

−
[(t−t0)/h]

∑

r=1

qCr((x∗(t− rh)− x0))

∥

∥

∥

∥

+ LΛ(hq)

[(t−t0)/h]
∑

r=1

qCr

= L

∥

∥

∥

∥

([t−t0/h]
∑

r=0

(−1)r+1qCr

)([(t−t0)/h]
∑

j=1

qCj(x∗(t− jh)− x0)

)∥

∥

∥

∥

+ LΛ(hq)

[(t−t0)/h]
∑

r=1

qCr.

Substituting (4.9) in (4.8), dividing both sides by hq, taking the limit as h → 0+,

using (3.7) and
∞
∑

r=0
qCrzr = (1 + z)q if |z| 6 1, we obtain for any t ∈ (t0, T ) the
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inequality (note (2.3) and (3.6) and condition 3 of Lemma 2)

(4.10) cDq
+m(t) 6 c

(3.1)D
q
+V (t, x∗(t)) + L lim

h→0+

Λ(hq)

hq
lim

h→0+

[(t−t0)/h]
∑

r=1

qCr

+ L lim
h→0+

sup

∥

∥

∥

∥

([(t−t0)/h]
∑

r=0

(−1)r+1qCr

)(

1

hq

[t−t0/h]
∑

j=1

qCj(x∗(t− jh)− x0)

)
∥

∥

∥

∥

= c
(3.1)D

q
+V (t, x∗(t)) 6 g(t, V (t, x∗(t))) = g(t,m(t)).

Now (4.10) with t = t∗ contradicts (4.5). Therefore, (4.4) holds.

We now show that if η2 < η1 then

(4.11) u(t, η2) < u(t, η1) for t ∈ [t0, T ].

Note that the inequality (4.11) holds for t = t0. Assume that inequality (4.11) is not

true. Then there exists a point t∗ such that u(t∗, η2) = u(t∗, η1) and u(t, η2) < u(t, η1)

for t ∈ [t0, t
∗). Now Lemma 1 (applied to u(t, η2) − u(t, η1)) yields

cDq
+(u(t

∗, η2) −
u(t∗, η1))) > 0. However,

cDq
+(u(t

∗, η2)−u(t∗, η1))) = g(t∗, u(t∗, η2))+η2− [g(t∗, u(t∗, η1))+η1] = η2−η1 < 0,

a contradiction. Thus (4.11) is true.

Recall 0 < η 6 L[t0,T ]. Now (4.4) and (4.11) guarantee that the family of solutions

{u(t, η)}, t ∈ [t0, T ] of (4.2) is uniformly bounded, i.e. there exists K > 0 with

|u(t, η)| 6 K for (t, η) ∈ [t0, T ]× [0, L[t0,T ]]. Let M = sup{|g(t, x)| : (t, x) ∈ [t0, T ]×
[−K,K]}. Take a decreasing sequence of positive numbers {ηj}∞j=0, η0 6 L[t0,T ],

such that lim
j→∞

ηj = 0 and consider the sequence of functions u(t; ηj). Now for

t1, t2 ∈ [t0, T ], t1 < t2, we have

(4.12) |u(t2, ηj)− u(t1, ηj)|

6
1

Γ(q)

∣

∣

∣

∣

∫ t1

t0

((t2 − s)q−1 − (t1 − s)q−1)(g(s, u(s, ηj)) + ηj) ds

+

∫ t2

t1

(t2 − s)q−1(g(s, u(s, ηj)) + ηj) ds

∣

∣

∣

∣

6 2
[M + 1]

qΓ(q)
(t2 − t1)

q.

Thus the family {u(t; ηj)} is equicontinuous on [t0, T ]. The Arzela-Ascoli Theo-

rem guarantees that there exists a subsequence {u(t; ηjk)} and a w ∈ C[t0, T ] with

u(t; ηjk) → w in C[t0, T ] as k → ∞. Taking the limit in (4.3) as k → ∞ we see that
w(t) satisfies the initial value problem (3.2) for t ∈ [t0, T ]. Now from (4.4) we have

m(t) 6 w(t) 6 u∗(t) on [t0, T ]. �

If g(t, x) ≡ 0 in Lemma 2 we obtain the following result:

665



Corollary 1. Assume the following conditions are satisfied:

1. The function x∗(t) = x(t; t0, x0), x
∗ ∈ Cq([t0, T ],∆), is a solution of the FrDE

(3.1) where ∆ ⊂ R
n, 0 ∈ ∆.

2. The function V ∈ Λ([t0, T ],∆) and for any points t ∈ [t0, T ] and x ∈ δ the

inequality
c
+D

q
(3.1)V (t, x) 6 0

holds.

Then for t ∈ [t0, T ] the inequality V (t, x∗(t)) 6 V (t0, x0) holds.

P r o o f. The proof follows from the fact that the Caputo fractional differential

equation cDqx = 0 has a constant solution. Apply Lemma 2 with u0 = V (t0, x0). �

R em a r k 4. Corollary 1 is similar to [8], Corollary 2.2, but in the case we

use (3.6).

E x am p l e 6. Let V : R+ × R → R+ be given by V (t, x) = sin2 tx2 as in Exam-

ple 5. Now use (3.6), (3.7), and (3.8) to obtain the Caputo fractional Dini derivative

of V , namely

(4.13) c
+D

q
(3.1)V (t, x)

= (sin t0)
2x2

0

(t− t0)
−q

Γ(1− q)
+ x2 lim sup

h→0+

1

hq

[(t−t0)/h]
∑

r=0

(−1)rqCr(sin(t− rh))2

− 2xf(t, x) lim sup
h→0+

[(t−t0)/h]
∑

r=1

(−1)rqCr(sin(t− rh))2

= (sin t0)
2x2

0

(t− t0)
−q

Γ(1− q)
+ x2Dq

0(sin(t))
2 + 2xf(t, x)(sin(t))2.

Use (sin(t))2 = 0.5− 0.5 cos(2t) and Dq
0 cos(2t) = 2q cos(2t+ qπ/2) and obtain

(4.14) c
+D

q
(3.1)V (t, x)

= (sin t0)
2x2

0

(t− t0)
−q

Γ(1− q)
+ x2

(

0.5
(t− t0)

−q

Γ(1− q)
+ 2q−1 cos

(

2t+
qπ

2

))

+ 2xf(t, x)(sin(t))2.

Let f(t, x) ≡ 0. The solution of (3.1) for n = 1 and t0 = 0 is x(t) ≡ x0, t > 0

and V (t, x(t)) = x2
0 sin

2 t. Also, c
+D

q
(3.1)V (t, x) = x2

0(0.5 t
−q/Γ(1− q) + 2q−1 cos(2t+

qπ/2)) for t > 0. The sign of the fractional derivative of V changes (see Fig. 1 for

values of q = 0.2, 0.5, 0.8). Therefore, the conditions of Corollary 1 are not satisfied

(compare with Example 5).
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Now let V : R+ × R → R+ be given by V (t, x) = x2 as in Example 3. Ac-

cording to (3.9), c
+D

q
(3.1)V (t, x) = (x2 − x2

0)/(t
qΓ(1− q)) + 2xf(t, x). Let f(t, x) =

−x/(tqΓ(1 − q)). Then c
+D

q
(3.1)V (t, x; t0, x0) 6 0 and according to Corollary 1 the

inequality |x(t)| 6 |x0|, t > 0, holds for any solution of (3.1).

2 4 6 8 10
t

−0.5

0.5

1.0

1.5

2.0

x

q = 0.5

q = 0.7

q = 0.8

Figure 1. Example 6: q = 0.2, 0.5, and 0.8.

The result of Lemma 2 is also true on the half line. The idea is to fix T > t0; then

once again we have (4.3) and (4.4). Taking the limit in (4.3) as k → ∞, we see that
lim
k→∞

u(t; ηjk)) satisfies the initial value problem (3.2) for t ∈ [t0, T ]. We can use this

argument for each T < ∞. This yields the following result.

Corollary 2. Assume the following conditions are satisfied:

1. The function x∗(t) = x(t; t0, x0), x
∗ ∈ Cq([t0,∞),∆), is a solution of the FrDE

(3.1), where ∆ ⊂ R
n, 0 ∈ ∆.

2. The function g ∈ C([t0,∞)× R,R).

3. The function V ∈ Λ([t0,∞),∆) and for any points t > t0 and x ∈ ∆ the

inequality

c
+D

q
(3.1)V (t, x) 6 g(t, V (t, x))

holds.

4. The function u∗(t) = u(t; t0, u0), u
∗ ∈ Cq([t0,∞),R) is the maximal solution of

the initial value problem (3.2).

Then the inequality V (t0, x0) 6 u0 implies V (t, x∗(t)) 6 u∗(t) for t > t0.

If the derivative of the Lyapunov function is negative, the following result is true.

Lemma 3. Assume the following conditions are satisfied:

1. The function x∗(t) = x(t; t0, x0), x
∗ ∈ Cq([t0, T ],∆) is a solution of the FrDE

(3.1), where ∆ ⊂ R
n, 0 ∈ ∆.
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2. The function V ∈ Λ([t0, T ],∆) and for any points t ∈ [t0, T ], x ∈ ∆ the inequal-

ity
c
+D

q
(3.1)V (t, x) 6 −c(‖x‖)

holds where c ∈ K.
Then for t ∈ [t0, T ] the inequality

(4.15) V (t, x∗(t)) 6 V (t0, x0)−
1

Γ(q)

∫ t

t0

(t− s)q−1c(‖x∗(s)‖) ds

holds.

P r o o f. Define the function m(t) ∈ C([t0, T ],R+) by m(t) = V (t, x∗(t)) and the

function p ∈ C([t0, T ],R+) by p(t) = c(‖x∗(t)‖). As in the proof of (4.10) we have

(4.16) cDq
+m(t) 6 c

+D
q
(3.1)V (t, x∗(t)) 6 −c(‖x∗(t)‖) = −p(t), t ∈ [t0, T ].

Let η > 0 be arbitrary. Consider the following initial value problem for the scalar

FrDE:
cDqu(t) = −p(t), t > t0, u(t0) = m(t0) + η.

Its solution satisfies the fractional integral equation

(4.17) u(t) = m(t0)−
1

Γ(q)

∫ t

t0

(t− s)q−1p(s) ds+ η.

We now prove that

(4.18) m(t) < u(t), t ∈ [t0, T ].

Assume the contrary and let t∗ ∈ (t0, T ] be such that

m(t∗) = u(t∗) and m(t) < u(t) for t ∈ [t0, t
∗).

From Lemma 1 (applied to m(t)− u(t)) we obtain

(4.19) cDq
+m(t∗) >cDq

+u(t
∗) =cDqu(t∗) = p(t∗),

and this contradicts (4.16). Therefore, (4.18) is satisfied. From (4.17) and (4.18)

since η > 0 is arbitrary we obtain (4.15). �

5. Main result

We will obtain sufficient conditions for stability of the system FrDE (3.1). Again

we assume 0 < q < 1.
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Theorem 1. Let the following conditions be satisfied:

1. The function g ∈ C(R+ × R,R) satisfies g(t, 0) ≡ 0.

2. There exists a function V ∈ Λ(R+,R
n) such that V (t, 0) = 0 and

(i) for any points t, t0 > 0 and x, x0 ∈ R
n the inequality

(5.1) c
+D

q
(3.1)V (t, x) 6 g(t, V (t, x))

holds;

(ii) b(‖x‖) 6 V (t, x) for t ∈ R+, x ∈ R
n, where b ∈ K.

3. The zero solution of the scalar FrDE (3.2) is stable.

Then the zero solution of the FrDE (3.1) is stable.

P r o o f. Let ε > 0 and t0 ∈ R+ be given. Then there exists δ1 = δ1(t0, ε) > 0

such that the inequality |u0| < δ1 implies

(5.2) |u(t; t0, u0)| < b(ε), t > t0,

where u(t; t0, u0) is any solution of the scalar FrDE (3.2). Since V (t0, 0) = 0 there

exists δ2 = δ2(t0, δ1) > 0 such that V (t0, x) < δ1 for ‖x‖ < δ2. Let x0 ∈ R
n with

‖x0‖ < δ2. Then V (t0, x0) < δ1.

Consider any solution x∗(t) = x(t; t0, x0), t > t0, x
∗ ∈ Cq([t0,∞),Rn) of the

FrDE (3.1). Now let u∗

0 = V (t0, x0). Then u∗

0 < δ1 and inequality (5.2) holds for

any solution u(t; t0, u
∗

0) of the scalar FrDE (3.2). Then from Corollary 2 and (5.2)

we have

V (t, x∗(t)) 6 u(t; t0, u
∗

0) < b(ε), t > t0;

here u(t; t0, u
∗

0) is the maximal solution of the initial value problem (3.2) (with the

initial point (t0, u
∗

0)). Then for any t > t0 condition 2(ii) yields

b(‖x∗(t)‖) 6 V (t, x∗(t)) < b(ε),

so the result follows. �

Corollary 3. Let condition 2 of Theorem 1 be satisfied where the inequality (5.1)

is replaced by c
+D

q
(3.1)V (t, x) 6 0.

Then the zero solution of the FrDE (3.1) is stable.

P r o o f. The proof follows from the fact that the Caputo fractional differential

equation cDqx = 0 has a constant solution which is stable. �

Now we present some sufficient conditions for stability of the zero solution of the

FrDE in the case when the condition for the Caputo fractional Dini derivative of the

Lyapunov function is satisfied only on a ball.
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Theorem 2. Assume:

1. The function g ∈ C([R+ × R,R) satisfies g(t, 0) ≡ 0.

2. There exists a function V ∈ Λ(R+, B(λ)) such that

(i) for any points t, t0 > 0 and any x, x0 ∈ B(λ) the inequality

(5.3) c
+D

q
(3.1)V (t, x) 6 g(t, V (t, x))

holds, where λ > 0 is a given number;

(ii) b(‖x‖) 6 V (t, x) 6 a(‖x‖) for t ∈ R+, x ∈ B(λ), where a, b ∈ K.
3. The zero solution of the scalar FrDE (3.2) is uniformly stable.

Then the zero solution of (3.1) is uniformly stable.

P r o o f. Let ε ∈ (0, λ] be a positive number. Due to condition 3 of Theorem 2

there exists δ1 = δ1(ε) > 0 such that for any τ0 > 0 the inequality |u0| < δ1 implies

(5.4) |u(t; τ0, u0)| < b(ε), t > τ0,

where u(t; τ0, u0) is any solution of (3.2). Let δ1 < min{ε, b(ε)}. Since a ∈ K there
exists δ2 = δ2(ε) > 0 such that if s < δ2 then a(s) < δ1. Let δ = min(ε, δ2). Choose

the initial value x0 ∈ R
n such that ‖x0‖ < δ. Let x∗(t) = x(t; t0, x0), t > t0 be any

solution of the FrDE (3.1). We now prove that

(5.5) ‖x∗(t)‖ < ε, t > t0.

The inequality (5.5) holds for t = t0. Assume inequality (5.5) is not true for all

t > t0. Consequently, there exists a point t
∗ > t0 such that

(5.6) ‖x∗(t∗)‖ = ε, and ‖x∗(t)‖ < ε, t ∈ [t0, t
∗).

Now let u∗

0 = V (t0, x0). Then from 2(ii) we get u
∗

0 6 a(‖x0‖) < a(δ2) < δ1. Consider

any solution u(t; t0, u
∗

0) of the scalar FrDE (3.2). Therefore, the inequality (5.4) holds

for τ0 = t0 and u0 = u∗

0. From the choice of the point t
∗ it follows that x∗(t) ∈ B(λ)

for t ∈ [t0, t
∗]. Then from the reasoning in Lemma 2 for the interval [t0, t

∗] we have

(5.7) V (t, x∗(t)) 6 u∗(t; t0, u
∗

0), t ∈ [t0, t
∗],

where u∗(t; t0, u
∗

0), t > t0, is the maximal solution of the scalar FrDE (3.2) (for the ini-

tial point (t0, u
∗

0)). From inequalities (5.4), (5.7), the choice of t
∗, and condition 2(ii)

of Theorem 2 we obtain b(ε) > u∗(t∗; t0, u
∗

0) > V (t∗, x∗(t∗)) > b(‖x∗(t∗)‖) = b(ε).

The contradiction proves (5.5) and therefore, the zero solution of the FrDE (3.1) is

uniformly stable. �
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Corollary 4. Let condition 2 of Theorem 2 be satisfied, where the inequality (5.3)

is replaced by c
+D

q
(3.1)V (t, x) 6 0. Then the zero solution of the FrDE (3.1) is

uniformly stable.

Now we present some sufficient conditions for the uniform asymptotic stability of

the zero solution of the FrDE.

Theorem 3. Assume:

1. There exists a function V ∈ Λ(R+,R
n) such that

(i) for any points t, t0 > 0 and x, x0 ∈ R
n the inequality

c
+D

q
(3.1)V (t, x) 6 −c(‖x‖)

holds, where c ∈ K;
(ii) b(‖x‖) 6 V (t, x) 6 a(‖x‖) for t ∈ R+, x ∈ R

n, where a, b ∈ K.
Then the zero solution of the FrDE (3.1) is uniformly asymptotically stable.

P r o o f. According to Corollary 4, the zero solution of the FrDE (3.1) is uni-

formly stable. Therefore, for the number λ there exists α = α(λ) ∈ (0, λ) such that

for any t̃0 ∈ R+ and x̃0 ∈ R
n the inequality ‖x̃0‖ < α implies

(5.8) ‖x(t; t̃0, x̃0)‖ < λ for t > t̃0,

where x(t; t̃0, x̃0) is any solution of the FrDE (3.1) (with initial data (t̃0, x̃0)).

Now we will prove that the zero solution of the fractional differential equation

(3.1) is uniformly attractive. Consider a constant β ∈ (0, α] such that a(β) 6 b(α).

Let ε ∈ (0, λ] be an arbitrary number and x∗(t) = x(t; t0, x0) any solution of (3.1)

such that ‖x0‖ < β, t0 ∈ R+. Then b(‖x0‖) 6 a(‖x0‖) < a(β) < b(α), i.e. ‖x0‖ < α

and therefore, the inequality

(5.9) ‖x∗(t)‖ < λ for t > t0

holds. Choose a constant γ = γ(ε) ∈ (0, ε] such that a(γ) < b(ε). Let T >

qΓ(q)a(α)/c(γ), T = T (ε) > 0. We now prove that

(5.10) ‖x∗(t)‖ < ε for t > t0 + T.

Assume

(5.11) ‖x∗(t)‖ > γ for every t ∈ [t0, t0 + T ].
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Then from Lemma 3 (applied to the interval [t0, t0 + T ] and ∆ = R
n) we get

(5.12) V (t0 + T, x∗(t0 + T ))

6 V (t0, x0)−
1

Γ(q)

∫ t0+T

t0

(t0 + T − s)q−1c(‖x∗(s)‖) ds

6 a(‖x0‖)−
c(γ)

Γ(q)

∫ t0+T

t0

(t0 + T − s)q−1 ds = a(‖x0‖)−
c(γ)

Γ(q)

T

q

< a(α) − c(γ)

Γ(q)

T

q
< 0.

The contradiction proves that there exists t∗ ∈ [t0, t0 + T ] such that ‖x∗(t∗)‖ < γ.

By Lemma 3 for t > t∗ and ∆ = R
n the inequality

V (t, x∗(t)) 6 V (t∗, x∗(t∗))− 1

Γ(q)

∫ t

t∗
(t− s)q−1c(‖x∗(s)‖) ds 6 V (t∗, x∗(t∗))

holds. Then for any t > t∗ the inequalities

b(‖x∗(t)‖) 6 V (t, x∗(t)) 6 V (t∗, x∗(t∗)) 6 a(‖x∗(t∗)‖) 6 a(γ) < b(ε)

hold. Therefore (5.10) holds for all t > t∗ (hence for t > t0 + T ). �

6. Applications

E x am p l e 7. Consider the system of fractional differential equations

(6.1) cDqx1(t) = −g1(t)x1 − g2(t)x2,

cDqx2(t) = −g1(t)x2 + g2(t)x1 for t > t0

with initial conditions

x1(t0) = x0
1 and x2(t0) = x0

2,

where x1, x2 ∈ R, g1(t) = 0.5/(tqΓ(1− q)) + 1 and g2 ∈ C(R+,R) is an arbitrary

function.

Now (6.1) is equivalent to (3.1) with x = (x1, x2) ∈ R
2, f = (f1, f2), where

f1(t, x1, x2) = −g1(t)x1 − g2(t)x2 and f2(t, x1, x2) = −g1(t)x2 + g2(t)x1.

Consider V (t, x1, x2) = x2
1+x2

2 for t ∈ R+, x = (x1, x2) ∈ R
2 and x ∈ B(λ), where

λ > 0. Then condition 2 (ii) of Theorem 2 is satisfied for a, b ∈ K with b(s) = 1
2s,

a(s) = 2s.
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For any x1, x2 ∈ R : x = (x1, x2) ∈ B(λ) from (3.6) and (3.8) we obtain

(6.2) c
+D

q
(6.1)V (t, x1, x2)

= − ((x0
1)

2 + (x0
2)

2)
1

tqΓ(1− q)
+ lim sup

h→0+

1

hq

{

(x2
1 + x2

2)

[(t−t0)/h]
∑

r=0

(−1)rqCr

− 2hq(x1(−g1(t)x1 − g2(t)x2) + x2(−g1(t)x2 + g2(t)x1))

[(t−t0)/h]
∑

r=1

(−1)rqCr

+ h2q((−g1(t)x1 − g2(t)x2)
2 + (−g1(t)x2 + g2(t)x1)

2)

[(t−t0)/h]
∑

r=1

(−1)rqCr

}

.

Applying (3.7) and (3.8) to (6.2) yields

c
+D

q
(6.1)V (t, x1, x2) =

x2
1 + x2

2 − (x0
1)

2 − (x0
2)

2

tqΓ(1− q)

− 2(x1(−g1(t)x1 − g2(t)x2) + x2(−g1(t)x2 + g2(t)x1))

6 (x2
1 + x2

2)
( 1

tqΓ(1− q)
− 2g1(t)

)

= −2(x2
1 + x2

2) = −2V (t, x1, x2).

The comparison FrDE is (3.3) and by Example 2 the zero solution of (3.3) is uniformly

stable. According to Theorem 2, the zero solution of (6.1) is uniformly stable. Also,

since condition 1(i) of Theorem 3 is satisfied, the zero solution of (6.1) is uniformly

asymptotically stable.

If we use (3.11) then

(6.3) DqV (t, x1, x2) = lim sup
h→0

1

hq
{x2

1 + x2
2 − (x1 − hq(−g1(t)x1 − g2(t)x2))

2

+ (x2 − hq(−g1(t)x2 + g2(t)x1))
2}

= lim sup
h→0

1

hq
{−2hq[x1(−g1(t)x1 − g2(t)x2) + x2(−g1(t)x2 + g2(t)x1)]

+ h2q[(−g1(t)x1 − g2(t)x2)
2 + (−g1(t)x2 + g2(t)x1)

2]}
= x1(−g1(t)x1 − g2(t)x2) + x2(−g1(t)x2 + g2(t)x1) = −(x2

1 + x2
2)g1(t)

= −
( 0.5

tqΓ(1− q)
+ 1

)

V (t, x1, x2),

and we obtain the comparison Caputo fractional differential equation

cDqu(t) = −
( 0.5

tqΓ(1− q)
+ 1

)

u

which is more difficult to solve than the scalar FrDE (3.3).
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R em a r k 5. Using an inequality for any continuous function (for the proof see [1])

and Theorem 1 from the paper [6], one can prove the stability of the zero solution

of (6.1) in a different way which is easier for this particular example.

Now we illustrate the usefulness of (3.6) in the case when the quadratic Lyapunov

function gives us no result.

E x am p l e 8. Consider the initial value problem for the scalar fractional differ-

ential equation

(6.4)

cDqx(t) =
−0.25q − 0.75/tqΓ(1− q)− 2q−2 cos(2t+ qπ/2))

1 + cos2(t)
x, t > t0, x(t0) = x0,

where 0 < q < 1. Let

f(t, x) =
−0.25q − 0.75/tqΓ(1 − q)− 2q−2 cos(2t+ qπ/2)

1 + cos2(t)
x.

Consider the quadratic Lyapunov function V (t, x) = x2. Since the sign of the

function −0.25q− 0.75/(tqΓ(1− q))− 2q−2 cos(2t+ qπ/2) changes, so does the frac-

tional derivative of V (see Fig. 2 for some values of q). Therefore, the quadratic

function is not applicable to the fractional equation (6.4).

5 10 15 20 25 30
t

−1.5

−1.0

−0.5

x

q = 0.2

q = 0.5

q = 0.8

Figure 2. Example 8: q = 0.5, 0.7, and 0.8.

Now, consider the Lyapunov function V (t, x) = (1 + cos2(t))x2. The inequalities

‖x‖ 6 V (t, x) 6 2‖x‖ are satisfied for any x ∈ R. Let x, x0 ∈ R with |x| 6 λ,

|x0| 6 λ, where λ > 0 is a given number. Applying formula (3.6) to this Lyapunov

function, we obtain

(6.5) c
+D

q
(6.4)V (t, x) = lim sup

h→0+

1

hq

{

(1 + cos2(t))x2 − (1 + cos2(t0))x
2
0

−
[(t−t0)/h]

∑

r=1

(−1)r+1qCr[(1 + cos2(t− rh))(x − hqf(t, x))2 − (1 + cos2(t0))x
2
0]

}

.
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Using (3.7), (3.8), cos2(t) = 0.5 + 0.5 cos(2t), and Dq
0(cos(2t)) = 2q cos(2t + qπ/2),

we obtain

c
+D

q
(6.4)V (t, x) = −(1 + cos2(t0))x

2
0

(t− t0)
−q

Γ(1− q)

+ x2 lim sup
h→0+

1

hq

{[(t−t0)/h]
∑

r=0

(−1)rqCr(1 + cos2(t− rh))

− 2hqf(t, x)

[(t−t0)/h]
∑

r=1

(−1)rqCr(1 + cos2(t− rh))

+ h2q(f(t, x))2
[(t−t0)/h]

∑

r=1

(−1)rqCr(1 + cos2(t− rh))

}

6 x2
( 1

tqΓ(1− q)
+Dq

0 cos
2(t)

)

− 2xf(t, x) lim sup
h→0+

[(t−t0)/h]
∑

r=1

(−1)rqCr(1 + cos2(t− rh))

+ f(t, x) lim sup
h→0+

hq

[(t−t0)/h]
∑

r=1

(−1)rqCr(1 + cos2(t− rh))

= x2
( 1.5

tqΓ(1− q)
+ 2q−1 cos

(

2t+
qπ

2

))

+ 2x2−0.25q − 0.75/tqΓ(1− q)− 2q−2 cos(2t+ qπ/2)

1 + cos2(t)
(1 + cos2(t)) 6 0.

According to Corollary 4, the zero solution is uniformly stable.

7. Conclusions

In this paper we use Lyapunov functions to study the stability of the zero solution

of a nonlinear nonautonomous fractional differential equation. We introduce the

derivative of the Lyapunov function based on the Caputo fractional Dini derivative

of a function. Comparison results using this new definition and scalar fractional

differential equations are presented and sufficient conditions for stability, uniform

stability and asymptotic uniform stability are obtained.
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